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Abstract. Dengue continues to pose a major public health challenge in Malaysia,
with no definitive cure currently available. Although the Ministry of Health of
Malaysia has implemented various measures to control outbreaks, the number of
cases keeps rising and is likely to worsen due to the impacts of climate change.
Hence, early detection and prediction of dengue outbreaks are vital for the
implementation of risk mitigation measures. This study applied and assessed the
performance of a coupled ARIMAX and SI-SIR model for forecasting dengue
incidence in Penang, Malaysia. Data from 2014 to 2020, including reported
dengue cases and climate variables (rainfall and average temperature), were used.
Previous research has demonstrated a strong correlation between climate factors
and dengue transmission. Granger causality tests also indicated that the time series
of rainfall and average temperature are significant predictors of the mosquito
biting rate, which is closely linked to dengue transmission. Therefore, these
climate variables were incorporated into the coupled model to enhance its
forecasting performance. Through multiple simulation rounds with a four-week
forecasting period, the coupled model achieved an average forecasting accuracy
of around 80% in predicting dengue cases in Penang.
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1 Introduction

Dengue has been a major global public health challenge for decades. Outbreaks
have occurred every 5 to 8 years in Malaysia, primarily affecting urban areas like
Selangor, Johor, and Kuala Lumpur, with young adults being the most affected.
In 2010, the country expended more than US$ 175.7 million per year on efforts
to prevent and control dengue [1]. To combat the persistent spread of dengue in
Malaysia, early detection mechanisms are crucial. Predictive analytics can
provide cost-effective strategies for controlling outbreaks. Numerous attempts
have been made to develop reliable dengue prediction models. For instance, a
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model utilizing machine learning techniques such as Decision Tree, Artificial
Neural Network, Bayes Network, and Support Vector Machine (SVM) was
created based on data from five high-incidence districts in Selangor from 2013 to
2017 [2]. Further, the double exponential smoothing and Holt-Winters
forecasting methods were used to predict future dengue cases in Penang,
Malaysia, achieving mean magnitude of relative error (MMRE) values of 28.50%
and 30.03%, respectively [3].

Dengue transmission dynamics are significantly influenced by climate variables
such as rainfall and temperature. Higher ambient temperatures can accelerate
viral replication within mosquitoes and shorten the extrinsic incubation period
[4]. A lower likelihood of infection with the dengue virus has been observed in
mosquitoes exposed to greater diurnal temperature ranges [5]. Temperature also
influences mosquito reproduction by altering population dynamics and range
limits. It was found that Aedes aegypti mosquitoes in Puerto Rico preferred
shaded containers with cooler water temperatures for egg-laying [6], while
mosquitoes in Iquitos, Peru, favored containers with higher sun exposure and
temperatures [7].

Rainfall also plays a crucial role in dengue transmission. The relationship
between rainfall and dengue infection risk in Guangzhou, China, from 2006 to
2018 was analyzed using a distributed lag non-linear model in Cheng et al. [8].
The study revealed that heavy rainfall increased dengue risk after a 24- to 55-day
lag when water availability was low, while it reduced risk after a 7- to 121-day
lag when water availability was high. Moderate rainfall was found to increase
mosquito breeding and dengue risk, whereas heavy rainfall could disrupt
mosquito populations due to flushing effects [9]. These findings emphasize the
importance of considering climate factors like rainfall and temperature in the
development of dengue prediction models.

This research proposes the application of a coupled model that integrates both
deterministic and statistical approaches to forecast dengue cases in Penang,
Malaysia, namely, SI-SIR (Susceptible-Infective for vector populations;
Susceptible-Infective-Recovered for human populations) and ARIMAX
(Autoregressive Integrated Moving Average Exogenous Variable), respectively.
Dengue and meteorological data for Penang from 2014 to 2020 were used to
calibrate and validate the model. This study demonstrated the forecast
performance of a coupled model that can be used to provide valuable insight into
the effectiveness of dengue mitigation strategies, particularly in a changing
climate. Section 2 presents the data used and describes the modelling framework.
The forecasting results are presented in Section 3 to illustrate the model’s
performance. Lastly, the significance and limitations of the approach are
discussed in Section 4, followed by the concluding remarks in Section 5.
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2 Materials and Mathematical Models

In this section, the dengue and meteorological data used in this research are first
described. Then the statistical analysis, using the Augmented Dickey-Fuller
(ADF test) and the Granger causality (GC) test, is introduced. Finally, the
implementation process of the coupled ARIMAX and SI-SIR model is detailed.

2.1 Data

Weekly dengue case data from 2014 to 2020 for five regions in Penang, namely,
Timur Laut, Barat Daya, Seberang Perai Utara, Seberang Perai Tengah, and
Seberang Perai Selatan, were used in this study. Figure 1 shows the weekly
number of dengue cases reported in Penang from 2014 to 2020. A moving
average filter was applied to smooth the data, reducing random noise while
preserving key trends. The graph indicates an upward trend in weekly dengue
cases from 2014 to 2016. Both raw and smoothed data of weekly dengue for
Penang after 2019 are presented in Fig. 1(a). It was noted that the Movement
Control Order (MCO) from 2020 to 2021 initially led to a decline in dengue cases,
followed by an increase over time, suggesting that the MCO acted as an external
factor influencing case distribution [10].
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Figure 1 (a) Weekly dengue cases, (b) accumulated rainfall, and (c) average
temperature data for Penang Malaysia from 2014 to 2020.
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Given the potential anomalies affecting data accuracy before 2014 and after 2020,
only the weekly dengue cases for Penang from 2014 to 2020 were considered in
this study. Meteorological data, specifically rainfall and average temperature,
were obtained from the Malaysian Meteorological Department (MetMalaysia).
These data were recorded daily from 2014 to 2020 at various locations in Penang,
including Mardi Bertam, Hospital Kulim, Perai, Bayan Lepas, Parit Buntar, and
Butterworth. To align with the dengue data (on a weekly basis), the
meteorological data (on a daily basis) were converted to data on a weekly basis
by summing the rainfall data over seven days and averaging every consecutive
seven days of temperature data. Figures 1(b) and 1(c) show the time series plots
of, respectively, the rainfall and temperature data recorded in Penang from 2014
to 2020.
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2.2 ADF Test and GC Test

The GC test is a statistical method used to decide if one variable or time series
significantly contributes to the accurate forecasting of another variable or time
series based on historical data. The test measures the extent to which the past
values of one variable provide valuable information for predicting the future
behavior of another [11]. As a result, the GC test is frequently employed to
analyze potential relationships between variables and make trend predictions.
Before conducting this test, the stationarity of the series was verified using the
ADF test. The test involves the following hypotheses: (i) Null Hypothesis (Ho):
The series is non-stationary, or it contains a unit root; (ii) Alternate Hypothesis
(H)): The series is stationary, or it does not contain a unit root. To conclude that
a time series is stationary, the null hypothesis must be rejected. This occurs when
the test statistic is lower than the critical value, and the p-value (the chosen
significance level) is below 0.05. Equation (1) is commonly used for the GC test.

P q
Y =q, +ZaiXt—i +ZIBIYH + 4, ()
i1 i1

Here, oy represents a constant, ¢; and f are, respectively, the coefficient
parameters of X and Y, y indicates the white noise, and p and ¢ correspond,
respectively, to the maximum time lag of X and Y.

2.3 Coupled Model

This study employed the coupled SI-SIR and ARIMAX model that was
previously developed and applied to forecast dengue cases in Selangor, Malaysia
[12]. The simulation time step used was one week, to ensure consistency with the
weekly dengue case data. For each time step, the number of dengue cases was
calculated by the SI-SIR model using the predicted biting rate from ARIMAX as
input. This approach aligns the discrete output of ARIMAX with the numerical
algorithm of the ODE model.

2.3.1 SI-SIR Model

In most dengue research, vector-host models that track the dynamics and
interactions between mosquitoes and humans are used to study disease
transmission. Among these models, the SI-SIR model [13] is commonly applied.
In the model, the human (host) and mosquito (vector) populations interact and
mix homogeneously within the system. The population is stratified into classes
within this compartmental model with individuals transitioning between these
compartments at predetermined rates. The SI-SIR model comprises a system of
ordinary differential equations (ODEs) given by Equation (2). Note that both
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human and mosquito compartments are expressed in capita (i.e., number of
individuals), which is a common practice in vector-host modeling frameworks.

. v, . :
Transmission terms such as Bf,,, N—’H ¢ represent the per capita rate at which
H

susceptible humans are exposed to infectious bites from mosquitoes. Here, Y
H
normalizes the infected mosquito population by the human population, ensuring
that the units of the infection term are consistent with the rate of change in the
human compartments. This formulation preserves biological interpretability and
has been widely adopted in the literature [14,15]. The parameters in the SI-SIR
model with their corresponding definition, value, unit, and source are listed in

Table 1.
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Equation (2) was used to fit the weekly total number of dengue cases reported in
Penang (2014 to 2020) to estimate the average mosquito biting rate. To solve the
ordinary differential equations and discretize Equation (2), the Euler’s method
was applied. The obtained numerical approximation (3) of the average biting rate
was subsequently utilized to obtain Vs, V;, Hs, H;, and Hg in Equation (4).

This study used an Ny value of 1,730,000, which was calculated based on the
population data of Penang, Malaysia from 2014 to 2020. The infected human
population H; is represented by the number of weekly dengue cases reported in
Penang from 2014 to 2020 and H;(0) represents the number of weekly dengue
cases in the first week of January 2014. The initial population of recovered
humans is Hr(0) = 0. Given that the human population satisfies Ny = Hs + Hr +
Hj, the initial population of susceptible humans is Hs(0) = Ny — H/(0) — Hr(0).
Similarly, the mosquito population satisfies Ny = Vs + V.. Therefore, the initial
population of susceptible mosquitoes is Vs(0) = Ny — Vi(0), where Vx(0) = 0,
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assuming that no mosquitoes are infected at the initial time ¢ = 0. By substituting
these initial values into Equation (4), the numerical solution or approximation for
Vs, Vi, Hs, H;, and Hp 1s obtained.

H,  -H, . N
B, :( s = +7HH],i+/uHHlij = (3)
At B V[,iH S,
H Li
Vsin=Vs, + At [, N, — B, By, Vs, —m/Vs,]
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V=V + At [B By Vsi= V7,1
Ny
_ Vi
Hg,\=Hg, +At [y Ny — B By, N Hg,—p,Hg, ] “4)
H
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Ny
Hy o =Hy, + At [y, H, =y Hy,
Table 1 The parameter and its definition including the value and unit used in SI-
SIR.
Parameter Definition Value Unit  Source

Vs Susceptible mosquitoes - capita -

v Infected mosquitoes - capita -
Hg Susceptible humans - capita -
H, Infected humans - capita -
Hy Recovered humans - capita -
Ny Mosquito population 2-Ny capita -
Ny Human population V2N, capita -
My Natural mortality rate of mosquitoes 0.7 week'! [16]

Natural birth/mortality rate of 1 i
yr humans Y 75350 week! [17]
B Average biting rate Curving fitting ~ week! -
Human-to-mosquito transmission
Buv probability 0.5 - [18]
Mosquito-to-human transmission
Bru probability 0.75 B [19]

Vi Infected human recovery rate 0.7 week! [16]
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2.3.2 ARIMAX Model

The ARIMAX model extends the Autoregressive Integrated Moving Average
(ARIMA) framework through the integration of exogenous variables, which are
defined to be external variables or predictors that are not part of the time series
but have a significant impact on the time series. This integration allows the model
to leverage additional information that can significantly enhance forecasting
accuracy and performance. The ARIMAX module used in our coupled model is
represented by Equation (5).

K P Y
B[:5+Z77ka+Z¢pBi—p+ZHqg[—q (5)
=1 p=l 7=0

Here, Bi represents the average mosquito biting rate at time step #, which serves
as the dependent variable. The intercept in the ARIMAX model is denoted by o,
corresponding to the biting rate baseline level when all other predictors are zero.
nx denotes the coefficient associated with the k-th exogenous variable X, which
in this study refers specifically to rainfall and average temperature. ¢, denotes the
coefficient corresponding to the p-th lag of the dependent variable B, while 6,
represents the coefficient for the g-th lag of the residual term ¢. Further, the total
number of exogenous variables is denoted by K, the maximum lag of the
dependent variable is P, and the maximum lag of the residuals is Q. To estimate
the model parameters, the climate variables and the biting rate time series data
were used to fit Equation (5). The coefficients were estimated using maximum
likelihood estimation. Once the coefficients have been determined, the ARIMAX
model can forecast the average biting rate B; at any time step i using the
corresponding rainfall and temperature values. The maximum lags in the model
and estimations of parameters are determined via the R package in R Statistical
Software.

3 Simulation Results

After establishing the modelling framework, this section presents the simulation
results and evaluates the proposed model’s predictive capability. First, the time
series of the average mosquito biting rate—estimated by fitting the SI-SIR model
to dengue and meteorological data (rainfall and average temperature) from
Penang, Malaysia, covering the period from 2014 to 2020—is presented. Then
the GC test was used to verify the link between dengue cases and climate
variables. Finally, the coupled model’s performance in forecasting weekly
dengue cases in Penang is presented and discussed.
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3.1 Dengue and Climate Variables Connection

The coupled model’s forecasts using the estimated average biting rate obtained
from both smoothed and unsmoothed data of dengue cases were evaluated and
compared. Figure 2 illustrates the average biting rate obtained using the smoothed
and unsmoothed data of dengue cases from 2014 to 2020 respectively. It was
found that the forecasting performance using the smoothed weekly dengue cases
(2014 to 2018) outperformed the forecasting performance using the unsmoothed
data. This observation aligns with standard practices in data analysis, where data
smoothing techniques help to better capture underlying trends by reducing noise
and minimizing the risk of false signals. Consequently, the analysis in this study
was conducted using the average biting rate time series obtained through curve
fitting of the smoothed dengue data. As illustrated in Fig. 2(a), the average biting
rate estimated varied approximately between 0.43 and 1.31 for each week. The
ADF test proved that the time series of the biting rate, rainfall, and temperature
were stationary (Table 2). The stationary time series ensures the reliability and
applicability of these time series to conduct future forecasting, that is, to forecast
the total number of weekly dengue cases expected after 2019.
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Figure 2 Estimated average biting rate of mosquitoes at Penang, Malaysia from
2014 to 2020 (a) using smoothed data and (b) unsmoothed data.

Table 2 ADF test results for biting rate, rainfall, and temperature.

Average Biting Rainfall Average
Rate (week™!) (mm) Temperature (°C)
Test Statistic -6.6626 -5.8958 -3.9108
p-value <0.01 <0.01 0.01373
Conclusion Stationary Stationary Stationary

To investigate the causal relationship between the climate variables (rainfall and
average temperature) and biting rate, the GC test was employed. The result of the
GC test is illustrated in Table 3. A relationship such as Rainfall = Average Biting
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Rate indicates that the rainfall time series Granger-causes the average biting rate
time series. Both tests of Rainfall = Average Biting Rate and Average
Temperature = Average Biting Rate showed less significance (p < 0.05). The
reverse relationships were performed as well. As observed in Table 3, both
reverse relationships showed significance (p > 0.05). This indicates a one-
directional GC from the climate variables (rainfall and average temperature) to
the average biting rate. This means the rainfall and average temperature time
series provide valuable information for predicting the average biting rate for
forecasting dengue incidence.

Table 3 Results of the GC test.

. . Rainfall = Average Average Temperature = Average
Relationship Biting Rate Biting Rate
p-value 0.006611 0.04813
Relationship Average B}tll‘lg Rate Average Biting Rate = Average
= Rainfall Temperature
p-value 0.1021 0.1869

3.2 Coupled ARIMAX and SI-SIR Model Performance

As illustrated in Fig. 3, the total number of dengue cases in Penang was forecasted
for 10 rounds, focusing on the periods after week 260. Each round spanned
approximately four weeks. In the first round, using meteorological data (rainfall
and average temperature) and recorded dengue cases from weeks 1 to 260, the
biting rate for weeks 261 to 264 was predicted by the ARIMAX model. SI-SIR
model then used these forecasts to estimate the weekly dengue cases. In
subsequent rounds, ARIMAX model input data were updated by extending the
training period to one week, allowing the dengue cases for upcoming weeks to be
forecasted. This procedure was repeated for each round. Ten iterative forecasting
rounds were conducted to mimic a rolling forecast scenario, allowing the model
to be updated and validated repeatedly as new data became available. This
approach helps assess the stability and reliability of the forecasts for operational
use.

The performance of the model was evaluated using the magnitude of relative error
(MRE) and its mean (MMRE). Lower MRE and MMRE values indicate better
forecasting performance. The forecasted dengue cases from weeks 261 to 273
were rounded and displayed in Table 4. Forecasts with MRE less than 20% are
shaded for better visibility.

From Table 4, it is evident that the forecasting accuracy decreased whenever there
was a significant jump of 30 to 40 cases from one week to the next. For example,
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the sharp increase in dengue cases from 216 in week 261 to 290 in week 262 led
to a significant rise in MRE from 3.70% to 22.07%. Similarly, the large drop from
211 cases in week 264 to 178 in week 265 resulted in increased MRE values
during rounds 2, 3, and 4. Notably, the model struggled to maintain accuracy
during week 266, with MRE values ranging from 28.57% to 75.94%, due to a
sudden drop of 45 cases between weeks 265 and 266.
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Figure 3 Smoothed dengue data from weeks 1 to 260 and forecasted dengue
cases for Penang, Malaysia (weeks 261 to 273).

Table 4 Dengue cases forecasted over 10 rounds with MRE in brackets (rounds
highlighted in shadow represent forecasts with MRE below 20%).

Actua Forecasted Number of Dengue Cases with its Magnitude of Relative Error (MRE) in each round
Week ! 1 2 3 4 5 6 7 8 9 10
Cases
224
261 216 G.70%)
226 229
262 290 (22.07% (21.03%
) )
229 233 230
263 257 (10.;39% ©34%) (10,)51%
235
231 231 214
264 21 o4 O 1')37% ©48%)  (142%)
237 232 206 193
265 178 (1 1.)37% (30,;4% (1 5,7)3%7 (8.43%)
234 205 185 171
266 133 (75,)94% (54.14%) (394)10% (284)57%
164 155
206 184
267 185 (1135%) (0.54%) (11.)35% (16.)22%
268 185 162 149 140
(25%) (9.46%) (0.68%) (5.41%)
162 147
134 130
269 (254)58% (13.)95% (3.88%) (0.78%)
148 133 127 115
270 (42.31% (27.88% (22.12% (10.58%
) ) ) )
132 125 109
271 (55.29% (47.06% (28.24%
) ) )
125
106
272 (13.)64% G.6%
105
273 (40.00%
)
MMR 11.54% 18.72%  31.57% 20.66% 18.27% 18.74% 18.29%  23.12%  20.90%  20.61%
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However, the model’s performance improved as more dengue and meteorological
data were integrated. This trend was observed in weeks 267 and 272, where the
model achieved a significant reduction in MRE, even after sudden increases in
dengue cases. The model performed best during weeks 263, 264, 267, and 272,
recording MRE values below 15%. Overall, a declining trend in MRE can be
observed across forecasting rounds, aligning with the expectation of improved
model performance as more data were incorporated. The gradual improvement in
accuracy demonstrates the model’s ability to capture changing patterns over time.
The four-week forecasting period provided a balanced approach, offering
accurate and practical predictions while maintaining a relatively low MMRE. A
longer forecasting period might hinder the model’s ability to detect shifts in
trends, while a shorter period would be time-consuming and inefficient for long-
term forecasting. The model recorded an average MMRE of 20.24%, indicating
an accuracy and reliability of approximately 79.76%.

To further evaluate the predictive capabilities of the coupled model, an extended
validation window spanning weeks 224 to 263 was selected, incorporating phases
with more obvious fluctuations in dengue case trends. This selection is illustrated
in Fig. 4, where a total of 37 prediction rounds were conducted to
comprehensively cover this period. Despite several shifts in the overall trend of
dengue cases during the extended validation period, the model demonstrated
consistent robustness.
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Figure 4 Forecasted dengue cases in Penang, Malaysia for an extended
validation window (weeks 224 to 263) using the coupled model.

The MMRE:s for each of the 37 prediction rounds were calculated as depicted in
Table 5. While certain rounds exhibited relatively high MMRE values, the overall
average MMRE stood at 15.42%. This corresponds to a predictive accuracy and
reliability of approximately 84.58%. This extended validation provides explicit
evidence of the model’s ability to generalize and reduces concerns related to
overfitting. Moreover, such performance underscores the model’s ability to
deliver consistent accuracy despite considerable temporal fluctuations in disease
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incidence. This robustness is essential for reliable disease forecasting,
strengthening the model’s utility in public health management.

Table 5 Values of MMRE for 37 prediction rounds in the extended validation
window (weeks 224 to 263).

Round 1 2 3 4 5 6 7 8

MMRE (%) 14.65 1598 2527 2568 26.73 20.55 11.18 9.61
Round 9 10 11 12 13 14 15 16

MMRE (%) 1344 8.79 9.52 15.63 1345 747 6.50 5.30
Round 17 18 19 20 21 22 23 24

MMRE (%) 1924 1639 1584 31.39 20.52 12.75 16.13 1145
Round 25 26 27 28 29 30 31 32

MMRE (%) 1493 14.68 1339 10.76 1431 18.12 17.39 20.85
Round 33 34 35 36 37

MMRE (%) 1724 13.88 11.19 1455 15.80

Average MMRE (%) 15.42
4 Discussion

This study highlights the effectiveness of integrating deterministic and statistical
modelling approaches to forecast climate-driven dengue incidence in Penang. A
key finding of this study is the demonstrated feasibility of utilizing climate
variables, specifically rainfall and average temperature, to forecast dengue
transmission dynamics. The GC test confirmed that these climate variables
significantly impact the biting rate of mosquitoes, which subsequently affects the
number of dengue cases. This finding aligns with previous studies [20-22] that
reported strong associations between climate variability and vector-borne disease
transmission. However, unlike many prior studies that relied solely on statistical
methods or machine learning models, this research employed a hybrid modelling
approach that includes epidemiological and entomological components via the
SI-SIR model. Further research on vector control strategies in a changing climate
is made possible by this integration, which takes into consideration the impacts
of climate on the dynamics of transmission between human and mosquito
populations.

Another important aspect of this study is the assessment of the coupled model’s
forecasting performance. The results showed that the model reliably forecasts
gradual changes in dengue incidence but may not be able to account for a sudden,
sharp change in the number of cases. This limitation suggests that while the model
effectively captures general trends, additional refinements are needed to improve
its ability to respond to abrupt epidemiological shifts. Moreover, the relatively
flat tails observed in some forecast curves reflect the model’s response to stable
or slowly changing input data over short horizons, a common behavior in
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compartmental and statistical time-series models. This limitation is
acknowledged, but model performance can still be improved with updated data.

The study suggests the practical applicability of the four-week forecasting period,
which balances prediction accuracy and real-world usability. Although a longer
forecasting window could potentially enhance long-term planning, it might also
reduce precision due to cumulative errors. In contrast, a shorter window could
limit the model’s utility for proactive dengue control efforts. This trade-off
highlights the importance of optimizing forecasting intervals to ensure timely and
feasible public health responses. In practice, dengue control measures, such as
fogging, larval source reduction, and health education campaigns, are often
organized and implemented on a monthly or biweekly basis [23]. A four-week
forecast provides a planning window for the authorities to mobilize resources for
targeted interventions.

The forecasting framework adopted in this study follows a real-time forecast
approach, in which the model is updated at each time step using newly available
data. This strategy was chosen to emulate real-time public health surveillance
settings, where predictive models are continually revised to reflect the most
recent trends. Unlike fixed-horizon evaluations commonly used in machine
learning benchmarking studies (predicting a fixed percentage of future data
without update), this approach emphasizes practical relevance by supporting
timely decision-making in vector control and outbreak mitigation. Moreover, the
extended validation window used in this study spans approximately 40 weeks,
equivalent to over 25% of the full dataset, and demonstrated consistently low
MMRE values.

In the future, potential extensions are expected to be further explored. First,
additional environmental and socioeconomic factors may be used to enhance the
model’s predictive capabilities. For instance, integrating real-time climate
monitoring and satellite imagery could improve model responsiveness to sudden
environmental changes. The inclusion of human mobility patterns and land use
changes may also enhance the model’s ability to capture variations in dengue
transmission risk. Second, the forecasting approach should be improved to extend
the forecasting horizon, such as by incorporating additional predictors, advanced
ensemble methods, or scenario-based modelling, to further support strategic
dengue control planning. Specifically, the integration of deep learning methods
such as Long Short-Term Memory (LSTM) networks with the coupled SI-SIR
and ARIMAX framework could help capture complex temporal dependencies
and improve long-term forecasting accuracy. Finally, expanding the study to
other regions with diverse climate conditions could help validate the model’s
generalizability and further refine its applicability for public health interventions.
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5 Conclusion

This study applied a coupled deterministic SI-SIR model and the statistical
ARIMAX model to forecast dengue cases in Penang, Malaysia. Data on dengue
cases in Penang (2014 to 2018) were used to train the model, while data from
after 2019 were employed to evaluate forecasting performance. In the model,
climate variables (rainfall and average temperature) were incorporated into the
ARIMAX model based on their correlation with the mosquito biting rate, as
validated by a GC test. The coupled ARIMAX and SI-SIR model was trained on
data from 2014 to 2018 (weeks 1 to 260). To evaluate the model’s performance,
the forecasted dengue cases were compared to the actual dengue cases for weeks
261 to 273. The weekly biting rates were first predicted by the ARIMAX model
and then used by the SI-SIR model for dengue case forecasting. The SI-SIR
model was recalibrated each week with updated data to manage sharp variations
in the number of weekly dengue cases. Model performance was assessed using
MRE and MMRE between forecasted and actual dengue cases. The model
achieved an average MMRE of 20.24%, with performance declines observed
during sudden spikes in dengue cases from one week to the next. However,
performance improved over successive rounds, demonstrating the effectiveness
of incorporating more dengue and meteorological data. A similar conclusion was
derived using an extended validation window from weeks 224 to 263. Overall,
the model provided reasonable accuracy and reliability in forecasting dengue
cases in Penang, Malaysia.

Acknowledgement

This work was supported by the Fundamental Research Grant Scheme
(FRGS/1/2024/STG06/USM/02/5), Ministry of Higher Education, Malaysia.

References

[1] Chem, Y.K., Yenamandra, S.P., Chong, C.K., Mudin, R.N., Wan, M.K.,
Tajudin, N., Abu Bakar, R.S., Yamin, M.A., Yahya, R., Chang, C.-C., Koo,
C., Ng, L C. & Hapuarachchi, H.C., Molecular Epidemiology of Dengue
in Malaysia: 2015-2021, Front. Genet., 15, 1368843, 2024.

[2] Salim, N.A.M., Wah, Y.B., Reeves, C., Smith, M., Wan Yaacob, W.F.,
Mudin, R.N., Dapari, R., Sapri, N.N.F., & Haque, U., Prediction of Dengue
Outbreak in Selangor Malaysia Using Machine Learning Techniques, Sci.
Rep., 11(1), 939, 2021.

[3] Abas, N., Shamsuddin, R.M., Halim, S.A. & Osman, N., Mathematical
Modelling of Dengue Pattern in Penang, Malaysia, J. Adv. Res. Des.,
37(1), pp. 9-15, 2017.



38

(4]

[3]

(6]

[7]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

Xinyi Lu, ef al.

Morin, C.W., Comrie, A.C. & Ermnst, K., Climate and Dengue
Transmission: Evidence and Implications, Environ. Health Perspect,
121(11-12), pp. 1264-1272,2013.

Lambrechts, L., Paaijmans, K.P., Fansiri, T., Carrington, L.B., Kramer,
L.D., Thomas, M.B. & Scott, T.W., Impact of Daily Temperature
Fluctuations on Dengue Virus Transmission by Aedes aegypti, Proc. Natl.
Acad. Sci. U.S.A., 108(18), pp. 7460-7465, 2011.

Barrera, R., Amador, M. & Clark, G.G., Ecological Factors Influencing
Aedes Aegypti (Diptera: Culicidae) Productivity in Artificial Containers in
Salinas, Puerto Rico. J. Med. Entomol., 43(3), pp. 484-492, 2006.

Wong, J., Astete, H., Morrison, A.C. & Scott, T.W., Sampling
Considerations for Designing Aedes Aegypti (Diptera: Culicidae)
Oviposition Studies in Iquitos, Peru: substrate preference, diurnal
periodicity, and gonotrophic cycle length, J. Med. Entomol., 48(1), pp. 45-
52,2011.

Cheng, Q., Jing, Q., Collender, P.A., Head, J.R., Li, Q., Yu, H., Li, Z., Ju,
Y., Chen, T., Wang, P., Cleary, E., & Lai, S., Prior Water Availability
Modifies the Effect of Heavy Rainfall on Dengue Transmission: A Time
Series Analysis of Passive Surveillance Data from Southern China, Front.
Public Health, 11, 1287678, 2023.

Wang, Y., Zhao, S., Wei, Y., Li, K., Jiang, X., Li, C., Ren, C., Yin, S., Ho,
J., Ran, J., Han, L., Zee, B.C.-Y. & Chong, K.C., Impact of Climate
Change on Dengue Fever Epidemics in South and Southeast Asian
Settings: A Modelling Study, Infect. Dis. Model., 8(3), pp. 645-655, 2023.
Rahim, M.H., Dom, N.C., Ismail, S.N.S., Abd Mulud, Z., Abdullah, S. &
Pradhan, B., The Impact of Novel Coronavirus (2019-nCoV) Pandemic
Movement Control Order (MCO) on Dengue Cases in Peninsular
Malaysia, One Health, 12, 100222, 2021.

Granger, C.W.l., Investigating Causal Relations by Econometric Models
and Cross-spectral Methods, Econometrica, 37, pp. 424-438, 1969.

Lu, X., Teh, S.Y., Koh, H.L., Fam, P.S. & Tay, C.J., 4 Coupled Statistical
and Deterministic Model for Forecasting Climate-Driven Dengue
Incidence in Selangor, Malaysia, Bull. Math. Biol., 86(7), 81, 2024.
Khalid, M., Sultana, M. & Khan, F.S., Numerical Solution of SIR Model of
Dengue Fever, Int. J. Comput. Appl., 118(21), pp. 1-4, 2015.
Ramirez-Soto, M.C., Machuca, J.V.B., Stalder, D.H., Champin, D.,
Martinez-Fernandez, M.G. & Schaerer, C.E., SIR-SI Model with A
Gaussian Transmission Rate: Understanding the Dynamics of Dengue
Outbreaks in Lima, Peru, PLoS One, 18(4), €0284263, 2023.
Chathurangika, P., Perera, S.S.N. & De Silva, S.AK., Estimating
Dynamics of Dengue Disease in Colombo District of Sri Lanka with
Environmental Impact by Quantifying the Per-capita Vector Density, Sci.
Rep., 14(1), 24629, 2024.



[16]

[17]

[18]

[22]

(23]

Forecasting Climate-driven Dengue Incidence 39

Andraud, M., Hens, N., Marais, C. & Beutels, P., Dynamic
Epidemiological Models for Dengue Transmission: A Systematic Review
of Structural Approaches, PLoS One, 7(11), e49085, 2012.

Tay, C.J., Fakhruddin, M., Fauzi, 1.S., Teh, S.Y., Syamsuddin, M., Nuraini,
N. & Soewono, E., Dengue Epidemiological Characteristic in Kuala
Lumpur and Selangor, Malaysia, Math. Comput. Simul., 194, pp. 489-504,
2012.

de Lima, T.F.M., Lana, RM., de Senna Carneiro, T.G., Codeco, C.T.,
Machado, G.S., Ferreira, L.S., de Castro Medeiros, L.S., Davis Jr., C.A.
(2016). DengueME: A Tool for the Modeling and Simulation of Dengue
Spatiotemporal Dynamics, Int. J. Environ. Res. Public Health, 13(9), 920,
2016.

Derouich, M., Boutayeb, A. & Twizell, E., A Model of Dengue Fever.
Biomed, Eng. Online, 2, 4, 2003.

Alkhaldy, 1., Modelling the Association of Dengue Fever Cases with
Temperature and Relative Humidity in Jeddah, Saudi Arabia-A
Generalised Linear Model with Break-point Analysis, Acta Tropica, 168,
pp. 9-15, 2017.

Nosrat, C., Altamirano, J., Anyamba, A., Caldwell, J.M., Damoah, R.,
Mutuku, F., Ndenga, B. & LaBeaud, A.D., Impact of Recent Climate
Extremes on Mosquito-borne Disease Transmission in Kenya, PLoS Negl.
Trop. Dis., 15(3), 0009182, 2021.

Nuraini, N., Fauzi, 1.S., Fakhruddin, M., Sopaheluwakan, A. & Soewono,
E., Climate-based Dengue Model in Semarang, Indonesia: Predictions and
Descriptive Analysis, Infect. Dis. Model, 6, pp. 598-611, 2021.

WHO, Dengue: Guidelines for Diagnosis, Treatment, Prevention and
Control-WHO Geneva: new edition, World Health Organization,
https://www.who.int/publications/i/item/978924 1547871, (10 April 2024).



