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Abstract. Dengue continues to pose a major public health challenge in Malaysia, 

with no definitive cure currently available. Although the Ministry of Health of 

Malaysia has implemented various measures to control outbreaks, the number of 

cases keeps rising and is likely to worsen due to the impacts of climate change. 

Hence, early detection and prediction of dengue outbreaks are vital for the 

implementation of risk mitigation measures. This study applied and assessed the 

performance of a coupled ARIMAX and SI-SIR model for forecasting dengue 

incidence in Penang, Malaysia. Data from 2014 to 2020, including reported 

dengue cases and climate variables (rainfall and average temperature), were used. 

Previous research has demonstrated a strong correlation between climate factors 

and dengue transmission. Granger causality tests also indicated that the time series 

of rainfall and average temperature are significant predictors of the mosquito 

biting rate, which is closely linked to dengue transmission. Therefore, these 

climate variables were incorporated into the coupled model to enhance its 

forecasting performance. Through multiple simulation rounds with a four-week 

forecasting period, the coupled model achieved an average forecasting accuracy 

of around 80% in predicting dengue cases in Penang. 
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1 Introduction 

Dengue has been a major global public health challenge for decades. Outbreaks 

have occurred every 5 to 8 years in Malaysia, primarily affecting urban areas like 

Selangor, Johor, and Kuala Lumpur, with young adults being the most affected. 

In 2010, the country expended more than US$ 175.7 million per year on efforts 

to prevent and control dengue [1]. To combat the persistent spread of dengue in 

Malaysia, early detection mechanisms are crucial. Predictive analytics can 

provide cost-effective strategies for controlling outbreaks. Numerous attempts 

have been made to develop reliable dengue prediction models. For instance, a 
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model utilizing machine learning techniques such as Decision Tree, Artificial 

Neural Network, Bayes Network, and Support Vector Machine (SVM) was 

created based on data from five high-incidence districts in Selangor from 2013 to 

2017 [2]. Further, the double exponential smoothing and Holt-Winters 

forecasting methods were used to predict future dengue cases in Penang, 

Malaysia, achieving mean magnitude of relative error (MMRE) values of 28.50% 

and 30.03%, respectively [3]. 

Dengue transmission dynamics are significantly influenced by climate variables 

such as rainfall and temperature. Higher ambient temperatures can accelerate 

viral replication within mosquitoes and shorten the extrinsic incubation period 

[4]. A lower likelihood of infection with the dengue virus has been observed in 

mosquitoes exposed to greater diurnal temperature ranges [5]. Temperature also 

influences mosquito reproduction by altering population dynamics and range 

limits. It was found that Aedes aegypti mosquitoes in Puerto Rico preferred 

shaded containers with cooler water temperatures for egg-laying [6], while 

mosquitoes in Iquitos, Peru, favored containers with higher sun exposure and 

temperatures [7].  

Rainfall also plays a crucial role in dengue transmission. The relationship 

between rainfall and dengue infection risk in Guangzhou, China, from 2006 to 

2018 was analyzed using a distributed lag non-linear model in Cheng et al. [8]. 

The study revealed that heavy rainfall increased dengue risk after a 24- to 55-day 

lag when water availability was low, while it reduced risk after a 7- to 121-day 

lag when water availability was high. Moderate rainfall was found to increase 

mosquito breeding and dengue risk, whereas heavy rainfall could disrupt 

mosquito populations due to flushing effects [9]. These findings emphasize the 

importance of considering climate factors like rainfall and temperature in the 

development of dengue prediction models. 

This research proposes the application of a coupled model that integrates both 

deterministic and statistical approaches to forecast dengue cases in Penang, 

Malaysia, namely, SI-SIR (Susceptible-Infective for vector populations; 

Susceptible-Infective-Recovered for human populations) and ARIMAX 

(Autoregressive Integrated Moving Average Exogenous Variable), respectively. 

Dengue and meteorological data for Penang from 2014 to 2020 were used to 

calibrate and validate the model. This study demonstrated the forecast 

performance of a coupled model that can be used to provide valuable insight into 

the effectiveness of dengue mitigation strategies, particularly in a changing 

climate. Section 2 presents the data used and describes the modelling framework. 

The forecasting results are presented in Section 3 to illustrate the model’s 

performance. Lastly, the significance and limitations of the approach are 

discussed in Section 4, followed by the concluding remarks in Section 5. 
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2 Materials and Mathematical Models  

In this section, the dengue and meteorological data used in this research are first 

described. Then the statistical analysis, using the Augmented Dickey-Fuller 

(ADF test) and the Granger causality (GC) test, is introduced. Finally, the 

implementation process of the coupled ARIMAX and SI-SIR  model is detailed.  

2.1 Data  

Weekly dengue case data from 2014 to 2020 for five regions in Penang, namely, 

Timur Laut, Barat Daya, Seberang Perai Utara, Seberang Perai Tengah, and 

Seberang Perai Selatan, were used in this study. Figure 1 shows the weekly 

number of dengue cases reported in Penang from 2014 to 2020. A moving 

average filter was applied to smooth the data, reducing random noise while 

preserving key trends. The graph indicates an upward trend in weekly dengue 

cases from 2014 to 2016. Both raw and smoothed data of weekly dengue for 

Penang after 2019 are presented in Fig. 1(a). It was noted that the Movement 

Control Order (MCO) from 2020 to 2021 initially led to a decline in dengue cases, 

followed by an increase over time, suggesting that the MCO acted as an external 

factor influencing case distribution [10].  

 

Figure 1  (a) Weekly dengue cases, (b) accumulated rainfall, and (c) average 

temperature data for Penang Malaysia from 2014 to 2020.  

 

Given the potential anomalies affecting data accuracy before 2014 and after 2020, 

only the weekly dengue cases for Penang from 2014 to 2020 were considered in 

this study. Meteorological data, specifically rainfall and average temperature, 

were obtained from the Malaysian Meteorological Department (MetMalaysia). 

These data were recorded daily from 2014 to 2020 at various locations in Penang, 

including Mardi Bertam, Hospital Kulim, Perai, Bayan Lepas, Parit Buntar, and 

Butterworth. To align with the dengue data (on a weekly basis), the 

meteorological data (on a daily basis) were converted to data on a weekly basis 

by summing the rainfall data over seven days and averaging every consecutive 

seven days of temperature data. Figures 1(b) and 1(c) show the time series plots 

of, respectively, the rainfall and temperature data recorded in Penang from 2014 

to 2020.  

(a) (c) (b) 
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2.2 ADF Test and GC Test 

The GC test is a statistical method used to decide if one variable or time series 

significantly contributes to the accurate forecasting of another variable or time 

series based on historical data. The test measures the extent to which the past 

values of one variable provide valuable information for predicting the future 

behavior of another [11]. As a result, the GC test is frequently employed to 

analyze potential relationships between variables and make trend predictions. 

Before conducting this test, the stationarity of the series was verified using the 

ADF test. The test involves the following hypotheses: (i) Null Hypothesis (H0): 

The series is non-stationary, or it contains a unit root;  (ii) Alternate Hypothesis 

(H1): The series is stationary, or it does not contain a unit root. To conclude that 

a time series is stationary, the null hypothesis must be rejected. This occurs when 

the test statistic is lower than the critical value, and the p-value (the chosen 

significance level) is below 0.05. Equation (1) is commonly used for the GC test. 
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Here, 0 represents a constant, i and i are, respectively, the coefficient 

parameters of X and Y, t indicates the white noise, and p and q correspond, 

respectively, to the maximum time lag of X and Y. 

2.3 Coupled Model  

This study employed the coupled SI-SIR and ARIMAX model that was 

previously developed and applied to forecast dengue cases in Selangor, Malaysia 

[12]. The simulation time step used was one week, to ensure consistency with the 

weekly dengue case data. For each time step, the number of dengue cases was 

calculated by the SI-SIR model using the predicted biting rate from ARIMAX as 

input. This approach aligns the discrete output of ARIMAX with the numerical 

algorithm of the ODE model. 

2.3.1 SI-SIR Model  

In most dengue research, vector-host models that track the dynamics and 

interactions between mosquitoes and humans are used to study disease 

transmission. Among these models, the SI-SIR model [13] is commonly applied. 

In the model, the human (host) and mosquito (vector) populations interact and 

mix homogeneously within the system. The population is stratified into classes 

within this compartmental model with individuals transitioning between these 

compartments at predetermined rates. The SI-SIR model comprises a system of 

ordinary differential equations (ODEs) given by Equation (2).  Note that both 
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human and mosquito compartments are expressed in capita (i.e., number of 

individuals), which is a common practice in vector-host modeling frameworks. 

Transmission terms such as I
VH S

H

V
B H

N
  represent the per capita rate at which 

susceptible humans are exposed to infectious bites from mosquitoes. Here, I

H

V

N
 

normalizes the infected mosquito population by the human population, ensuring 

that the units of the infection term are consistent with the rate of change in the 

human compartments. This formulation preserves biological interpretability and 

has been widely adopted in the literature [14,15].  The parameters in the SI-SIR 

model with their corresponding definition, value, unit, and source are listed in 

Table 1. 
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Equation (2) was used to fit the weekly total number of dengue cases reported in 

Penang (2014 to 2020) to estimate the average mosquito biting rate. To solve the 

ordinary differential equations and discretize Equation (2), the Euler’s method 

was applied. The obtained numerical approximation (3) of the average biting rate 

was subsequently utilized to obtain VS, VI, HS, HI, and HR in Equation (4). 

This study used an NH value of 1,730,000, which was calculated based on the 

population data of Penang, Malaysia from 2014 to 2020. The infected human 

population HI is represented by the number of weekly dengue cases reported in 

Penang from 2014 to 2020 and HI(0) represents the number of weekly dengue 

cases in the first week of January 2014. The initial population of recovered 

humans is HR(0) = 0. Given that the human population satisfies NH = HS + HR + 

HI, the initial population of susceptible humans is HS(0) = NH − HI(0) − HR(0). 

Similarly, the mosquito population satisfies NV = VS + VI. Therefore, the initial 

population of susceptible mosquitoes is VS(0) = NV − VI(0), where VI(0) = 0, 
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assuming that no mosquitoes are infected at the initial time t = 0. By substituting 

these initial values into Equation (4), the numerical solution or approximation for 

VS, VI, HS, HI, and HR is obtained. 
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Table 1 The parameter and its definition including the value and unit used in SI-

SIR. 

Parameter Definition Value Unit Source 

VS Susceptible mosquitoes  − capita − 

VI Infected mosquitoes  − capita − 

HS Susceptible humans  − capita − 

HI Infected humans  − capita − 

HR Recovered humans  − capita − 

NV Mosquito population 2NH capita − 

NH Human population ½NV capita − 

V Natural mortality rate of mosquitoes 0.7 week-1 [16] 

H 
Natural birth/mortality rate of 

humans 
1

75 52
 week-1 [17] 

B Average biting rate Curving fitting week-1 − 

βHV 
Human-to-mosquito transmission 

probability 
0.5 − [18] 

βVH 
Mosquito-to-human transmission 

probability 
0.75 − [19] 

H Infected human recovery rate  0.7 week-1 [16] 
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2.3.2 ARIMAX Model   

The ARIMAX model extends the Autoregressive Integrated Moving Average 

(ARIMA) framework through the integration of exogenous variables, which are 

defined to be external variables or predictors that are not part of the time series 

but have a significant impact on the time series. This integration allows the model 

to leverage additional information that can significantly enhance forecasting 

accuracy and performance. The ARIMAX module used in our coupled model is 

represented by Equation (5). 

 
1 1 0
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−
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Here, Bi represents the average mosquito biting rate at time step i, which serves 

as the dependent variable. The intercept in the ARIMAX model is denoted by , 

corresponding to the biting rate baseline level when all other predictors are zero. 

k denotes the coefficient associated with the k-th exogenous variable Xk, which 

in this study refers specifically to rainfall and average temperature. p denotes the 

coefficient corresponding to the p-th lag of the dependent variable B, while q  

represents the coefficient for the q-th lag of the residual term . Further, the total 

number of exogenous variables is denoted by K, the maximum lag of the 

dependent variable is P, and the maximum lag of the residuals is Q. To estimate 

the model parameters, the climate variables and the biting rate time series data 

were used to fit Equation (5). The coefficients were estimated using maximum 

likelihood estimation. Once the coefficients have been determined, the ARIMAX 

model can forecast the average biting rate Bi at any time step i using the 

corresponding rainfall and temperature values. The maximum lags in the model 

and estimations of parameters are determined via the R package in R Statistical 

Software. 

3 Simulation Results  

After establishing the modelling framework, this section presents the simulation 

results and evaluates the proposed model’s predictive capability. First, the time 

series of the average mosquito biting rate⎯estimated by fitting the SI-SIR model 

to dengue and meteorological data (rainfall and average temperature) from 

Penang, Malaysia, covering the period from 2014 to 2020⎯is presented. Then 

the GC test was used to verify the link between dengue cases and climate 

variables. Finally, the coupled model’s performance in forecasting weekly 

dengue cases in Penang is presented and discussed. 
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3.1 Dengue and Climate Variables Connection 

The coupled model’s forecasts using the estimated average biting rate obtained 

from both smoothed and unsmoothed data of dengue cases were evaluated and 

compared. Figure 2 illustrates the average biting rate obtained using the smoothed 

and unsmoothed data of dengue cases from 2014 to 2020 respectively. It was 

found that the forecasting performance using the smoothed weekly dengue cases 

(2014 to 2018) outperformed the forecasting performance using the unsmoothed 

data. This observation aligns with standard practices in data analysis, where data 

smoothing techniques help to better capture underlying trends by reducing noise 

and minimizing the risk of false signals. Consequently, the analysis in this study 

was conducted using the average biting rate time series obtained through curve 

fitting of the smoothed dengue data. As illustrated in Fig. 2(a), the average biting 

rate estimated varied approximately between 0.43 and 1.31 for each week. The 

ADF test proved that the time series of the biting rate, rainfall, and temperature 

were stationary (Table 2). The stationary time series ensures the reliability and 

applicability of these time series to conduct future forecasting, that is, to forecast 

the total number of weekly dengue cases expected after 2019.  

 

Figure 2 Estimated average biting rate of mosquitoes at Penang, Malaysia from 

2014 to 2020 (a) using smoothed data and (b) unsmoothed data. 

 

Table 2 ADF test results for biting rate, rainfall, and temperature. 

 
Average Biting 

Rate (week-1) 

Rainfall  

(mm) 

Average 

Temperature (℃) 

Test Statistic -6.6626 -5.8958 -3.9108 

p-value < 0.01 < 0.01 0.01373 

Conclusion Stationary Stationary Stationary 

To investigate the causal relationship between the climate variables (rainfall and 

average temperature) and biting rate, the GC test was employed. The result of the 

GC test is illustrated in Table 3. A relationship such as Rainfall  Average Biting 

(a) (b) 
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Rate indicates that the rainfall time series Granger-causes the average biting rate 

time series. Both tests of Rainfall  Average Biting Rate and Average 

Temperature  Average Biting Rate showed less significance (p < 0.05). The 

reverse relationships were performed as well. As observed in Table 3, both 

reverse relationships showed significance (p > 0.05). This indicates a one-

directional GC from the climate variables (rainfall and average temperature) to 

the average biting rate. This means the rainfall and average temperature time 

series provide valuable information for predicting the average biting rate for 

forecasting dengue incidence. 

Table 3 Results of the GC test. 

Relationship 
Rainfall  Average 

Biting Rate 

Average Temperature  Average 

Biting Rate 

p-value 0.006611 0.04813 

Relationship 
Average Biting Rate 

 Rainfall 

Average Biting Rate  Average 

Temperature 

p-value 0.1021 0.1869 

 

3.2 Coupled ARIMAX and SI-SIR Model Performance 

As illustrated in Fig. 3, the total number of dengue cases in Penang was forecasted 

for 10 rounds, focusing on the periods after week 260. Each round spanned 

approximately four weeks. In the first round, using meteorological data (rainfall 

and average temperature) and recorded dengue cases from weeks 1 to 260, the 

biting rate for weeks 261 to 264 was predicted by the ARIMAX model. SI-SIR 

model then used these forecasts to estimate the weekly dengue cases. In 

subsequent rounds, ARIMAX model input data were updated by extending the 

training period to one week, allowing the dengue cases for upcoming weeks to be 

forecasted. This procedure was repeated for each round. Ten iterative forecasting 

rounds were conducted to mimic a rolling forecast scenario, allowing the model 

to be updated and validated repeatedly as new data became available. This 

approach helps assess the stability and reliability of the forecasts for operational 

use. 

The performance of the model was evaluated using the magnitude of relative error 

(MRE) and its mean (MMRE). Lower MRE and MMRE values indicate better 

forecasting performance. The forecasted dengue cases from weeks 261 to 273 

were rounded and displayed in Table 4. Forecasts with MRE less than 20% are 

shaded for better visibility. 

From Table 4, it is evident that the forecasting accuracy decreased whenever there 

was a significant jump of 30 to 40 cases from one week to the next. For example, 
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the sharp increase in dengue cases from 216 in week 261 to 290 in week 262 led 

to a significant rise in MRE from 3.70% to 22.07%. Similarly, the large drop from 

211 cases in week 264 to 178 in week 265 resulted in increased MRE values 

during rounds 2, 3, and 4. Notably, the model struggled to maintain accuracy 

during week 266, with MRE values ranging from 28.57% to 75.94%, due to a 

sudden drop of 45 cases between weeks 265 and 266.  

 

Figure 3 Smoothed dengue data from weeks 1 to 260 and forecasted dengue 

cases for Penang, Malaysia (weeks 261 to 273). 

Table 4 Dengue cases forecasted over 10 rounds with MRE in brackets (rounds 

highlighted in shadow represent forecasts with MRE below 20%). 

Week 

Actua

l 

Cases 

Forecasted Number of Dengue Cases with its Magnitude of Relative Error (MRE) in each round 

1 2 3 4 5 6 7 8 9 10 

261 216 
224 

(3.70%) 
         

262 290 
226 

(22.07%

) 

229 

(21.03%

) 

        

263 257 
229 

(10.89%

) 

233 

(9.34%) 

230 

(10.51%

) 

       

264 211 
231 

(9.48%) 

235 
(11.37%

) 

231 
(9.48%) 

214 

(1.42%) 
      

265 178  
237 

(11.37%

) 

232 

(30.34%

) 

206 

(15.73%_

) 

193 
(8.43%) 

     

266 133   
234 

(75.94%

) 

205 
(54.14%) 

185 

(39.10%

) 

171 

(28.57%

) 

    

267 185    
206 

(11.35%) 

184 

(0.54%) 

164 
(11.35%

) 

155 
(16.22%

) 

   

268      
185 

(25%) 

162 
(9.46%) 

149 
(0.68%) 

140 

(5.41%) 
  

269       
162 

(25.58%

) 

147 

(13.95%

) 

134 
(3.88%) 

130 
(0.78%) 

 

270        
148 

(42.31%

) 

133 

(27.88%

) 

127 
(22.12%

) 

115 
(10.58%

) 

271         
132 

(55.29%

) 

125 
(47.06%

) 

109 

(28.24%

) 

272          
125 

(13.64%

) 

106 

(3.64%) 

273           
105 

(40.00%

) 

MMR

E 
 11.54% 18.72% 31.57% 20.66% 18.27% 18.74% 18.29% 23.12% 20.90% 20.61% 
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However, the model’s performance improved as more dengue and meteorological 

data were integrated. This trend was observed in weeks 267 and 272, where the 

model achieved a significant reduction in MRE, even after sudden increases in 

dengue cases. The model performed best during weeks 263, 264, 267, and 272, 

recording MRE values below 15%. Overall, a declining trend in MRE can be 

observed across forecasting rounds, aligning with the expectation of improved 

model performance as more data were incorporated. The gradual improvement in 

accuracy demonstrates the model’s ability to capture changing patterns over time. 

The four-week forecasting period provided a balanced approach, offering 

accurate and practical predictions while maintaining a relatively low MMRE. A 

longer forecasting period might hinder the model’s ability to detect shifts in 

trends, while a shorter period would be time-consuming and inefficient for long-

term forecasting. The model recorded an average MMRE of 20.24%, indicating 

an accuracy and reliability of approximately 79.76%. 

To further evaluate the predictive capabilities of the coupled model, an extended 

validation window spanning weeks 224 to 263 was selected, incorporating phases 

with more obvious fluctuations in dengue case trends. This selection is illustrated 

in Fig. 4, where a total of 37 prediction rounds were conducted to 

comprehensively cover this period. Despite several shifts in the overall trend of 

dengue cases during the extended validation period, the model demonstrated 

consistent robustness. 

 

Figure 4 Forecasted dengue cases in Penang, Malaysia for an extended 

validation window (weeks 224 to 263) using the coupled model. 

 

The MMREs for each of the 37 prediction rounds were calculated as depicted in 

Table 5. While certain rounds exhibited relatively high MMRE values, the overall 

average MMRE stood at 15.42%. This corresponds to a predictive accuracy and 

reliability of approximately 84.58%. This extended validation provides explicit 

evidence of the model’s ability to generalize and reduces concerns related to 

overfitting. Moreover, such performance underscores the model’s ability to 

deliver consistent accuracy despite considerable temporal fluctuations in disease 
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incidence. This robustness is essential for reliable disease forecasting, 

strengthening the model’s utility in public health management. 

Table 5 Values of MMRE for 37 prediction rounds in the extended validation 

window (weeks 224 to 263). 

 

4 Discussion  

This study highlights the effectiveness of integrating deterministic and statistical 

modelling approaches to forecast climate-driven dengue incidence in Penang. A 

key finding of this study is the demonstrated feasibility of utilizing climate 

variables, specifically rainfall and average temperature, to forecast dengue 

transmission dynamics. The GC test confirmed that these climate variables 

significantly impact the biting rate of mosquitoes, which subsequently affects the 

number of dengue cases. This finding aligns with previous studies [20-22] that 

reported strong associations between climate variability and vector-borne disease 

transmission. However, unlike many prior studies that relied solely on statistical 

methods or machine learning models, this research employed a hybrid modelling 

approach that includes epidemiological and entomological components via the 

SI-SIR model. Further research on vector control strategies in a changing climate 

is made possible by this integration, which takes into consideration the impacts 

of climate on the dynamics of transmission between human and mosquito 

populations.  

Another important aspect of this study is the assessment of the coupled model’s 

forecasting performance. The results showed that the model reliably forecasts 

gradual changes in dengue incidence but may not be able to account for a sudden, 

sharp change in the number of cases. This limitation suggests that while the model 

effectively captures general trends, additional refinements are needed to improve 

its ability to respond to abrupt epidemiological shifts. Moreover, the relatively 

flat tails observed in some forecast curves reflect the model’s response to stable 

or slowly changing input data over short horizons, a common behavior in 

Round 1 2 3 4 5 6 7 8 

MMRE (%) 14.65 15.98 25.27 25.68 26.73 20.55 11.18 9.61 

Round 9 10 11 12 13 14 15 16 

MMRE (%) 13.44 8.79 9.52 15.63 13.45 7.47 6.50 5.30 

Round 17 18 19 20 21 22 23 24 

MMRE (%) 19.24 16.39 15.84 31.39 20.52 12.75 16.13 11.45 

Round 25 26 27 28 29 30 31 32 

MMRE (%) 14.93 14.68 13.39 10.76 14.31 18.12 17.39 20.85 

Round 33 34 35 36 37    

MMRE (%) 17.24 13.88 11.19 14.55 15.80    

Average MMRE (%) 15.42 
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compartmental and statistical time-series models. This limitation is 

acknowledged, but model performance can still be improved with updated data.  

The study suggests the practical applicability of the four-week forecasting period, 

which balances prediction accuracy and real-world usability. Although a longer 

forecasting window could potentially enhance long-term planning, it might also 

reduce precision due to cumulative errors. In contrast, a shorter window could 

limit the model’s utility for proactive dengue control efforts. This trade-off 

highlights the importance of optimizing forecasting intervals to ensure timely and 

feasible public health responses. In practice, dengue control measures, such as 

fogging, larval source reduction, and health education campaigns, are often 

organized and implemented on a monthly or biweekly basis [23]. A four-week 

forecast provides a planning window for the authorities to mobilize resources for 

targeted interventions.  

The forecasting framework adopted in this study follows a real-time forecast 

approach, in which the model is updated at each time step using newly available 

data. This strategy was chosen to emulate real-time public health surveillance 

settings, where predictive models are continually revised to reflect the most 

recent trends. Unlike fixed-horizon evaluations commonly used in machine 

learning benchmarking studies (predicting a fixed percentage of future data 

without update), this approach emphasizes practical relevance by supporting 

timely decision-making in vector control and outbreak mitigation. Moreover, the 

extended validation window used in this study spans approximately 40 weeks, 

equivalent to over 25% of the full dataset, and demonstrated consistently low 

MMRE values. 

In the future, potential extensions are expected to be further explored. First, 

additional environmental and socioeconomic factors may be used to enhance the 

model’s predictive capabilities. For instance, integrating real-time climate 

monitoring and satellite imagery could improve model responsiveness to sudden 

environmental changes. The inclusion of human mobility patterns and land use 

changes may also enhance the model’s ability to capture variations in dengue 

transmission risk. Second, the forecasting approach should be improved to extend 

the forecasting horizon, such as by incorporating additional predictors, advanced 

ensemble methods, or scenario-based modelling, to further support strategic 

dengue control planning. Specifically, the integration of deep learning methods 

such as Long Short-Term Memory (LSTM) networks with the coupled SI-SIR 

and ARIMAX framework could help capture complex temporal dependencies 

and improve long-term forecasting accuracy. Finally, expanding the study to 

other regions with diverse climate conditions could help validate the model’s 

generalizability and further refine its applicability for public health interventions. 
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5 Conclusion  

This study applied a coupled deterministic SI-SIR model and the statistical 

ARIMAX model to forecast dengue cases in Penang, Malaysia.  Data on dengue 

cases in Penang (2014 to 2018) were used to train the model, while data from 

after 2019 were employed to evaluate forecasting performance. In the model, 

climate variables (rainfall and average temperature) were incorporated into the 

ARIMAX model based on their correlation with the mosquito biting rate, as 

validated by a GC test. The coupled ARIMAX and SI-SIR model was trained on 

data from 2014 to 2018 (weeks 1 to 260). To evaluate the model’s performance, 

the forecasted dengue cases were compared to the actual dengue cases for weeks 

261 to 273. The weekly biting rates were first predicted by the ARIMAX model 

and then used by the SI-SIR model for dengue case forecasting. The SI-SIR 

model was recalibrated each week with updated data to manage sharp variations 

in the number of weekly dengue cases. Model performance was assessed using 

MRE and MMRE between forecasted and actual dengue cases. The model 

achieved an average MMRE of 20.24%, with performance declines observed 

during sudden spikes in dengue cases from one week to the next. However, 

performance improved over successive rounds, demonstrating the effectiveness 

of incorporating more dengue and meteorological data. A similar conclusion was 

derived using an extended validation window from weeks 224 to 263. Overall, 

the model provided reasonable accuracy and reliability in forecasting dengue 

cases in Penang, Malaysia. 
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