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Abstract. Atmospheric instability frequently influences the distribution of 

precipitation and is closely associated with atmospheric dynamics and 

thermodynamics. An increase in convective available potential energy (CAPE) has 

the potential to result in the development of convective clouds, which could 

contribute to extreme rainfall. This study used rainfall data from Asian 

Precipitation–Highly Resolved Observational Data Integration Towards 

Evaluation (APHRODITE) and CAPE data from the European Centre for 

Medium-Range Weather Forecasts. We defined extreme rainfall trends by 

applying the Expert Team on Climate Change Detection and Indices (ETCCDI), 

which include the number of days with precipitation greater than the 95th 

percentile (R95P), consecutive dry days (CDD), consecutive wet days (CWD), the 

number of days with precipitation greater than 10 mm (R10mm), the number of 

days with precipitation greater than 20 mm (R20mm), and the Simple Daily 

Intensity Index (SDII). Using Mann-Kendall statistics, we found that the trend of 

extreme rainfall in Indonesia from 1983 to 2007 was predominantly characterized 

by the extreme category, as indicated by the increasing CDD indices. During the 

MAM-SON seasons, the CAPE had a substantial contribution to the extreme 

rainfall in Indonesia. The CAPE exhibited a significant positive (negative) 

correlation with the CWD and R10mm (CDD) indices. 

Keywords: atmospheric convection; ETCCDMI; precipitation; spatio-temporal; 

trend. 

1 Introduction 

Indonesia has the characteristics of producing a relatively complex atmospheric 

convection process. This complexity arises from the air-sea coupled system and 

the complex landmass distribution over Indonesia. As a result of this interaction, 

rainfall forms in Indonesia. Several studies, such as those that explain the impact 

of rainfall over Indonesia, refer to inter-annual climate variability modes such as 

El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) as 
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influencing the variability of rainfall in Indonesia (Nur’utami and Hidayat 2016 

[1]; Hendrawan et al. 2019 [2]) and also the Madden Julian Oscillation (Hidayat 

and Kizu 2010 [3]). Therefore, rainfall is one of the atmospheric variables that 

represents the distribution of weather events on the earth’s surface. The primary 

source of rainfall is the presence of water vapor in the atmosphere (Al-Taai and 

Abbood, 2020) [4]. Atmospheric conditions representing the potential for rainfall 

to form can be identified using atmospheric instability. Based on the amount of 

energy created during the convection process, the convective available potential 

energy (CAPE) can explain the condition of atmospheric instability (Ziarani et 

al. 2019) [5]. 

Previous studies have examined the relationship between CAPE and rainfall in 

many regions in the tropics. Murugavel et al. (2012) [6] found that an increase in 

CAPE is related to an increase in extreme rainfall events over India. Riemann-

Campe et al. (2009) [7], using ERA-40 ECMWF data reanalysis, found a high 

level of CAPE variability in the tropics between 1958 and 2005. DeMott and 

Randall (2004) [8] found a positive trend of CAPE in the Western Pacific and the 

Caribbean upon analyzing CAPE data from tropical radiosonde stations. 

Understanding the relationship between CAPE and rainfall can be useful to study 

regional extreme rainfall events. Humidity and atmospheric stability conditions 

(air and parcel temperature) influence the fluctuations of CAPE. According to 

Murugavel et al. (2012) [9], an increase in the CAPE value of a region is caused 

by an increase in one or both of the variables of air temperature and humidity. 

Ye et al. (1998) [10] note that differences in air temperature acceptance and 

regional humidity conditions in the availability of wet air masses cause CAPE 

receipts to differ across Indonesian regions. According to the climatological 

analysis of global CAPE conducted by Riemann-Campe et al. (2009) [11], CAPE 

generally increases from the poles to the equator due to differences in solar 

radiation reception. The parameters of solar radiation play an essential role in the 

convection process. Compared to the polar regions, the equatorial region receives 

more intense solar radiation. The increase in CAPE in the tropical area is also due 

to the equatorial coordinates near the Intertropical Convergence Zone (ITCZ), 

high temperatures, and sufficient humidity available to support the convection 

process. 

According to the World Meteorological Organization (WMO) and the 

Intergovernmental Panel on Climate Change (IPCC), extreme rainfall can be 

categorized as extreme climate event when evaluated through statistical 

distribution analysis. In practice, the severity of these events is often determined 

using percentile-based assessments, where rainfall amounts exceeding the normal 

range are considered extreme. To standardize such evaluations, the Expert Team 

on Climate Change Detection, Monitoring, and Indices (ETCCDMI) introduced 
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a set of indices that capture extreme rainfall based on thresholds, frequency, 

duration, and intensity changes. Building on this framework, the present study 

investigated spatial and temporal variability in CAPE and its connection with 

extreme rainfall across Indonesia. Although 13 indices were initially considered, 

the analysis centers on 6 representative indices that best characterize both wet 

and dry rainfall extremes, as listed in Table 1 (Zhang et al. 2004) [12]. 

2 Data and Method 

2.1 Data 

This study used rainfall data from the APHRODITE V1101 product (1983-2007), 

which compiles station-based observations and interpolates them onto a 0.25° 

grid (Yatagai et al., 2012) [13]. The interpolation accounts for local topographic 

features such as elevation and slope (Schaake et al., 2006) [14], allowing the 

dataset to effectively capture rainfall patterns in Indonesia’s mountainous terrain 

(Alsepan and Minobe, 2020) [15]. CAPE information was obtained from ERA5, 

the fifth-generation ECMWF reanalysis, available every six hours during the 

same period and with the same spatial resolution as APHRODITE. ERA5 is 

generated using the Cy41r2 Integrated Forecasting System, which combines 

physical parameterizations, atmospheric dynamics, and data assimilation 

(Hersbach et al., 2020) [16].  Data preprocessing is one of the processes used to 

prepare data for analysis (Rerung 2018) [17]. The first data preprocessing stage 

was integration, merging APHRODITE rainfall data from 1983 to 2007. The 

second stage was selection, which was used to select CAPE parameters based on 

the length of APHRODITE rainfall data to eliminate data bias between rainfall 

and CAPE. The cropping process was equated to the location of the Indonesian 

archipelago, namely 6°N to 11°S and 92° to 142°E. The spatial resolution of 

CAPE and rainfall data is the same. Temporarily, the daily average of CAPE data 

was computed from CAPE values every 6 hours. Moreover, for the data 

subsetting stage, CAPE data over the sea was masked to obtain the distribution 

of land data to only conduct correlation analysis between CAPE and rainfall over 

land. 

2.2 Definition of extreme rainfall indices 

According to Fabrice et al. (2020) [18], extreme rainfall can be classified based 

on the duration or frequency of occurrence, intensity, and threshold. Six indices 

(R95P, R10mm, R20mm, CDD, CWD, and SDII) were chosen from 12 rainfall 

indices based on categories that can represent extreme conditions in Indonesia, 

as shown in Table 1 
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Table 1 Extreme rainfall indices. 

Index Indicator name Unit Definition Category 

SDII Simply Daily 

Intensity Index 

mm day-1 Annual total precipitation 

divided by the number of 

wet days in the year 

Intensity 

R10mm Number of 

heavy 

precipitation 

days 

days Annual count of days when 

RR ≥ 10mm 

Duration/Fre

quency 

R20mm Number of very 

heavy 

precipitation 

days 

days Annual count of days when 

RR ≥ 20mm 

Duration/Fre

quency 

CDD Consecutive 

dry days 

days Maximum number of 

consecutive days with  

R < 1mm 

Duration/Fre

quency 

CWD Consecutive 

wet days 

days Maximum number of 

consecutive days with  

RR ≥ 1mm 

Duration/Fre

quency 

R95P Very wet days mm Annual total PRCP when 

RR > 95th percentile 

Threshold 

2.3 Analysis of Extremes Rainfall Trend  

The extreme rainfall indices in Indonesia were studied both spatially and 

temporally. According to Lee et al. (2012) [19], one of the critical components in 

determining hydrologically homogeneous areas are the spatio-temporal 

characteristics of hydrological variables such as rainfall. This research used 

spatial data to identify areas with extremely high rainfall based on the specified 

indices. The Mann-Kendall test was applied to data from six large Indonesian 

islands (Sumatra, Java, Bali and Nusa Tenggara, Borneo, Sulawesi, and Papua) 

to identify fluctuations in the incidence of extreme rainfall. The Mann-Kendall 

Test uses data rankings to determine the significance of time series trends (Kamal 

and Pachauri 2018) [20]. The Z statistic and p-value were calculated using a 5% 

significance level to assess trends in extreme rainfall data, indicating both 

increases and decreases in incidence over time. Trends are interpreted using the 

Z statistic, where positive values indicate an increase and negative values indicate 

a decline. The Mann-Kendall method applies the following equations for this 

assessment. 

S= ∑ ∑ Sgn (xj - xk)n
j = k + 1

n - 1
k = 1                                                 (2) 

Sgn (xj - xk) ={
1, if xj > xk
0, if xj = xk
-1, if xj < xk

                                             (3) 
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Equations 2 and 3 use n as the amount of data, while xj and xk are the time series 

data of the extreme rainfall index from 1983 to 2007, with the ranking of data 

shown by Equation 4 and variations from the total ranking statistics (S) shown by 

Equation 5. 

𝑉 (𝑆)
𝑛 (𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑖(𝑡𝑖 − 1)(2𝑡𝑖 + 5)𝑚

𝑖 = 1

18
                                 (4) 

𝑍 =

{
 
 

 
 
𝑆 − 1

√𝑉(𝑆)
, 𝑖𝑓 𝑆 > 0 

0, 𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑉(𝑆)
, 𝑖𝑓 𝑆 < 0

                                     (5) 

 

The variance, V(S), is determined from the number of tie groups (m), after which 

the S statistic is transformed into the value of Z. This standardized test statistic 

was used to evaluate rainfall trends across Indonesia, with significance judged at 

the 95% probability level (|Z| ≥ 1.97). 

2.4 Correlation Analysis 

The Indonesian region’s CAPE variable is strong with several extreme rainfall 

indices. The correlation coefficient (r) can be calculated using the following 

equation (Schober and Schwarte 2018) [21]: 

𝑟 =  
𝑛∑𝑥𝑦 − ∑  𝑥 ∑𝑦

√𝑛𝑥2 − (∑𝑥)2)(𝑛∑𝑦2 − (∑𝑦))

                                        (6) 

The significance of the correlation between CAPE and rainfall as well as the 

extreme rainfall indices was evaluated using the probability value (p-value), 

which was obtained by dividing the t-test using the following equation: 

𝑡𝑡𝑒𝑠𝑡 = 
𝑟√𝑛−2

√1−𝑟2
             (7) 

In equations 6 and 7, r is defined as the correlation coefficient and xy is CAPE 

and extreme rainfall data with n length of data. Then, the significance level 

between two variables is analyzed with the t-test (equation 7) to get the magnitude 

of the p values. 
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3 Result and Discussion 

3.1 CAPE and Indonesian Rainfall 

Figure 1 shows the spatial distribution of climatological CAPE and rainfall over 

Indonesia for all calendar months. The climatological CAPE reaches its 

maximum in April, at about 1000 to 1200 J/kg around the Borneo and Sumatra 

islands (Fig. 1a). Generally, the magnitude of CAPE remains high during the 

December-February (DJF) and March-May (MAM) seasons, while it is lower 

from June to August (JJA) and from September to November (SON). The spatial 

map of climatological rainfall shows a general alignment with the patterns of 

CAPE, indicating that areas with a higher CAPE tend to correspond with 

increased rainfall (Fig. 1b). High rainfall above 6 mm/day occurs from December 

to May, especially over Borneo and Sumatra islands, where CAPE is also large 

around these regions. High rainfall is also found over Java and Papua islands, but 

there is a lack of consistency between rainfall and CAPE for these regions. In 

contrast, rainfall in the JJA and SON seasons is relatively low for almost the 

whole Indonesian region, corresponding to the low CAPE in these seasons. This 

result indicates that low rainfall during the JJA and SON seasons in Indonesia is 

linked to low potential energy for convection in the atmosphere, while high 

rainfall in the DJF and MAM seasons does not correlate well with CAPE. This 

discrepancy may arise from factors such as large-scale weather patterns or other 

atmospheric conditions that contribute to rainfall independently of CAPE. 

Rainfall patterns in Indonesia are also strongly modulated by large-scale climate 

variability, particularly the El Niño–Southern Oscillation (ENSO), which adds 

complexity to the linkage between CAPE and precipitation. 

Figure 2 presents the seasonal correlation coefficients between CAPE and rainfall 

in Indonesia, which explains their relationship. Values above ±0.23 are 

considered significant, corresponding to a 95% confidence level in the p-value 

test. To obtain these values, we computed the correlation coefficients at each grid 

point across the study area. Consequently, the significance threshold may vary 

per location, reflecting the spatial variability in the relationship between rainfall 

and CAPE. As illustrated in Figure 2a, the CAPE appears to play a minor role in 

influencing rainfall patterns over Indonesia in the December-February (DJF) 

period. Nevertheless, a significant correlation should not be interpreted as 

evidence of a causal relationship. While the correlation between CAPE and 

rainfall may be weak during this period, other factors, such as large-scale 

atmospheric patterns, regional climatic variability, or local meteorological 

conditions, may play a more significant role in influencing rainfall. Further 

analyses, including the consideration of these additional factors and potential 

confounding variables, will be essential to better understand the dynamics at play. 

This means that high rainfall is more common during the DJF season due to the 
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movement of northerly winds and local physical factors. According to Chang et 

al. (2005) [22], one of the local conditions that affect rainfall patterns is the 

distribution and interaction of sea, land, and terrain.  

(a) 

(b) 

Figure 1 (a) Spatial distribution of climatological CAPE (J/Kg) and (b) rainfall 

(mm/day) over the period from 1983 to 2007. 

Furthermore, Barkižija and Fuchs (2013) [23] noted that in the last decade, 

tropical areas have shown a lack of correlation between CAPE and rainfall due to 

the seasonal variability in both variables, which is significantly influenced by 
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land-sea interactions. Different climatic conditions can result from these 

interactions, as the availability of moisture and heat from the ocean influences 

rainfall patterns, regardless of CAPE values. Although both CAPE and rainfall 

vary seasonally, their linkage in tropical regions is complex, because precipitation 

is also shaped by additional controlling factors. 

 
Figure 2 Spatial correlation between CAPE and Indonesian rainfall during (a) 

DJF, (b) MAM, (c) JJA, (d) SON. Shaded areas display significant correlation 

values at a 95% confidence level. 

Figure 2 shows that higher CAPE values are associated with increased rainfall, 

especially across Southern Sumatra, Java, Borneo, Sulawesi, and Papua. This 

directly shows the significance of CAPE’s correlation with rainfall in Indonesia 

during the JJA season, while SON has a correlation value of 0.8 (Figures 2b and 

2d). The observed negative correlation between CAPE and rainfall in western 

Borneo and eastern Sumatra (MAM season) is likely due to a variety of complex 

factors. While CAPE is a measure of atmospheric instability and is often 

associated with convective precipitation, other factors can also influence rainfall 

patterns. In these regions, several factors may be contributing to the observed 

negative correlation. These factors may include orographic effects, ocean-

atmosphere interactions, and land-sea contrast. Then, during the dry season of 

June, July, and August (JJA), the CAPE is low and has a significant positive 
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correlation with rainfall (Figure 2c). When the CAPE decreases, the potential for 

regional rainfall to form is also low. Monkam (2002) [24] found that the presence 

of a low CAPE resulted in a low rainfall pattern (<2 mm/day). 

3.2 Analysis of Extreme Rainfall Trends in Indonesia  

The extreme rainfall indices R95P and SDII, which represent threshold-based and 

intensity-based measures, respectively, were used to analyze rainfall trends 

across Indonesian islands for the period 1983 to 2007. These indices revealed 

varying trends in extreme rainfall characteristics across different regions, 

highlighting spatial differences in rainfall behavior during this period.  

 

 

 

                            (a)                                                     (b) 

 

 

                          (c)                        (d) 

Figure 3 (a) and (b) Spatial and temporal extreme rainfall indices R95p (mm); 

(c) and (d) spatial and temporal rainfall extremes indices SDII (mm/day). 

The islands of Sumatra, Sulawesi, and Java experienced an increase in extreme 

rainfall above the normal threshold, with Sumatra experiencing a 200 mm/25-
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year increase. In contrast, the islands of Papua and Borneo demonstrated a 

downward trend in extreme rainfall, with the 95th percentile reaching 200 mm/25 

years (Figure 3b). The Simply Daily Intensity Index (SDII) was 4-12 mm/day 

from 1983 to 2007. In Figure 3c, areas with higher topographic heights have 

higher daily rainfall intensity. The trend of temporal fluctuations—the average of 

large islands in Indonesia—has not experienced significant trend changes 

(increases or decreases). However, there is a trend of decreasing rainfall intensity 

throughout the year, particularly in the island areas of Borneo and Papua (p-value 

<0.05) (Figure 3d). 

(a) (b) 

 

(c) 

 

(d) 

Figure 4 (a) and (b) Spatial extreme rainfall indices R10mm and R20mm (day); 

(c) and (d) temporal trend rainfall extremes indices R10mm and R20mm (day). 

In Indonesia, the length of a rainy day or the frequency of wet events with rainfall 

more significant than 10 mm and 20 mm must be carefully studied. Over 25 years, 

the maximum condition of R10 mm was 27.37%, while the maximum R20 mm 

was 13.14% (Figures 4a and b). The R10 mm index displays a decreasing trend 
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in several regions, particularly Papua, Java, Bali, and Nusa Tenggara, with 

statistical significance at p-value <0.05 (Figure 4c). This reduction reflects fewer 

days exceeding 10 mm of rainfall, leading to an overall decline in regional 

precipitation. Meanwhile, R20 mm was less than R10 mm in duration, but the 

trend fluctuations from 1983 to 2007 show an upward pattern in Sumatra and Java 

(p-value <0.05) (Figure 4d). 

(a) 
(b) 

 

(c) 

 

(d) 

Figure 5 (a) and (b) Spatial extreme rainfall indices CDD and CWD (day); (c) 

and (d) temporal trend extremes rainfall indices CDD and CWD (day). 

The extreme rainfall indices, namely Consecutive Dry Days (CDD) and 

Consecutive Wet Days (CWD), can accurately represent dry and wet conditions 

(Tao et al. 2018) [25]. From Eastern Java to Nusa Tenggara, an area experienced 

a high number of dry days throughout the year. Meanwhile, Sumatra, western 

Java, Borneo, Sulawesi, and Papua generally experienced relatively many wet 

days (Figures 5a and b). In Indonesia, the value of CDD and CWD fluctuated 

dramatically between 1983 and 2007. The trend slope seen on several Indonesian 

islands is quite significant. Over the last 25 years, the number of dry days in 

Sumatra and Borneo has increased significantly, while the maximum number of 

wet days has decreased significantly (Figures 5c and d). 
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According to the Mann-Kendall test, extreme rainfall in Indonesia has a distinct 

annual pattern that varies between islands. Only the CWD and CDD indices show 

the same trend across all Indonesian islands. The decrease in the number of wet 

days over the 25 years increased the number of dry days, referred to as CDD. In 

general, Indonesia’s extreme rainfall index has a significant downward or 

negative trend (Table 2). This explains how it can be that, between 1983 and 

2007, rainfall intensity and the number of extreme rainy days (≥20 mm) decreased 

in Indonesia while the number of dry days increased. Furthermore, a complex 

climate variability system contributes to Indonesian rainfall conditions. 

Table 2 Mann-Kendall test, indicating significant extreme rainfall trends with a 

95% confidence level. 

Region R95p SDII R10mm R20mm CWD CDD 

Sumatra ++ - + ++ -- ++ 

Java + - -- ++ -- + 

Bali and Nusa Tenggara - - -- + -- ++ 

Borneo - -- -- + -- ++ 

Sulawesi + + + + -- + 

Papua -- -- -- -- -- + 

Description :  

+ : Positive trend   - : Negative trend 

++ : Significance positive trend -- : Significance negative trend 

3.3 Correlation of CAPE and Rainfall Extremes Indices 

According to Lepore et al. (2015) [26], the atmospheric parameter CAPE can 

influence extreme rainfall. The Pearson correlation was used to examine the 

relationship between the CAPE variable and extreme rainfall in six major 

Indonesian islands. Based on the matrix correlation (Figure 6), the CDD and 

CWD indices show a high correlation coefficient value of the atmospheric 

convection process, namely CAPE, with a significance p-value <0.05. The 

correlation analysis shows a positive linear association, where higher CAPE 

values correspond to an increased number of wet days (r = 0.49 in Java and r = 

0.6 in Papua). This suggests that stronger convective energy is linked with more 

frequent rainfall events. In contrast, for the CDD index, enhanced atmospheric 

convection—as represented by CAPE—contributes to shorter dry spells, 

particularly over Sumatra, Java, Bali-Nusa Tenggara, Sulawesi, and Papua. 
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Figure 6 Matrix correlation of CAPE and extreme rainfall indices on six islands 

in Indonesia, with (*) representing significant correlations at a confidence level of 

95%. 

In addition to the CDD and CWD indices, R10mm is strongly correlated with 

CAPE only in the Papua region, where high convection energy causes the number 

of days above 10 mm to be longer. In comparison, the CAPE value is not well 

correlated with the extreme rainfall indices R95p, R20mm, and SDII. For R95p, 

SDII is classified as identifying extreme rainfall intensity, which occurs when 

atmospheric convection forms in an area but does not fully cause rain to fall on 

the surface. Water vapor content in an area will be positively correlated with 

rainfall intensity (Roderick et al. 2019) [27]. 

4 Conclusion 

Convective available potential energy (CAPE) in Indonesia has a spatial pattern 

that varies in time and region. High CAPE values occur in Indonesia during the 

MAM and SON periods, most of which forms in the oceans of Sumatra and 

Borneo. Besides that, there is a strong correlation between CAPE and the 

distribution of rainfall in Indonesia, particularly during the MAM and SON 

seasons. However, further analysis is required to determine the direction and 
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nature of this relationship. Mostly, extreme rainfall indices have increased on six 

Indonesian islands (Sumatra, Java, Bali and Nusa Tenggara, Borneo, Sulawesi, 

and Papua) with extremely dry conditions throughout the year (1983-2007), as 

evidenced by increasing CDD indices and an average decline in the R95P, CWD, 

SDII, and R10mm indices. The CAPE and extreme rainfall indices correlate 

significantly with the CWD, CDD, and R10mm indices. There is a statistically 

significant correlation (95% significant level) between a higher CAPE and an 

increase in the number of wet days (CWD) in Java and Papua as well as R10mm 

in Papua. Similarly, an increased CAPE is associated with an increase in dry days 

or CDD in Sumatra, Java, Bali, Nusa Tenggara, Sulawesi, and Papua. 
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