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Abstract. For a graph G = (V, E), a partition Q = {04, 0,, ..., O, } of the vertex
set V is called a resolving partition if every pair of vertices u, v € V(G) have
distinct representations under €. The partition dimension of G is the minimum
integer k such that G has a resolving k-partition. Many results in determining the
partition dimension of graphs have been obtained. However, the known results
are limited to connected graphs. In this study, the notion of the partition
dimension of a graph is extended so that it can be applied to disconnected graphs
as well. Some lower and upper bounds for the partition dimension of a
disconnected graph are determined (if they are finite). In this paper, also the
partition dimensions for some classes of disconnected graphs are given.
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1 Introduction

Chartrand, et al. [1] in 1998 introduced the idea for the partition dimension of
connected graphs. This concept is a variant of the metric dimension of a graph
described independently by Slater [2] in 1975 and by Harary & Melter [3] in
1976. Given a connected graph H = (V,E),u € V(H) and P S V(H). The
distance d(u,P) between u and P is min{d(u,x): x € P}, where d(u,x)
denotes the distance between vertices u and x in H. For an ordered t-partition
Q= {P,,P,,...,P;} of V(H), the representation r(u|Q) of a vertex u € V(H)
with respect to Q is the t-vector (d(u, P;),d(u, Py), -, d(u, P;)). The partition
Q with t classes is called a resolving partition if r(v|Q) # r(w|Q) for any two
distinct vertices v,w € V(H). The partition dimension of H, denoted by pd(H),
is the minimum number of classes of a resolving partition Q of H.

In [4], Chartrand, et al. established a relation between the partition dimension
and the metric dimension of a graph. They also proved that the only graph of
order n = 2 with the partition dimension two is a path P,, while the only graph
with the partition dimension n is a complete graph K,. Furthermore, they
characterized all graphs of order n > 3 with the partition dimension n — 1,
namely K; ,_4,K, —e and K; + (K; U K,,_,). Tomescu in [5] characterized
all graphs G of order n = 9 with pd(G) equal to n — 2. He also gave some
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examples of graphs with a small partition dimension but having infinite metric
dimension. These graphs are planar 4-regular (Z2,&*) and planar 8-regular
(Z2,&8). The first graph has partition dimension 3 and the second one has
partition dimension 4, but their metric dimensions are infinite.

The partition dimensions for various classes of connected graphs have been
obtained. For instance, Tomescu, et al. [6] gave the upper bounds of the order of
some wheel-related graphs, namely the gear, helm, sunflower and friendship
graph, with a given partition dimension. Fehr, et al. [7] showed that the partition
dimension of a Cayley digraph of a dihedral group of order 2n,n > 3 with a
minimum generator is three. The partition dimensions of complete multipartite
graphs, windmills and caterpillars have been obtained by Darmaji, et al. [8]. In
2014, Rodriguez-Velazquez, et al. [9] derived some upper bounds of the
partition dimension of trees and Grigorious, et al. [10] gave the partition
dimension of a class of circulant graphs. Recently, in 2015, Javaid, et al. [11]
investigated the minimum connected resolving partitions in unicyclic graphs.

Some authors also studied the partition dimension of a graph obtained from
some graph operations. Darmaji, et al. [12,13] and Rodriguez-Velazquez, et al.
[14] gave the partition dimension for some corona graphs. The partition
dimension of Cartesian product graphs and strong product graphs have been
determined by Yero, et al. [15,16].

However, all results mentioned above are only for connected graphs. In this
study, the notion of the partition dimension is generalized so that it can also be
applied to disconnected graphs. Some lower and upper bounds for the partition
dimension of disconnected graphs are determined (if they are finite). In this
paper, also the partition dimensions for some classes of disconnected graphs are
given.

2 Main Results

Given a general (connected or disconnected) graph G = (V, E). For each vertex
w € V(G) and aset O € V(G), define the distance d(w, O0) between w and O to
be min{d(w, x): x € 0}. For an ordered partition Q = {04, 0, ..., 0} of the
vertices of G, if d(x,0;) < oo for every x € V(G) and i € [1,t], then we can
define the representation r(x|Q) of x with respect to the partition  as the t-
vector (d(x, 0,),d(x,05),,d(x, Ot)). The partition Q is called a resolving
partition if r(x|Q) # r(y|Q) for any two distinct vertices x,y € V(G). The
partition dimension of G, denoted by pd(G) if G is connected or pdd(G) if G is
disconnected, is the least integer t (if any) such that G admits a resolving
partition with t classes. Otherwise, we define pdd(G) = .
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As an illustration of this concept, we consider a disconnected graph G = C, U
P: as depicted in Figure 1. Since pd(C,) = 3 and pd(Ps) = 2, then by using
the definition of the partition dimension of a disconnected graph, G has a finite
partition dimension if both C, and P; have a resolving 3-partition. In fact
pdd(G) = 3, since we can define a resolving partition Q = {04, 0,, 03} with
0y = {uy, v1}, 05 = {uy, us, v,} and O3 = {uy, v3, vy, vs}. However, pdd (K, U
K1,4) = oo since there exists no integer t so that K, U K, 4, has a resolving t-
partition.

m Vg Vg vy Us

Figure 1 Graph G = C, U Ps.

Now, for m > 2 and the connected graphs G;, we consider a disconnected graph
G = U, G; having a finite partition dimension. Let Q) be a minimum resolving
k-partition of G. Then by the definition of partition dimension of a disconnected
graph, (1 is also a resolving k-partition of G; for every i € [1, m]. It follows that
k > pd(G;) for every i. Thus, k > max{pd(G;): i € [1, m]}. Furthermore, since
Q is a resolving k-partition of G;, then k < |V(G;)| for every i. Therefore,
k < min{|V(G;)|: i € [1.m]}. So, we have the following theorem.

Theorem 1. For integer m > 2, let G = U, G; and let G; be a connected graph
for every i€ [1,m]. If pdd(G) < o, then max{pd(G;):1< i< m}<
pdd(G) < min{|V(G)|: 1< i< m}.o

For a connected graph G;, if G = U%, G; containing a component consisting of
a complete graph of order 1 or 2, then the following result shows that the
partition dimension of G is finite if and only if m = 1.

Proposition 1. Let G = U%, G; where m > 1, G; connected for each i € [1,m],
and there exists j € [1,m] such that G; =K, for some n € {1,2}. Then
pdd(G) = nif m = 1. Otherwise, pdd(G) = oo.

Proof. For m = 1, we have G = K,, for some n € {1,2}. Therefore pdd(G) =
n. Form = 2 and n = 1, it is easy to see that pdd(G) = co. Now we assume
that m = 2 and n = 2. Then, G contains K, as its component. Suppose for the
contrary that pdd(G) = 2 and Q = {04, 0,} be any partition of G. Then, each
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component of G must contain exactly two partition classes. Therefore, each
component must be a path. But, there are u € V(G;) and v € V(G,) in 04 such
that r(u|Q) = (0,1) = r(v|Q), a contradiction. O

Corollary 1. Let P, be a path with n vertices. For every m> 2,3 <
pdd(mP,) < nifand only ifn > 3.

Proof. For m > 2, let G = mPB, and n = 3. By Theorem 1, we have pdd(G) <
n. Now we will show that pdd(G) = 3. We assume for the contrary that
pdd(G) = 2. Then there are two vertices u,v € V(G) such that r(u|Q) =
(0,1) = r(v|Q) for any partition Q in G, a contradiction. o

2.1 t-Distance Vertex and Connected Partition

For a partition Q = {0,, 05, ..., O} } of a graph G and t € N, we define a vertex
x € V(G) as a t-distance vertex if d(x, Oj) = 0 or t for any O; € Q. The next
theorem gives the condition for a graph G = Uj%;G; containing a component
consisting of a complete graph K,, where n = 3 such that pdd(G) is finite.

Theorem 2. For m > 1, let G = U/X,G; and G; be a connected graph for every
i € [1,m]. If pdd(G) < oo and there exists j € [1,m] such that G; = K,, where
n = 3, then pdd(G) = n and every component of G \ G; has at least n vertices
having no 1-distance vertex.

Proof. Let G = U7X, G; and suppose that there exists j such that G; = K, for
some n > 3. Since pdd(G) < oo and for any graph H of order n, pd(H) = n if
and only if H = K,,, then pdd(G) = n. Let Q be any resolving n-partition of G.
Then Q is also a resolving n-partition of G; for any i. It follows that |V (G;)| =
n for every i. Since every v € V(Gj) is adjacent with the remaining vertices of
Gj, those vertices are 1-distance. Therefore, other components must not contain
a 1-distance vertex under (). O

For a disconnected graph G = U]_,G; where G; are connected for all i € [1,7],
the partition Q = {04, 0,, ..., O;} of G is called a connected partition if every
subgraph induced by 0; NV(G;) for every 1<j<k and 1<i<r is
connected. From now on, consider G = Uj_, B, and v; ; denotes the jt" vertex
in the i*" component of G. For any resolving 3-partition of the i*® component of
G, we define a left partition class L; or a right partition class R; as the partition
class containing v;; or v;,,, respectively, while the remaining partition classes
with no end-vertices are defined as a middle partition class M;.
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In the following results, we give some properties of t-distance vertex in B,.

Lemma 1. Let B, be a path of order n > 3. If there exists a t-distance vertex in
P, for some t > 1, then a resolving partition of P, has cardinality 2 or 3.

Proof. For n > 3, let Q = {04, 0,, ..., Oy} be a resolving partition of P, and
v € 0, be a t-distance vertex for some r,t = 1. Then for any vertex w in B,
with d(v,w) <t — 1, we have w € O,.. Since deg(v) < 2, then there are at
most two vertices at distance t from v. These vertices must be in O; where i #
t. Therefore, k = 2 or 3. O

Lemma 2. For some t > 1 and n > 3, if there exists a t-distance vertex under a
resolving k-partition of B, thent <n—1fork =2,ort < lnT_lJ fork = 3.

Proof. Let Q = {04, 0,, ..., Oy} be a resolving partition of B, where n > 3, and
v be a t-distance vertex in B,. By Lemma 1 we have k =2 or k = 3. If k = 2,
then max{d(v,0;):v € 0;} = diam(B,) =n—1. Thus, t <n—1. If k = 3,
then v must be at the middle position in B, to have a maximum distance to two

. .. -1
other partition classes 0; not containing v. Thus, t < lnTJ O

-1 . . iy
Lemma 3. Forn>3and 1 <t < lnTJ’ there exists a resolving 3-partition of

3P, such that every component has a t-distance vertex.

Proof. Let G =3P, where n >3, V(G) ={v;;:1<i<3,1<j<n} and
E(G) = {v;v;j+1:1 <i<3,1<j<n-—1}. By Corollary 1, then pdd(G) =
3.Forany t € [1, lnT_l” and i € [1,3], let v;; be a t-distance vertex of the i*"
component of G where t +1 <7 <n—t. Let O = {0,,0,, 03} be a partition
of G induced by the function f; : V(G) — {1, 2, 3}, as follows.

i mod 3, j=12,..,t—t

fi(vij) ={i+1mod3, j=t—t+1L,1—t+2,..,T+t—1,
i+ 2mod3, otherwise.

Note that f;(x) = i means that x € 0;. Thus, for any p € [1,T—t], q € [T —
t+1,t+t—1]andr € [t + t,n], we have
0, k =imod3,
d(vi,p,Ok)={T—t+1—p, k =i+ 1mod3,
T+t—p, otherwise,
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0, k =i+ 1mod 3,
d(vi,q,Ok)={ q—71+t, k =imod 3,

T+t—q, otherwise,

0, k =i+ 2mod 3,
d(vi,r,ok)={r—r+t, k = imod 3,

r—1—t+1, otherwise.

Let us consider any two vertices x,y € Oy. If x = v;, and y = v;;, for some
i,a,bwherei € [1,3],1<a<b<t—t,thend(x,0;41moq3) =T —t+1—
a>t—t+1—-b=d(,0i41moa3) If x=v;, and y = v;;,, where 7 —t +
1<a<b<t+t—1ort+t<a<b<n then d(x,0;moq3) =a—7T+
t<b—1t+t=d(®,0imoa3) Ifx =v;qandy = v;;, wherei # jand a < b,
then d(x, 0;) # d(y, 0;) for some | # k. Therefore, for any different vertices
x,y € V(G) we have r(x|Q) # r(y|Q), so Q is a resolving partition of G. O

Corollary 2. For n = 3 and m = 2, if every component of mFP, has a t-distance
vertex, thenm < 3 lnT_l .

Proof. By Corollary 1, Lemmas 1 and 2, if m = 2 and every component of mp,

. . . -1
has a t-distance vertex, then we can immediately have m < 3 lnTJ O

In the next lemmas, we give the condition of a disconnected graph G containing
paths as components with an even cardinality of middle partition classes.

Lemma 4. For m > 2 and n; = 4, let G = UL, P,, and pdd(G) = 3. If there
exists j € [1,m] where the cardinality of the middle partition class M; is 2s,

then s < lnj_ZJ.

2

Proof. Let Q = {04, 0,05} be a resolving partition of G = UL, B,,. Assume
there exists a middle partition class M; in the jt™" component of G such that
|M;| = 2s. Without loss of generality, assume that M; < 0,. If n; is even, then

Mj| <nj—2. Thus, s< ni2 < ln]—_zl Otherwise, |M;| <n;—3 and
2 2

n;j—3 n;—2
S SJT ]_J'D

Lemma 5. Forn > 4 and s € [1, lnT_ZH’ there exists a resolving 3-partition of
3P, such that |M;| = 2s for all j € [1,3].
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Proof. Let G =3P, where n>4, V(G) ={v;:1<i<3,1<j<n} and
E(G) = {vivij+1:1si<3,1<j<sn—1} For every s€ [1' lnT_Z” we

define a partition Q = {04, 0,, 03} induced by the function f;: V(G) - {1, 2,3},
as follows.

i mod 3, j=12,..,1,
fi(vij)={i+1mod3, j=1+171+2,..,7+2s,
i +2mod3, otherwise,

for some 1 <7<n-—2s—1 where f;(x) =i means that x € O0;. For any
p€E[lt],q€[t+1,7+2s]andr € [t + 25 + 1,n], then

0, k = imod 3,
d(vip,0x) = T+1-p, k=i+1mod3,

T+2s+1—p, otherwise,

0, k=1i+1mod3,
d(vi,q:Ok) =149—T k =imod 3,

T+2s+1—gq, otherwise,

0, k=i+2mod3,
d(viy, Op) =4 r—1, k = i mod 3,

r—1—25, otherwise.

Now, consider two vertices x,y € V(G) in O, for some t € [1,3]. If x = v;,
and y =v;, where 1<a<b <, then d(x,0;41mog3) =T+1—a>1+
1-b=d(,0i41mod3)- f x =v;gandy =v;, wheret+1<a<b<t+
2s or T4+2s+1<a<b<n then d(x,0;moq3) =a—T<b—-T=
d(¥,0imoa3)- fx =v;, and y = v;,, where i # j and a < b, then d(x, 0;) #
d(y, 0;) for some [ # t. Thus, r(x|Q) # r(y|Q) for any two different vertices
x,y € V(G), so L is a resolving partition of G. O

By Lemmas 4 and 5, it is easy to verify this consequence.

Corollary 3. For n >4, if pdd(mP,) =3 and the cardinality of every
component in the middle partition class is even, then m < 3 lnT_Z .

In the following lemma, we give the necessary condition for two components of
a graph mP, with resolving 3-partition such that the cardinality of their middle
partition classes are just different in one vertex.

Lemma 6. Let G = UL, P,. and pdd(G) = 3. If there are two components of G
having a connected partition such that the difference between both cardinalities
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of the two middle partition classes is one, then these middle partition classes
must be contained in the same partition class.

Proof. Let Q = {04, 0,05} be a resolving partition of G = Ui, B,,. Assume
there exist two components P,; and Pnj of G having a connected partition of Q.
Let M; and M; be the middle partition classes of P, and Pnj, respectively, and

||Ml-| — |Mj|| = 1. Without loss of generality, assume that L; € 0, M; C 0,

and R; € 0. Let |V(B,,) N L;| = a and |[V(P,,) N M;| = b. Then 7(v;4|Q) =

(0,1,b + 1), r(vi441|Q) = (1,0,b), (Vi asp|Q) = (b,0,1) and

r(vi,a+b+1|ﬂ) = (b + 1,1,0). Now we consider the partition in Pnj. We assume

that [M;| = b —1 or [M;| = b + 1. If M; C O,, then we can check easily that
r(x|Q) #r(y|Q) for any x,y € V(Pni) UV (F,). Otherwise, we assume

M; c 0, or M; C Os.

1. If M; € Oy where |[M;| =b —1or |M;| = b + 1, then r(x|Q) = (1,0,b) =
r(vi’a+1|ﬂ) for some x €V(P,) in 0, or r(y|Q) =(0,1,b+1) =
T(Ui,alﬂ) for some y € V(Pn].) in 04, respectively, a contradiction.

2. If M; € O5 where [M;| =b —1or [Mj| =b+ 1, then r(x|Q) = (b,0,1) =
T(Viasp|Q) for somex € V(P,) in 0 or r(y|Q)=(b+110)=

r(vi‘a+ b+ |Q) for some y € V(Pnj) in O, respectively, a contradiction.
Therefore, M; and M; must be in the same partition class. O

2.2 Linear Forest

The following theorem gives the necessary and sufficient conditions for a
homogenous linear forest G = mP, such that the partition dimension of G is
equal to 3.

Theorem 3. For n > 3, pdd(mP,) = 3 ifand only if 2 < m < 3 [”T‘l .

Proof. Let G =mB, where V(G) ={v;;:1<i<m1<j<n}, EG)=
Wijvije:1S1S3,1<j<n—1} and 2<m < 3|"=|. By Corollary 1,

then pdd(G) = 3. Let Q = {04, 0,, 03} be a partition of V(G) induced by the
function f: V(G) — {1, 2,3}, as follows.
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i mod 3, j=1,
i

f(Vi,j) ={i+1mod3 j= 2,3,...,2[51,

i+ 2mod3, otherwise.

Note that f(x) =i means that x € 0;. The vertex v, H*’l is an H—distance
‘13

vertex in each i*" component of G, by the definition of the function f. Then we
have
0, k =imod 3,
d(vi,lrok) — 1, i k =i+ 1mod 3, (1)
2 H , otherwise.

Forq € [2,2 [é” andr € [2 H + 1,n], then

0, k=i+1modS3,
d(vig 0) =41~ 1, k =imod 3, 2
2 H +1—gq, otherwise,
3
0, k =i+ 2mod3,
d(vi,r: Ok) — r — 1, ' k =i mod 3, (3)
r—2 E] , otherwise.

Let us consider any two vertices x,y € O, for some t € [1,3]. If x = v; ; and
y = v;) for some i € [1,m], then X,y € O;11 moa30r X,¥ € Oj42 mod 3- Note
that for a < b, we obtain that d(x, 0; oq3) =a—1<b—1=d(y,0; mod3)-
Therefore, 7(x|Q) # r(y|Q). Now, we assume that x = v; 4 and y = v;;, where
i # j. Since the connected partition induced by f is symmetrical, without loss of
generality we can assume that x,y € O,. Denote by L;, M; and R; the left
partition class, the middle partition class and the right partition class in the it"
component of G, respectively. Now, we distinguish three cases.

I Ifx € Ly theni = 1mod 3 and r(x|Q) = (0,1,2 [2]) by Eq. (1).
i). Ify € Ly, thenj = 1mod 3 and d(x, 05) = 2[5| # 2 [£] = a(y, 05).
ii). Ify € M;, then j = 0 mod 3 and r(y|@) = (0.2 [£| + 1= b,b — 1) for
some b € [2,2 E” by Eq. (2). If b =2 [ﬂ, then d(x,03) =2 H *
2[f]-1=d@,0,). Otherwise, d(x,0,)=1<2[|+1-b=
d(y, 0z).
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iii). Ify € R;, then j =2mod 3 and r(y|Q) = (0,b—1,b — 2 H) for
some b € [2 H + 1,n] by Eq. 3). Thus d(x,0,) =1<b—-1=
d(y, 0z).

Therefore, r(x|Q) # r(y|Q).

2. If x €M, then i=0mod3 and r(x|0) = (0.2[;|+1-aa=1) for

some a € [2,2 E” by Eq. (2).

i). If y € M;, then j = 0 mod 3 and r(y|Q) = (0,2 H +1—-bb—1) for
some b € [2,2 [é” by Eq. (2). If a = b, then d(x,0,) = 2 H +1-
a#2 H +1—b =d(y,0,). Otherwise, d(x,03) =a—1#b—-1=
d(y, 03).

ii). If y €R;, then j=2mod3 and r(y|2) = (0,b—1b—2[L]) for
some b€ [2[I|+1,n] by Eq. (). If a=b-2[f|+1, then
d(x,05) =2[;|+1-a=2[i| -p+2[f| = p-1=a@.0,).
Otherwise, d(x,05) =a—1# b —2 [ﬂ = d(y, 05).

Therefore, r(x|Q) # r(y|Q).

3. If x€R;, theni=2mod3 and r(x|Q) = (0,a—1,a—2 [ﬂ) for some
ae€ [2 H +1, n] by Eq. (3). If y € R;, then j = 2 mod 3, hence r(y|Q) =
O,b—1,b—-2 [é]) for some b € [2 [é] +1, n]. If a = b, then d(x,03) =
a-2[5] #b-2[| = d3,05). Otherwise, d(x,0,)=a-1%b-
1 = d(y, 0,). Therefore, r(x|Q) # r(y|Q).

This concludes the proof that () is a resolving partition of mP, where 2 <m <
3=
2

Now we will show that for n > 3, if G = mP, and pdd(G) = 3,then2 <m <
3 lnT_lJ Since G only consists of paths and pdd(G) = 3, then m > 2. Let

Q ={04,0,,03} be a resolving partition of G induced by the function
f:V(G) - {1,2,3}. If every component of G has a connected partition and the
cardinality of the middle partition class |M;| is odd for all i € [1,m], then

m<3 lnT_lJ by Corollary 2. Otherwise, let G = G; U G, U Gz where G; =
m;P,, i € [1,3], m; = 0 and my; + m, + m3 = m, such that:
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1. All partitions in G; and G, are connected and the cardinalities of the
middle partition classes of G; and G, are odd and even, respectively.
2. There exists a disconnected partition in every component of G5.

Now, we decompose G into new partition Q' = {07,05,05} induced by
f:V(G) - {1,2,3} as follows.

a)

For every x € V(G;), we define f'(x) = f(x).

b) If x is the leftmost vertex of M; in G,, then define f'(x) = f(w) +

1 mod 3, where w is the left neighbor of x. Otherwise, define f'(x) =
f(x) + 1 mod 3 for every other vertex x in G,. Note that the cardinality of
middle partition class M; in G, with respect to Q' is odd for all i € [1,m,].
By considering Lemma 6, if there exists i € [1,m,] and j € [1,m;] such
that ||Mi| — |Mj|| =1 where M;c 0, and M; c 0p, then a=b.
Therefore, if there exists i € [1,m,] and j € [1,m,] such that |[M]| = |M;]
where M; € 0y, and M; Oy, then p # q by the definition of f' in G,.
Thus we can verify that any two distinct vertices in G; U G, have distinct
representations with respect to Q.

Since all partitions in G5 are not connected, we can define ordered r-paths
X1, X5, ..., X, in each component of Gz, such that all vertices in X; are
contained in the same partition class of (). Since (1 is a resolving 3-
partition, then in each component there will be three consecutive paths
X4 Xq41 and X,,, in different partition class of () for some a. Let
f'(x) = aq,a, or az where {ay,a,,as} = {1,2,3} for all x in X,, X, or
Xa42, respectively. Now, define a new partition (g = {01, O, O3} induced
by g: X; UX, U ..U X, = {1, 2, 3} for each component of G5, as follows.

a;, x€X;i<a,

.g(x): as, xEXa+1,
as;, x€X,i=a+?2.

By the new partition €),, we obtain that every component is connected. Now,
define f' in all components in G5 as follows. If x in the component with odd
middle partition, then f'(x) = g(x). Otherwise, define f'(x) as in case (b)
above. Therefore, we can have a corresponding partition where all components

are connected and have an odd middle partition. Thus m < 3 lnT_lJ by Corollary

2.0

We give the partition dimension of a graph G consisting of non-homogenous
paths in the following theorem.
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Theorem 4. For m € N, let G = UL, P,, where n; = 3 and n; # n; for all
i,j € [1,m],i # j. Then pdd(G) = 2 if m = 1. Otherwise, pdd(G) = 3.

Proof. If m = 1, then pdd(G) = pd(Pnl) = 2. If m = 2, then pdd(G) = 3 by
Corollary 1. Let V(G) = {v;;:1<i<m,1<j<mn} where n; <n, <<
n, and Q ={04,0,,03} be a partition of V(G) induced by the function
g:V(G) - {1,2,3}, where g(x) = i means that x € 0;, as follows.
i mod 3, j=1,
g(vij) =] i+1mod3, j=23,..2[1],
i +2mod3, otherwise.

Since the definition of the function g is the same as the definition of f in the
upper bound proof of Theorem 3, then by using a similar argument, any two
vertices x,y € V(G) in O for k € [1,3] have distinct representations with
respect to (0. O

23 K;umP,

In the next theorem we give the necessary and sufficient conditions such that for
a graph G consisting of a complete graph of order 3 and paths of order n we
have pdd(G) = 3.

Theorem 5. pdd(K; UmP,) = 3 ifand only ifn > 4and m < 3 lnz;z .

Proof. Let G = K3 UmPB, with the vertex set V(G) =V (K;) UV(mB,) =
:il<t<3}U{rp1<i<ml<j<n} n>4 and m<3|=2 By

Corollary 1, then pdd(G) = 3. Let Q = {04, 05, 03} be a partition of G induced
by the function f: V(G) —= {1, 2, 3}, as follows.

f(us) =t forany 1 <t < 3 and
i mod 3, j=1,
fv) =1 i+1mod3, j=23..2[i[+1

i+ 2mod3, otherwise.

Fork € [13],q € [22[5| + 1] and r € [2[5| + 2,71, then

0, k=t
d(ug, 0y) = { 1, otherwise,
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0, k = imod 3,

d(vi,1,0k) =11 i k =i+ 1mod3, )
2 H +1, otherwise,
0, k=1i+1mod 3,

d(vig 0k) =417 1, k=imods, (5)
2 H + 2 —gq, otherwise,
0, k=i+2mod3,

(v, 0) =4 T~ 1 k= imod3, (6)

r—2 E] — 1, otherwise.

Now, we consider two distinct vertices x,y € V(G) in the same partition class
of Q. If x =u, and y = v;j, then d(x,0y) =1 < d(y,0y) for some k # t.
Thus we obtain r(x|Q) # r(y|Q) forevery 1 <t <3, 1<i<mand1<j <
n. For two vertices x,y € V(mB,), we can verify that r(x|Q) # r(y|Q)
similarly as in the proof of Theorem 3. Therefore, € is a resolving partition of
G.

To prove the converse, let G = K3 UmP, and pdd(G) = 3. By Theorem 2,
since any vertex of K5 is a 1-distance vertex, while a vertex x € V(mp,) is also

a l-distance vertex for n = 3, then n > 4. To prove that m < 3 lnT_ZJ, let
Q ={04,0,,03} be a partition of G induced by the function f:V(G) —
{1, 2, 3}. We consider the components of mF,. If all partitions of V(mPF,) under
Q are connected and have an even middle partition in each component, then

m< 3 lnT_ZJ by Corollary 3. Otherwise, let ¢ = G; U G, U G3 where G; =
m;P,, i € [1,3], m; = 0 and m; + m, + m3; = m, such that:
1. All partitions in G; and G, are connected and the cardinalities of the

middle partition classes of G; and G, are even and odd, respectively.

2. There exists a disconnected partition in every component of G5.

Now, we decompose G into partition Q' = {01, 03, 03} induced by f":V(G) -
{1, 2, 3} as in the proof of Theorem 3. In this case, by a similar method used in
the proof of Theorem 3, we can redefine the partition f such that all
components have a connected partition class with even cardinality of the middle

partition. Thus, m < 3 lnT_ZJ by Corollary 3.
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Since every vertex in K5 is a 1-distance vertex, then we cannot have |M;| =1
for any i € [1,m]. Hence, if we define a partition Q' such that |M;| is odd for all

i € [1,m], then we obtain that m < 3 lnT_l —-3<3 lnT—z .0
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