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Specified Entries

Koichi Kondo

Graduate School of Science and Engineering, Doshisha University,
Tatara-Miyakodani 1-3, Kyotanabe, Kyoto 610-0394, Japan
E-mail: kokondo@mail.doshisha.ac.jp

Abstract. This paper presents an algorithm to construct a tridiagonal matrix
factored by bidiagonal matrices with prescribed eigenvalues and specified matrix
entries. The proposed algorithm addresses inverse eigenvalue problems (IEPSs)
constrained by LR decomposition. Using techniques from discrete soliton theory,
we derive recurrence relations that connect matrix entries and eigenvalues. The
algorithm systematically computes unknown entries in the matrix from given
spectrum data and partial matrix information. Several examples, including cases
with real, complex, and multiple eigenvalues, demonstrate the efficiency of the
proposed algorithm. Additionally, we provide conditions under which the
algorithm successfully solves the IEP.
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LR decomposition; tridiagonal matrix.

1 Introduction

In the direct eigenvalue problem for a given square matrix, the objective is to
determine its spectrum, which includes its eigenvalues and eigenvectors. In
contrast, an inverse eigenvalue problem (IEP) seeks to construct a matrix from a
given set of eigenvalues. Solving an IEP is trivial when the matrix is free of
structural restrictions. However, when the matrix's structure is constrained, the
problem becomes more challenging. The book by Chu and Golub in [1]
categorizes IEP using the structure of matrices and specified matrix entries.

The IEPs studied in this paper are part of a broader category that relies on specific
matrix structures and entries. Some IEPs can be solved using the traditional linear
algebra method. In contrast, others require more advanced techniques, such as
those employed in Lax dynamical systems (e.g., see the paper by Chu in [2] and
the paper by Chu and Colub in [3]). Previous works by Akaiwa et al. in [4], [5],
[6], and [7] have demonstrated how discrete soliton theory (e.g., see the papers
by Hirota in [8] and by Tsujimoto in [9]) can solve certain IEPSs, particularly those
involving band matrices with LR decomposition factored by bidiagonal matrices.
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In this paper, the matrix structure is constrained on the tridiagonal matrix called
the Jacobi matrix or operator. The IEPs for the Jacobi matrix can describe various
physical systems (see the book by Chu and Golub in [10]), such as a vibrating
beam or rod, an oscillatory mass-spring system, a composite pendulum, and
Strum-Liouville problems. The entries in the matrix obtained by solving IEPs
correspond to different physical parameters, such as stress, mass, length, etc. One
of the papers on the IEPs for the Jacobi matrix was presented by Boor and Golub
in [11]. The Jacobi matrix is also closely related to the theory of orthogonal
polynomials (see the book by Chihara in [12]).

Let us consider an m x m tridiagonal matrix A, which is factored as A = LR,
using unit lower bidiagonal matrix L and upper bidiagonal matrix R. Let the
matrices L, R and A be expressed as

: (e )
e , R=( T ®
em—l 1 \ qm/

and

x; 1

_| Yy x
A= . 2
T @

Ym-1 Xm
The form of A = LR is called an LR decomposition. The recursion relations of
the entries xy, Vi, qk, ex are
Xp=qr+te,1, k=12,...m, y.=qrer, k=12,..,m—1,
where let e, = 0.

Let uyp_q1 =qy for k=1,2,...,m, and uy, = ¢, for k =1,2,...,m—1. We
have data of the entries in 4 as

U= {ul'uZ' R uZm—l} = {ql' €1,42,€2, .., qm-1,€m-1, qm}f

and split U into two sets

Uspeciﬁed = {ulruZJ ey um—l}r Uunknown = {um'um+1l R uZm—l}-

The degrees of freedom of the entries U, Ugpecifiea aNd Uynknown are 2m — 1, m —
1 and m. Suppose that all eigenvalues A = {14, 4,, ..., 4,,} of A are prescribed.
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Note here that their order is free. If the entries Ugp..ifieq are specified, then the
remaining entries Uypknown Should be uniquely determined from Ugpecifieq and A if
they exist.

This paper aims to design an algorithm to solve this IEP using the techniques of
discrete soliton theory. We derive recurrence relations between matrix entries and
eigenvalues. The derived relations can compute unknown entries U,,xnown from
Uspeciﬁed and A.

2 Determinant Expression of the Eigenvalue Problem

We briefly show the techniques for expressing eigenproblems as determinants
and moments in the discrete soliton theory. The book by Henrici in [13] provides
proof of the following results.

Let A = A = LR and the eigenproblem of A©® be

AOVO = 2v©® j=12,.,m. 3)

Here, the m dimensional vector vj(o) is the eigenvector of A for the eigenvalue

2.

Suppose that all of 4; is nonzero, and let v(¥ = Rv(®)/4; for j = 1,2, ..., m. We
substitute A in Eq. (3) by A = LR and use v = Rv(® /;, we thus obtain
the relations

RV = 4v®, Lv® =v®, j=12,..,m. (4)

Let A® = RL. Using Egs. (4), we obtain the eigenproblem of A by
A(l)vj(l) = /1jvj(1), j=12,..,m.

Both eigenvalues of A and A are same A.

Let the eigenvectors vj(”) of A for n = 0,1 be expressed as
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(n)
2%
(n)
v.(n) = UZ J ,
]
(n)

m]

j=12,...,m, n=0,1. (5)

We substitute Eq. (5) into Egs. (4) and let v(") 0,v™ =0forj=12,..,m

m+1,j
and n = 0,1. Recalling Eg. (1), we then have the relations,

0 0 1 1 1 0
qv L(]) + vi(+)1'j = Ajvi(,j), e 1”1( )1] + v( ) = vL(J) (6)

fori =1,2,...,m, j =1,2,..,m.Eliminating v(l) and v(o) in Egs. (6), we obtain
the recursion relations,

v = (4 —ai—e)v — qiaeiv) @)
vig = — ai—e)v? — qiei_v® ®)
for i=1,2,..,m, j=1,2,..,m,respectively. Using Egs. (7), (8) for i =

1,2,..,m repeatedly, it turns out that vff)l Jj is expressed by the polynomial of 4;

of degree i with coefficients that consist of q4, e1, 95, €5, ..., q;, €; and arbitrary
constant v(")

Let qb(n)(z) for k =1,2,...,mand n = 0,1 be monic polynomials of degree k
for a variable z € C which satisfy the boundary conditions,

oW (@) =0, pM@D =1 oI (2) = det(zl, — A™) 9)

for n = 0,1, and recursion relations,

20, (2) = o @) + @, (@), k=12,..,m, (10)
0O2) = ¢ (@) + exd P (2), k=012,..,m (11)

Here, I,,, is an identity matrix of size m. Using techniques in the theory of
orthogonal polynomials (see the paper by Spiridonov and Zhedanov in [14]), the
sequences of polynomials {¢\” |k = 0,1,...} and {¢\" |k = 0,1,...} can be
proved to be orthogonal under some linear integration, respectively. The relations
(10) and (11) transform between {¢,E°)} and {¢,El)} each other, and they are called
Christoffel and Geronimus transformations, respectively.
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Suppose that vé?) satisfy

v %0, j=12,..,m, (12)

v =v™eM (1), i=01.mm+1, j=12,..m (13

for n = 0,1. We substitute Eq. (13) ati = 0,1 and m + 1 into v((,”}) =0, U1(,1;') =
vf}) and v ;= 0. We then have Egs. (9), because o (1) = det(A;6y, —
AM) =0 for j = 1,2, ..., m. We substitute Eq. (13) into Egs. (6), thus we obtain
Egs. (10), (11). Therefore, the assumption (13) is proved. If vf}) = 0 then vj(") =
0. We thus need Eqg. (12).

Let the characteristic polynomial p(z) = det(zl,, — A) = j-”zl(z — /1]-) of A be
expanded by

p(2) =z"+ a2z + a,z™ %+t ay_1Z + Ay (14)

Using the coefficients, {a,, a, ..., a;}, of p(z) in Eq. (14), we introduce the
moments F = {f,, f1, .-, fam+1} Which satisfy the linear equation,

fitaifiii+ayfio+ -+ amafiim1tamfiim=0 (15)

fori =m,m+1,..,2m + 1 with some initial values F; = {fo, f1, ) frm—1}-
Suppose that f, = 1. It follows from A, F,,;; and f, = 1 that the degree of
freedom of the moments F is 2m — 1.

We introduce the Hankel determinants r,(c”) of size k for the moments {f,}

defined by 7 = 0,7\ = 1 and

fn fn+1 fn+k—1
(M= | o Swez o Sk | p—qp  mm+1 (16)
fn+k—1 fn+k fn+2k—2

forn =0,1. Atk =m+ 1in Eq. (16), it follows from Eq. (15) thatt) =0
forn =0,1.

We introduce the Hadamard polynomials H,ﬁn) (z) of degree k for the moments
{f,} and a variable z € C defined by H™ () = 0, H{™ (2) = 1 and



An Algorithm to Construct a Tridiagonal Matrix 247

)
HP @) =22 k=12..m n=01 17)
Tk

where

fn fn+1 fn+k—1 fn+k

o) fn:l—l fn'+2 fn.+k fn+.k+1
T, (z) = : : : : . (18)
fn+k—1 fn+k fn+2k—2 fn+2k—1
1 z zk-1 zk

Note here that both H,E”)(z) and Tk(")(z) are polynomials of degree k, and

H™ (z) is monic but T (z) is not. At k = m in Egs. (17), (18), it follows from
Egs. (14), (15) that

HP () =0, j=12,..,m (19)
forn =0,1.

The determinants T(”) in Eg. (16) and Tk(")(z) in Eq. (18) satisfy some identities
such as

(n)T(n+1)( )_ (n+1)T(n)( )+ (n+1)T(n)( ) (20)
Tl(cn"'l)Tk(TL) (Z) — T](cn)Tk(n-'-l) (Z) + T]({"i)lT(n"'l)( ) (21)

which are called Jacobi’s identity and Pliicker relation, respectively. The proofs
of the determinants identities (20), (21) are written in [13] precisely. Suppose that

the Hankel determinants r(”) satisfy
t™ %0, k=12,..,m, n=01 (22)

Dividing Egs. (20), (21) by ™V or £z ™D and using Eq. (17), we
obtain the relations of H,E”) (2) by

n) r("+ )
HV @ = 0@ + I3 @), (23)
k-1
) (n+1) R (n+1)
H (Z) - H ( ) + (n)r(n+1) H ( ) (24)
k k

Comparing Egs. (9), (10), (11) with Egs. (19), (23), (24), we thus obtain the
determinant expression of gy, e; and d),ﬁ") (z) by
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T, T
W=, k=12,..,m (25)
Tk Tk-1
Tl(c(2171(cl—)1
ex = 0D k=01,..m, (26)
k "k
and
W) =H™ (), k=-101,..,m-1m (27)
forn =0,1.

The mentioned relations are the one-step mapping from the eigenvector v(® of
A©® to v of AW, We employ them to connect 4, Ugpecifiea A Uypnown 10
derive the algorithm to solve the IEP. In this paper, we do not use the mappings,

AM = [WRpM) _, g+ = p) () — J(+Dp(+D) =1, ...,

explicitly. The matrices LW, R™ and A™ are same as Egs. (1), (2) with
replacing the entries xx, Yk, qx. €x by x,E"), y, q™ | e™. The mapping
L+ DRM+1) — (™M) js called an LR transformation, and the relations of the

entries are written by

I N N T W (28)
(VA = Dl k= 12,0m -1 @)

The mapping (28)-(29) is called the qd algorithm in numerical analysis and the
discrete Toda equation in the soliton theory. Rutishauser presented the origin of
the gd algorithm in [15]. The origin of discrete soliton equations was analyzed by
Hirota (e.g., see the paper by Hirota et al. in [16]).

3 Algorithm to Construct the Matrix

We derive an algorithm to construct A with the prescribed A and the specified
entries Ugpecified-

Let op_q = ¢ for k=1,2,..,m and ¥, = ¢ for k=1,2,..,m — 1.
We introduce the sequence of the polynomials v; defined by
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¥ = {¢1le2'¢3!¢4'---'¢2m—3'¢2m—2'¢2m 1}
{qb(o) (1) 50), (€Y} (0) (€Y} ¢(0)}

2 e P P

Let m — 1 of polynomials of ¥ be ¥,ecifica = {1, Y2, ..., Ym—1} and m of the

remaining polynomials of ¥ be ¥, nown = (W Yma1s - Wam—1}- From Egs.
(10), (11), we obtain the following Algorithm 1.

Algorithm 1. According to the following procedure and using Ugpecifieq, WE €an
compute lllspeciﬁed'

1. Letp¥(2) =1, (2) = 1.
2. foreachi=1,2,..,m—1do

3. ifiisodd then

L+1

4. Compute ;(2) = °(2) = 2", (2) — qud ™, (z) with k = =2
5 else
6. Compute 1h;(2) = ¢ (2) = L (2) — ex b, (2) with ke = =
7. endif
8. enddo
We expand the polynomials ¢(") (z) and express them by
(n)(z) = zk +Z b,(g;)zk‘j, k=12 ..,m
forn = 0,1. From Egs. (17), (18) and (27), we expand the determinants in Eq.

(18) by using cofactor expansion along the last row. We then obtain the
coefficients b,((’;) of ™ by

)

(n)
b - (n) ’

j=12,.,k k=12, ..,m (30)

forn = 0,1, where A,((”_)j is the (k + 1,k — j + 1) cofactor of the determinant in
Eq. (18). The coefficient (30) is the same as the solution of the linear equation



250 Koichi Kondo

b(n)
fn fn+1 fn+k—1 fn+k ke.ke 0
foer  faez fn+k fn+k+1 b,(g;() 1 0
: : = E (31)
frnik—1 fask fn+2k 2 fn+2k 1/\ b(n) /
0 0

by using the Cramer formula and Eqg. (16). The linear equation (31) is rewritten
as

fasteri + Zfer b fassrioj =0 1= 012,k =1 (32)

forn=01, k=12,..,m At (n,i) =0,k —1),(1,k —1) in Eq. (32), we
obtain the relations

Foreey = —Zﬁlb@ for-1-jp k=12,...m, (33)
fore == Z¥ b oy k=12,..,m. (34)

Let m — 1 of the moments of F be Fyecifiea = {f1) -+ fm—-1}- From Egs. (33),
(34), we obtain the following Algorithm 2.

Algorithm 2. According to the following procedure and using the coefficients
b(n) of ¢,§n> iN Wypecified, WE CaN COMpUte Fypecified-

2. foreachi=1,2,..,m—1do

1+

3. Compute f; = —Z?":lb(o)fl _jwithk = 71 if i is odd.

4. Compute f; = —¥¥_ b(l)fl _j with k —% if i is even.

5. enddo

Let m of the moments of F be F,ynown = Um fins1s -0 fam—1}- From Eq. (15),
we obtain the following Algorithm 3.
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Algorithm 3. According to the following procedure and using f, = 1, Fypecified
and the coefficients {a,,a,,...,ay} in Eq. (14) form A, we can compute
Funknown-

1. foreachi=m,m+1,..,2m—1do
2. Compute f; = =YL a; fi_j-
3. enddo

We recall that 7 =1V = 1,79 = f;=1, and 79, =), = 0. Let
Oonez =T and opp_q =70 for k=0,1,..,m+1. We introduce the

sequence of the Hankel determinants T,((") defined by

X =1{0_3,0_1,00,01,02,03, ..., 02m_2,02m-1,02ms O2m+1}
_ @ (0 (D 0 (D
={L11,7,7°,75 LTy, s Ty » T » 0,0}

The Hankel determinant o; can be computed by Eq. (16) from {f,, f1, ..., fi} for
i =12,...2m+ 1. We substitute '* = g,_, and " = 0, in Egs. (25),

(26). From uyp_q = qi, Uy, = ey, We thus have relations

W =Uppoq = Qg = =23 j=2k—-1, k=12,..,m, (35)

0i-10i-2
ui=u2k=ek=%, i=2k, k=12,..,m—1. (36)
i-10i-2
The members g; of X to express Egs. (35), (36) for all members of Ugpifieq are
Zopecified = {0-2,0_1, 00,01, .., Op_1 }. Similarly, the members for Uyynown are
Zinknown = {Om—3, Om—2, -, Oam—1}- From Egs. (16), (35)-(36), we obtain the
following Algorithm 4.

Algorithm 4. According to the following procedure and using fo = 1, Fypecified
and F,pinown, We can compute Uynown 1f the procedure does not abort.

1. foreachi=m—-3,m—2,..,2m—1do
2. Compute o; = T with k = % by Eqg. (16) if i is odd.

3. Compute o; = 7% with k = % by Eqg. (16) if i is even.
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4. if g; = 0 then this procedure abort.
5. enddo

6. foreachi=mm+1,..,2m—1do
7. Compute u; = q; with k = = by Eq. (35) if i is odd.
8. Compute u; = e, with k = %by Eq. (36) if i is even.

9. enddo

Algorithms 1-3 can finish successfully under any A, Ugecifica- HOWEVeT,
Algorithm 4 has two cases in which it either finishes successfully or aborts
because of the division by 0. In Algorithm 4, we need the conditions (22) for
expressing all of gy, e, as Egs. (25), (26). Therefore, we need the condition of all
qkioandekio.

As a result, we proved the following Theorem 1.

Theorem 1. If Algorithm 4 finishes successfully, then Algorithms 1-4 can
compute A = LR under the condition of all q;, # 0, e, # 0 from the prescribed
eigenvalues A and the specified entries Uspecisieq. If Algorithm 4 aborts, then there

does not exist A = LR under the condition of all g, # 0, e, # 0.

4 Examples

We demonstrate the proposed algorithm’s efficiency by showing some examples,
including cases with real, complex, and multiple eigenvalues. We also include a
case for the algorithm that does not solve the IEP.

We consider 4 x 4 matrix A = LR be expressed by

1 0 0 0 ¢ 1 0 0
[e 1 0 0 [0 ¢ 1 o0
L=10 e 1 o) B5l0 0 ¢ 1/

0 0 e 1 0 0 0 q,
@ 1 0 0
A=LR=| & 2+ e 1 0

0 4262 qzte; 1
0 0 qze3 (s tes3
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Using the proposed Algorithms 1-4, we solve the IEP with the prescribed
eigenvalues A = {14,4,,13,4,} of A and the specified entries Ugyecifica =
{uy,u,,u3} = {q4, €1, g2} to obtain unknown entries

Uunknown = {U4, Us, Ug, U7} = {€2,q3, €3, q4}-
Letm =4 and
0 0
P =" =z+bT, Y=Y =z+b,
0 0 0
Y3 =5 =22+ b0z + by,
Fspeciﬁed = {fl' f2' f3}' Funknown = {f4-' fS' f6' f7}'

p(2) =(@zZ—21)(z—A) =z*+a,2° + a,z* + azz + a,,

1) _(0) (1) (0 (1 (0 _(1
2 unknown = 101,02, -, 07} = {Ti ),Tg ),Tg ),T?E ),Tg ),Ti ),Ti )}.

The results of examples are as follows.

4.1  Case 1: Real and Single Eigenvalues
Inputs: A = {1,2,3,4}, Uspecified = {2,1,3}.

Algorithm 1: ¢, =z — 2,9, = z— 3 and 3 = z2 — 62 + 6.
Algorithm 2: fo = 1, Fyecified = {2,6,243.
Algorithm 3:

p(2) = z* — 1023 + 3522 — 50z + 24,

Fnknown = {106,472,2066,8864}.
Algorithm 4:

Zunknown = {2'2'12; —4,—-104,-32, —768},

Uunknown = {

Output: Successfully, the tridiagonal matrix A = LR with A and Ugycifieq 1S
computed by

1 13 12 12}
3’37 13’13)°
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1 0 0 O0/2 1 0 0 > 1 0 o
1 1 0 o\fo3 1 o0 29
— 1 13 _
A=10 -5 1 0110 0 = 1=y 4 4 1
\00—1—21/\0001_2 0 0 —4 0
13 13

4.2  Case 2: Complex and Multiple Eigenvalues
Inputs: A ={1+i,1+i,1—1i,1— i}, Upeciiea = {2.1,3}.
Algorithm 1: ¢, = z— 2,9, = z— 3 and 5 = z2 — 62 + 6.
Algorithm 2: fo = 1, Fypecified = {2,6,24}

Algorithm 3:

p(z) =z*— 423+ 822 - 82z+4, Fmown = {60,88,40,—160}.
Algorithm 4:

2 nknown = 12,2,12,—96,—2688,25600,102400},

14 25 1
U ={-82.2}
unknown 1372177

Output: Successfully, the tridiagonal matrix A = LR with A and Ugpcifieq 1S
computed by

1 0 o0 o /2100 2 1 0 0

1 1 o0 o\[0 3 1 0 2 4 1 0

A=o—81000§1=0—24—§1
25

0 0 7 1/\0 0 o 2 o o X ¢

7 9 3

4.3 Case 3: Nonexistent
Inputs: A = {1,2,3,4}, Ugpecifiea = {1, —1,2}.

Algorithm 1: ¢, =z — 1,9, = zand 3 = z2 — 2z + 2.
Algorithm 2: fo = 1, Fopecifiea = 11,0, =2}
Algorithm 3: p(z) = z* — 1023 + 3522 — 50z + 24,

Funknown = {6:106;750,4138}
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Algorithm 4:

Zunknown = {1; _1; _2: _10: _240’0’0}1 Uunknown = {_5112101*}-

* indi - _ 304 _ 010
The symbol ‘*’ indicates failure to compute q, = oo — 0.(=240)"
Output: The tridiagonal matrix A = LR with A and Uyccifieq d0€S NOt eXist under

the condition of all g, # 0 and e, # 0.

5 Conclusion

This paper presents an algorithm for constructing a tridiagonal matrix factored by
bidiagonal matrices based on a given set of eigenvalues and specified matrix
entries. We derive recurrence relations connecting the eigenvalues to the
unknown matrix entries using the discrete soliton theory. The algorithm was
tested on examples, including real, complex, and multiple eigenvalue cases,
demonstrating its efficiency and applicability to different IEP scenarios. Future
work could explore extending this approach to other classes of band matrices and
further generalizing the problem.
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