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Abstract. This paper presents an algorithm to construct a tridiagonal matrix 

factored by bidiagonal matrices with prescribed eigenvalues and specified matrix 

entries. The proposed algorithm addresses inverse eigenvalue problems (IEPs) 

constrained by LR decomposition. Using techniques from discrete soliton theory, 

we derive recurrence relations that connect matrix entries and eigenvalues. The 

algorithm systematically computes unknown entries in the matrix from given 

spectrum data and partial matrix information. Several examples, including cases 

with real, complex, and multiple eigenvalues, demonstrate the efficiency of the 

proposed algorithm. Additionally, we provide conditions under which the 

algorithm successfully solves the IEP. 
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1 Introduction 

In the direct eigenvalue problem for a given square matrix, the objective is to 

determine its spectrum, which includes its eigenvalues and eigenvectors. In 

contrast, an inverse eigenvalue problem (IEP) seeks to construct a matrix from a 

given set of eigenvalues. Solving an IEP is trivial when the matrix is free of 

structural restrictions. However, when the matrix's structure is constrained, the 

problem becomes more challenging. The book by Chu and Golub in [1]   

categorizes IEP using the structure of matrices and specified matrix entries. 

The IEPs studied in this paper are part of a broader category that relies on specific 

matrix structures and entries. Some IEPs can be solved using the traditional linear 

algebra method. In contrast, others require more advanced techniques, such as 

those employed in Lax dynamical systems (e.g., see the paper by Chu in [2] and 

the paper by Chu and Colub in [3]). Previous works by Akaiwa et al. in [4], [5], 

[6], and [7] have demonstrated how discrete soliton theory (e.g., see the papers 

by Hirota in [8] and by Tsujimoto in [9]) can solve certain IEPs, particularly those 

involving band matrices with LR decomposition factored by bidiagonal matrices. 
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In this paper, the matrix structure is constrained on the tridiagonal matrix called 

the Jacobi matrix or operator. The IEPs for the Jacobi matrix can describe various 

physical systems (see the book by Chu and Golub in [10]), such as a vibrating 

beam or rod, an oscillatory mass-spring system, a composite pendulum, and 

Strum–Liouville problems. The entries in the matrix obtained by solving IEPs 

correspond to different physical parameters, such as stress, mass, length, etc. One 

of the papers on the IEPs for the Jacobi matrix was presented by Boor and Golub 

in [11]. The Jacobi matrix is also closely related to the theory of orthogonal 

polynomials (see the book by Chihara in [12]). 

Let us consider an 𝑚 ×𝑚 tridiagonal matrix 𝐴, which is factored as  𝐴 = 𝐿𝑅, 
using unit lower bidiagonal matrix 𝐿  and upper bidiagonal matrix 𝑅.  Let the 

matrices 𝐿, 𝑅 and 𝐴 be expressed as 

 𝐿 = (

1
𝑒1 1

⋱ ⋱
𝑒𝑚−1 1

) , 𝑅 =

(

 

𝑞1 1

𝑞2 ⋱

⋱ 1
𝑞𝑚)

  (1) 

and 

 𝐴 =

(

 

𝑥1 1

𝑦1 𝑥2 ⋱

⋱ ⋱ 1
𝑦𝑚−1 𝑥𝑚)

 . (2) 

The form of 𝐴 = 𝐿𝑅 is called an LR decomposition. The recursion relations of 

the entries 𝑥𝑘 , 𝑦𝑘 , 𝑞𝑘 , 𝑒𝑘 are 

 𝑥𝑘 = 𝑞𝑘 + 𝑒𝑘−1,    𝑘 = 1,2, … ,𝑚,      𝑦𝑘 = 𝑞𝑘𝑒𝑘,    𝑘 = 1,2, … ,𝑚 − 1, 

where let 𝑒0 = 0. 

Let 𝑢2𝑘−1 = 𝑞𝑘  for 𝑘 = 1,2,… ,𝑚,  and 𝑢2𝑘 = 𝑒𝑘  for 𝑘 = 1,2,… ,𝑚 − 1.  We 

have data of the entries in 𝐴 as 

 𝑈 = {𝑢1, 𝑢2, … , 𝑢2𝑚−1} = {𝑞1, 𝑒1, 𝑞2, 𝑒2, … , 𝑞𝑚−1, 𝑒𝑚−1, 𝑞𝑚}, 

and split 𝑈 into two sets  

 𝑈specified = {𝑢1, 𝑢2, … , 𝑢𝑚−1},     𝑈unknown = {𝑢𝑚, 𝑢𝑚+1, … , 𝑢2𝑚−1}.  

The degrees of freedom of the entries 𝑈, 𝑈specified and 𝑈unknown are 2𝑚 − 1, 𝑚 −

1 and 𝑚.  Suppose that all eigenvalues 𝛬 = {𝜆1, 𝜆2, … , 𝜆𝑚} of 𝐴 are prescribed. 
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Note here that their order is free. If the entries 𝑈specified are specified, then the 

remaining entries 𝑈unknown should be uniquely determined from 𝑈specified and 𝛬 if 

they exist. 

This paper aims to design an algorithm to solve this IEP using the techniques of 

discrete soliton theory. We derive recurrence relations between matrix entries and 

eigenvalues. The derived relations can compute unknown entries 𝑈unknown from 

𝑈specified and 𝛬. 

2 Determinant Expression of the Eigenvalue Problem 

We briefly show the techniques for expressing eigenproblems as determinants 

and moments in the discrete soliton theory. The book by Henrici in [13] provides 

proof of the following results. 

Let 𝐴(0) = 𝐴 = 𝐿𝑅 and the eigenproblem of 𝐴(0) be 

 𝐴(0)𝐯𝑗
(0)
= 𝜆𝑗𝐯𝑗

(0)
, 𝑗 = 1,2,… ,𝑚. (3) 

Here, the 𝑚 dimensional vector 𝐯𝑗
(0)

 is the eigenvector of 𝐴(0) for the eigenvalue 

𝜆𝑗. 

Suppose that all of 𝜆𝑗 is nonzero, and let 𝐯(1) = 𝑅𝐯(0)/𝜆𝑗 for 𝑗 = 1,2,… ,𝑚. We 

substitute 𝐴(0) in Eq. (3) by 𝐴(0) = 𝐿𝑅 and use 𝐯(1) = 𝑅𝐯(0)/𝜆𝑗, we thus obtain 

the relations 

 𝑅𝐯𝑗
(0) = 𝜆𝑗𝐯

(1), 𝐿𝐯𝑗
(1) = 𝐯𝑗

(0), 𝑗 = 1,2,… ,𝑚. (4) 

Let 𝐴(1) = 𝑅𝐿. Using Eqs. (4), we obtain the eigenproblem of 𝐴(1) by 

𝐴(1)𝐯𝑗
(1) = 𝜆𝑗𝐯𝑗

(1), 𝑗 = 1,2,… ,𝑚. 

Both eigenvalues of 𝐴(0) and 𝐴(1) are same 𝛬. 

Let the eigenvectors 𝐯𝑗
(𝑛)

 of 𝐴(𝑛) for 𝑛 = 0,1 be expressed as 
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 𝐯𝑗
(𝑛) =

(

  
 

𝑣1,𝑗
(𝑛)

𝑣2,𝑗
(𝑛)

⋮

𝑣𝑚,𝑗
(𝑛)
)

  
 
, 𝑗 = 1,2,… ,𝑚, 𝑛 = 0,1. (5) 

We substitute Eq. (5) into Eqs. (4) and let 𝑣0,𝑗
(𝑛) = 0, 𝑣𝑚+1,𝑗

(𝑛) = 0 for 𝑗 = 1,2,… ,𝑚 

and 𝑛 = 0,1. Recalling Eq. (1), we then have the relations, 

 𝑞𝑖𝑣𝑖,𝑗
(0)
+ 𝑣𝑖+1,𝑗

(0)
= 𝜆𝑗𝑣𝑖,𝑗

(1)
, 𝑒𝑖−1𝑣𝑖−1,𝑗

(1)
+ 𝑣𝑖,𝑗

(1)
= 𝑣𝑖,𝑗

(0)
  (6) 

for 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… ,𝑚.Eliminating 𝑣𝑖,𝑗
(1)

 and 𝑣𝑖,𝑗
(0)

 in Eqs. (6), we obtain 

the recursion relations, 

 𝑣𝑖+1,𝑗
(0) = (𝜆𝑗 − 𝑞𝑖 − 𝑒𝑖−1)𝑣𝑖,𝑗

(0) − 𝑞𝑖−1𝑒𝑖−1𝑣𝑖−1,𝑗
(0) , (7) 

 𝑣𝑖+1,𝑗
(1) = (𝜆𝑗 − 𝑞𝑖 − 𝑒𝑖)𝑣𝑖,𝑗

(1) − 𝑞𝑖𝑒𝑖−1𝑣𝑖−1,𝑗
(1)

 (8) 

for 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2,… ,𝑚, respectively. Using Eqs. (7), (8) for 𝑖 =

1,2,… ,𝑚 repeatedly, it turns out that 𝑣𝑖+1,𝑗
(𝑛)

 is expressed by the polynomial of 𝜆𝑗 

of degree 𝑖 with coefficients that consist of 𝑞1, 𝑒1, 𝑞2, 𝑒2, … , 𝑞𝑖, 𝑒𝑖  and arbitrary 

constant 𝑣1,𝑗
(𝑛). 

Let 𝜙𝑘
(𝑛)(𝑧) for 𝑘 = 1,2, … ,𝑚 and 𝑛 = 0,1 be monic polynomials of degree 𝑘 

for a variable 𝑧 ∈ ℂ which satisfy the boundary conditions, 

 𝜙−1
(𝑛)(𝑧) = 0, 𝜙0

(𝑛)(𝑧) = 1, 𝜙𝑚
(𝑛)(𝑧) = det(𝑧𝐼𝑚 − 𝐴

(𝑛)) (9) 

for 𝑛 = 0,1, and recursion relations, 

 𝑧𝜙𝑘−1
(1) (𝑧) = 𝜙𝑘

(0)(𝑧) + 𝑞𝑘𝜙𝑘−1
(0) (𝑧), 𝑘 = 1,2,… ,𝑚, (10) 

 𝜙𝑘
(0)(𝑧) = 𝜙𝑘

(1)(𝑧) + 𝑒𝑘𝜙𝑘−1
(1) (𝑧), 𝑘 = 0,1,2,… ,𝑚. (11) 

Here, 𝐼𝑚  is an identity matrix of size 𝑚 . Using techniques in the theory of 

orthogonal polynomials (see the paper by Spiridonov and Zhedanov in [14]), the 

sequences of polynomials {𝜙𝑘
(0) | 𝑘 = 0,1,… }  and {𝜙𝑘

(1) | 𝑘 = 0,1,… }  can be 

proved to be orthogonal under some linear integration, respectively. The relations 

(10) and (11) transform between {𝜙𝑘
(0)} and {𝜙𝑘

(1)} each other, and they are called 

Christoffel and Geronimus transformations, respectively. 
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Suppose that 𝑣𝑖,𝑗
(𝑛)

 satisfy 

 𝑣1,𝑗
(𝑛)
≠ 0, 𝑗 = 1,2,… ,𝑚, (12) 

 𝑣𝑖,𝑗
(𝑛)
= 𝑣1,𝑗

(𝑛)
𝜙𝑖−1
(𝑛)
(𝜆𝑗), 𝑖 = 0,1,… ,𝑚,𝑚 + 1, 𝑗 = 1,2,… ,𝑚 (13) 

for 𝑛 = 0,1. We substitute Eq. (13) at 𝑖 = 0,1 and 𝑚 + 1 into 𝑣0,𝑗
(𝑛)
= 0, 𝑣1,𝑗

(𝑛)
=

𝑣1,𝑗
(𝑛)

 and 𝑣𝑚+1,𝑗
(𝑛)

= 0. We then have Eqs. (9), because 𝜙𝑚
(𝑛)
(𝜆𝑗) = det(𝜆𝑗𝐼𝑚 −

𝐴(𝑛)) = 0 for 𝑗 = 1,2,… ,𝑚. We substitute Eq. (13) into Eqs. (6), thus we obtain 

Eqs. (10), (11). Therefore, the assumption (13) is proved. If 𝑣1,𝑗
(𝑛)
= 0 then 𝐯𝑗

(𝑛)
=

𝟎. We thus need Eq. (12). 

Let the characteristic polynomial 𝑝(𝑧) = det(𝑧𝐼𝑚 − 𝐴) = ∏ (𝑧 − 𝜆𝑗)
𝑚
𝑗=1  of 𝐴 be 

expanded by 

 𝑝(𝑧) = 𝑧𝑚 + 𝑎1𝑧
𝑚−1 + 𝑎2𝑧

𝑚−2 +⋯+ 𝑎𝑚−1𝑧 + 𝑎𝑚. (14) 

Using the coefficients, {𝑎1, 𝑎2, … , 𝑎𝑚}, of 𝑝(𝑧) in Eq. (14), we introduce the 

moments 𝐹 = {𝑓0, 𝑓1, … , 𝑓2𝑚+1} which satisfy the linear equation, 

 𝑓𝑖 + 𝑎1𝑓𝑖−1 + 𝑎2𝑓𝑖−2 +⋯+ 𝑎𝑚−1𝑓𝑖−𝑚−1 + 𝑎𝑚𝑓𝑖−𝑚 = 0 (15) 

for 𝑖 = 𝑚,𝑚 + 1,… ,2𝑚 + 1 with some initial values 𝐹init = {𝑓0, 𝑓1, … , 𝑓𝑚−1}. 
Suppose that 𝑓0 = 1.  It follows from 𝛬, 𝐹init  and 𝑓0 = 1  that the degree of 

freedom of the moments 𝐹 is 2𝑚 − 1. 

We introduce the Hankel determinants 𝜏𝑘
(𝑛)

 of size 𝑘  for the moments {𝑓𝑛} 

defined by 𝜏−1
(𝑛) = 0, 𝜏0

(𝑛) = 1 and 

 𝜏𝑘
(𝑛) =

∣
∣
∣
∣
∣
∣ 𝑓𝑛 𝑓𝑛+1 ⋯ 𝑓𝑛+𝑘−1
𝑓𝑛+1 𝑓𝑛+2 ⋯ 𝑓𝑛+𝑘
⋮ ⋮ ⋱ ⋮

𝑓𝑛+𝑘−1 𝑓𝑛+𝑘 ⋯ 𝑓𝑛+2𝑘−2∣
∣
∣
∣
∣
∣

,    𝑘 = 1,2,… ,𝑚,𝑚 + 1 (16) 

for 𝑛 = 0,1. At 𝑘 = 𝑚 + 1 in Eq. (16), it follows from Eq. (15) that 𝜏𝑚+1
(𝑛)

= 0 

for 𝑛 = 0,1. 

We introduce the Hadamard polynomials 𝐻𝑘
(𝑛)(𝑧) of degree 𝑘 for the moments 

{𝑓𝑛} and a variable 𝑧 ∈ ℂ defined by 𝐻−1
(𝑛)(𝑧) = 0,𝐻0

(𝑛)(𝑧) = 1 and 



 An Algorithm to Construct a Tridiagonal Matrix 247 

 

 𝐻𝑘
(𝑛)(𝑧) =

𝑇𝑘
(𝑛)(𝑧)

𝜏𝑘
(𝑛) , 𝑘 = 1,2,… ,𝑚, 𝑛 = 0,1, (17) 

where 

 𝑇𝑘
(𝑛)(𝑧) =

∣
∣
∣
∣
∣
∣
∣
∣ 𝑓𝑛 𝑓𝑛+1 ⋯ 𝑓𝑛+𝑘−1 𝑓𝑛+𝑘
𝑓𝑛+1 𝑓𝑛+2 ⋯ 𝑓𝑛+𝑘 𝑓𝑛+𝑘+1
⋮ ⋮ ⋱ ⋮ ⋮

𝑓𝑛+𝑘−1 𝑓𝑛+𝑘 ⋯ 𝑓𝑛+2𝑘−2 𝑓𝑛+2𝑘−1
1 𝑧 ⋯ 𝑧𝑘−1 𝑧𝑘 ∣

∣
∣
∣
∣
∣
∣
∣

. (18) 

Note here that both 𝐻𝑘
(𝑛)(𝑧)  and 𝑇𝑘

(𝑛)(𝑧)  are polynomials of degree 𝑘,  and 

𝐻𝑘
(𝑛)(𝑧) is monic but 𝑇𝑘

(𝑛)(𝑧) is not. At 𝑘 = 𝑚 in Eqs. (17), (18), it follows from 

Eqs. (14), (15) that 

 𝐻𝑚
(𝑛)
(𝜆𝑗) = 0, 𝑗 = 1,2,… ,𝑚 (19) 

for 𝑛 = 0,1. 

The determinants 𝜏𝑘
(𝑛)

 in Eq. (16) and 𝑇𝑘
(𝑛)(𝑧) in Eq. (18) satisfy some identities 

such as 

 𝑧𝜏𝑘
(𝑛)𝑇𝑘−1

(𝑛+1)(𝑧) = 𝜏𝑘−1
(𝑛+1)𝑇𝑘

(𝑛)(𝑧) + 𝜏𝑘
(𝑛+1)𝑇𝑘−1

(𝑛) (𝑧), (20) 

 𝜏𝑘
(𝑛+1)𝑇𝑘

(𝑛)(𝑧) = 𝜏𝑘
(𝑛)𝑇𝑘

(𝑛+1)(𝑧) + 𝜏𝑘+1
(𝑛) 𝑇𝑘−1

(𝑛+1)(𝑧), (21) 

which are called Jacobi’s identity and Plücker relation, respectively. The proofs 

of the determinants identities (20), (21) are written in [13] precisely. Suppose that 

the Hankel determinants 𝜏𝑘
(𝑛)

 satisfy 

 𝜏𝑘
(𝑛) ≠ 0, 𝑘 = 1,2, … ,𝑚, 𝑛 = 0,1. (22) 

Dividing Eqs. (20), (21) by 𝜏𝑘
(𝑛)𝜏𝑘−1

(𝑛+1)
 or 𝜏𝑘

(𝑛)𝜏𝑘
(𝑛+1)

 and using Eq. (17), we 

obtain the relations of 𝐻𝑘
(𝑛)(𝑧) by 

 𝑧𝐻𝑘−1
(𝑛+1)(𝑧) = 𝐻𝑘

(𝑛)(𝑧) +
𝜏𝑘−1
(𝑛)

𝜏𝑘
(𝑛+1)

𝜏𝑘
(𝑛)
𝜏𝑘−1
(𝑛+1) 𝐻𝑘−1

(𝑛) (𝑧), (23) 

 𝐻𝑘
(𝑛)(𝑧) = 𝐻𝑘

(𝑛+1)(𝑧) +
𝜏𝑘+1
(𝑛)

𝜏𝑘−1
(𝑛+1)

𝜏𝑘
(𝑛)
𝜏𝑘
(𝑛+1) 𝐻𝑘−1

(𝑛+1)(𝑧). (24) 

Comparing Eqs. (9), (10), (11) with Eqs. (19), (23), (24), we thus obtain the 

determinant expression of 𝑞𝑘 , 𝑒𝑘 and 𝜙𝑘
(𝑛)(𝑧) by 
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 𝑞𝑘 =
𝜏𝑘−1
(0)

𝜏𝑘
(1)

𝜏𝑘
(0)
𝜏𝑘−1
(1) , 𝑘 = 1,2,… ,𝑚, (25) 

 𝑒𝑘 =
𝜏𝑘+1
(0)

𝜏𝑘−1
(1)

𝜏𝑘
(0)
𝜏𝑘
(1) , 𝑘 = 0,1,… ,𝑚, (26) 

and 

 𝜙𝑘
(𝑛)(𝑧) = 𝐻𝑘

(𝑛)(𝑧), 𝑘 = −1,0,1,… ,𝑚 − 1,𝑚 (27) 

for 𝑛 = 0,1. 

The mentioned relations are the one-step mapping from the eigenvector 𝐯(0) of 

𝐴(0)  to 𝐯(1)  of 𝐴(1).  We employ them to connect 𝛬,𝑈specified  and 𝑈unknown  to 

derive the algorithm to solve the IEP. In this paper, we do not use the mappings, 

 𝐴(𝑛) = 𝐿(𝑛)𝑅(𝑛) → 𝐴(𝑛+1) = 𝑅(𝑛)𝐿(𝑛) = 𝐿(𝑛+1)𝑅(𝑛+1), 𝑛 = 0,1,… , 

explicitly. The matrices 𝐿(𝑛), 𝑅(𝑛)  and 𝐴(𝑛)  are same as Eqs. (1), (2) with 

replacing the entries 𝑥𝑘 , 𝑦𝑘 , 𝑞𝑘 , 𝑒𝑘  by 𝑥𝑘
(𝑛)

, 𝑦𝑘
(𝑛)

, 𝑞𝑘
(𝑛)

, 𝑒𝑘
(𝑛).  The mapping 

𝐿(𝑛+1)𝑅(𝑛+1) = 𝑅(𝑛)𝐿(𝑛) is called an LR transformation, and the relations of the 

entries are written by 

 𝑞𝑘
(𝑛+1) + 𝑒𝑘−1

(𝑛+1) = 𝑞𝑘
(𝑛) + 𝑒𝑘

(𝑛), 𝑘 = 1,2,… ,𝑚, (28) 

 𝑞𝑘
(𝑛+1)𝑒𝑘

(𝑛+1) = 𝑞𝑘+1
(𝑛) 𝑒𝑘

(𝑛), 𝑘 = 1,2, … ,𝑚 − 1. (29) 

The mapping (28)-(29) is called the qd algorithm in numerical analysis and the 

discrete Toda equation in the soliton theory. Rutishauser presented the origin of 

the qd algorithm in [15]. The origin of discrete soliton equations was analyzed by 

Hirota (e.g., see the paper by Hirota et al. in [16]). 

3 Algorithm to Construct the Matrix 

We derive an algorithm to construct 𝐴 with the prescribed 𝛬 and the specified 

entries 𝑈specified. 

Let 𝜓2𝑘−1 = 𝜙𝑘
(0)

 for 𝑘 = 1,2, … ,𝑚  and 𝜓2𝑘 = 𝜙𝑘
(1)

 for 𝑘 = 1,2,… ,𝑚 − 1. 
We introduce the sequence of the polynomials 𝜓𝑖 defined by 
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𝛹 = {𝜓1, 𝜓2, 𝜓3, 𝜓4, … , 𝜓2𝑚−3, 𝜓2𝑚−2, 𝜓2𝑚−1}

= {𝜙1
(0)
, 𝜙1
(1)
, 𝜙2
(0)
, 𝜙2
(1)
, … , 𝜙𝑚−1

(0)
, 𝜙𝑚−1
(1)

, 𝜙𝑚
(0)
}.

 

Let 𝑚 − 1 of polynomials of 𝛹 be 𝛹specified = {𝜓1, 𝜓2, … , 𝜓𝑚−1} and 𝑚 of the 

remaining polynomials of 𝛹 be 𝛹unknown = {𝜓𝑚, 𝜓𝑚+1, … , 𝜓2𝑚−1}. From Eqs. 

(10), (11), we obtain the following Algorithm 1. 

Algorithm 1.  According to the following procedure and using 𝑈specified, we can 

compute 𝛹specified. 

1. Let 𝜙0
(0)(𝑧) = 1, 𝜙0

(1)(𝑧) = 1. 

2. foreach 𝑖 = 1,2,… ,𝑚 − 1 do 

3.   if 𝑖 is odd then 

4.     Compute 𝜓𝑖(𝑧) = 𝜙𝑘
(0)(𝑧) = 𝑧𝜙𝑘−1

(1) (𝑧) − 𝑞𝑘𝜙𝑘−1
(0) (𝑧) with 𝑘 =

𝑖+1

2
. 

5.   else 

6.     Compute 𝜓𝑖(𝑧) = 𝜙𝑘
(1)(𝑧) = 𝜙𝑘

(0)(𝑧) − 𝑒𝑘𝜙𝑘−1
(1) (𝑧) with 𝑘 =

𝑖

2
. 

7.   endif 

8. enddo 

We expand the polynomials 𝜙𝑘
(𝑛)(𝑧) and express them by 

 𝜙𝑘
(𝑛)(𝑧) = 𝑧𝑘 +∑ 𝑏𝑘,𝑗

(𝑛)𝑘
𝑗=1 𝑧𝑘−𝑗, 𝑘 = 1,2,… ,𝑚 

for 𝑛 = 0,1. From Eqs. (17), (18) and (27), we expand the determinants in Eq. 

(18) by using cofactor expansion along the last row. We then obtain the 

coefficients 𝑏𝑘,𝑗
(𝑛)

 of 𝜙𝑘
(𝑛)

 by 

 𝑏𝑘,𝑗
(𝑛) =

𝛥𝑘−𝑗
(𝑛)

𝜏𝑘
(𝑛) , 𝑗 = 1,2,… , 𝑘, 𝑘 = 1,2, … ,𝑚 (30) 

for 𝑛 = 0,1, where 𝛥𝑘−𝑗
(𝑛)

 is the (𝑘 + 1, 𝑘 − 𝑗 + 1) cofactor of the determinant in 

Eq. (18). The coefficient (30) is the same as the solution of the linear equation 
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(

 
 

𝑓𝑛 𝑓𝑛+1 ⋯ 𝑓𝑛+𝑘−1 𝑓𝑛+𝑘
𝑓𝑛+1 𝑓𝑛+2 ⋯ 𝑓𝑛+𝑘 𝑓𝑛+𝑘+1
⋮ ⋮ ⋱ ⋮ ⋮

𝑓𝑛+𝑘−1 𝑓𝑛+𝑘 ⋯ 𝑓𝑛+2𝑘−2 𝑓𝑛+2𝑘−1
0 0 ⋯ 0 1 )

 
 

(

 
 
 

𝑏𝑘,𝑘
(𝑛)

𝑏𝑘,𝑘−1
(𝑛)

⋮

𝑏𝑘,1
(𝑛)

1 )

 
 
 
=

(

 
 

0
0
⋮
0
1)

 
 

 (31) 

by using the Cramer formula and Eq. (16). The linear equation (31) is rewritten 

as 

 𝑓𝑛+𝑘+𝑖 +∑ 𝑏𝑘,𝑗
(𝑛)𝑘

𝑗=1 𝑓𝑛+𝑘+𝑖−𝑗 = 0, 𝑖 = 0,1,2,… , 𝑘 − 1 (32) 

for 𝑛 = 0,1,  𝑘 = 1,2,… ,𝑚.  At (𝑛, 𝑖) = (0, 𝑘 − 1), (1, 𝑘 − 1)  in Eq. (32), we 

obtain the relations 

 𝑓2𝑘−1 = −∑ 𝑏𝑘,𝑗
(0)𝑘

𝑗=1 𝑓2𝑘−1−𝑗, 𝑘 = 1,2, … ,𝑚, (33) 

 𝑓2𝑘 = −∑ 𝑏𝑘,𝑗
(1)𝑘

𝑗=1 𝑓2𝑘−𝑗, 𝑘 = 1,2, … ,𝑚. (34) 

Let 𝑚 − 1  of the moments of 𝐹  be 𝐹specified = {𝑓1, … , 𝑓𝑚−1}.  From Eqs. (33), 

(34), we obtain the following Algorithm 2. 

Algorithm 2.  According to the following procedure and using the coefficients 

𝑏𝑘,𝑗
(𝑛)

 of 𝜙𝑘
(𝑛)

 in 𝛹specified, we can compute 𝐹specified. 

1. Let 𝑓0 = 1. 

2. foreach 𝑖 = 1,2,… ,𝑚 − 1 do 

3.     Compute 𝑓𝑖 = −∑ 𝑏𝑘,𝑗
(0)𝑘

𝑗=1 𝑓𝑖−𝑗 with 𝑘 =
𝑖+1

2
  if 𝑖 is odd. 

4.     Compute 𝑓𝑖 = −∑ 𝑏𝑘,𝑗
(1)𝑘

𝑗=1 𝑓𝑖−𝑗 with 𝑘 =
𝑖

2
  if 𝑖 is even. 

5. enddo 

Let 𝑚 of the moments of 𝐹 be 𝐹unknown = {𝑓𝑚, 𝑓𝑚+1, … , 𝑓2𝑚−1}. From Eq. (15), 

we obtain the following Algorithm 3. 
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Algorithm 3.  According to the following procedure and using 𝑓0 = 1, 𝐹specified 

and the coefficients {𝑎1, 𝑎2, … , 𝑎𝑚}  in Eq. (14) form 𝛬,  we can compute  

𝐹unknown. 

1. foreach 𝑖 = 𝑚,𝑚 + 1,… ,2𝑚 − 1 do 

2.   Compute 𝑓𝑖 = −∑ 𝑎𝑗
𝑚
𝑗=1 𝑓𝑖−𝑗. 

3. enddo 

We recall that 𝜏0
(0) = 𝜏0

(1) = 1, 𝜏1
(0) = 𝑓0 = 1, and 𝜏𝑚+1

(0) = 𝜏𝑚+1
(1) = 0.  Let 

𝜎2𝑘−2 = 𝜏𝑘
(0)

 and 𝜎2𝑘−1 = 𝜏𝑘
(1)

 for 𝑘 = 0,1, … ,𝑚 + 1.  We introduce the 

sequence of the Hankel determinants 𝜏𝑘
(𝑛)

 defined by 

 
𝛴 = {𝜎−2, 𝜎−1, 𝜎0, 𝜎1, 𝜎2, 𝜎3, … , 𝜎2𝑚−2, 𝜎2𝑚−1, 𝜎2𝑚, 𝜎2𝑚+1}

= {1,1,1, 𝜏1
(1), 𝜏2

(0), 𝜏2
(1), … , 𝜏𝑚

(0), 𝜏𝑚
(1), 0,0}.

 

The Hankel determinant 𝜎𝑖 can be computed by Eq. (16) from {𝑓0, 𝑓1, … , 𝑓𝑖} for 

𝑖 = 1,2, … ,2𝑚 + 1. We substitute 𝜏𝑘
(0) = 𝜎2𝑘−2  and 𝜏𝑘

(1) = 𝜎2𝑘−1  in Eqs. (25), 

(26). From 𝑢2𝑘−1 = 𝑞𝑘 , 𝑢2𝑘 = 𝑒𝑘, we thus have relations 

 𝑢𝑖 = 𝑢2𝑘−1 = 𝑞𝑘 =
𝜎𝑖𝜎𝑖−3

𝜎𝑖−1𝜎𝑖−2
, 𝑖 = 2𝑘 − 1, 𝑘 = 1,2, … ,𝑚, (35) 

 𝑢𝑖 = 𝑢2𝑘 = 𝑒𝑘 =
𝜎𝑖𝜎𝑖−3

𝜎𝑖−1𝜎𝑖−2
, 𝑖 = 2𝑘, 𝑘 = 1,2,… ,𝑚 − 1. (36) 

The members 𝜎𝑖 of 𝛴 to express Eqs. (35), (36) for all members of 𝑈specified are 

𝛴specified = {𝜎−2, 𝜎−1, 𝜎0, 𝜎1, … , 𝜎𝑚−1}. Similarly, the members for 𝑈unknown  are 

𝛴unknown = {𝜎𝑚−3, 𝜎𝑚−2, … , 𝜎2𝑚−1}. From Eqs. (16), (35)-(36), we obtain the 

following Algorithm 4. 

Algorithm 4.  According to the following procedure and using 𝑓0 = 1, 𝐹specified 

and 𝐹unknown, we can compute 𝑈unknown if the procedure does not abort. 

1. foreach 𝑖 = 𝑚 − 3,𝑚 − 2,… ,2𝑚 − 1 do 

2.   Compute 𝜎𝑖 = 𝜏𝑘
(1)

 with 𝑘 =
𝑖+1

2
 by Eq. (16) if 𝑖 is odd. 

3.   Compute 𝜎𝑖 = 𝜏𝑘
(0)

 with 𝑘 =
𝑖+2

2
 by Eq. (16) if 𝑖 is even. 
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4.   if 𝜎𝑖 = 0 then this procedure abort. 

5. enddo 

6. foreach 𝑖 = 𝑚,𝑚 + 1,… ,2𝑚 − 1 do 

7.   Compute 𝑢𝑖 = 𝑞𝑘 with 𝑘 =
𝑖+1

2
 by Eq. (35) if 𝑖 is odd. 

8.   Compute 𝑢𝑖 = 𝑒𝑘 with 𝑘 =
𝑖

2
 by Eq. (36) if 𝑖 is even. 

9. enddo 

Algorithms 1-3 can finish successfully under any 𝛬, 𝑈specified. However, 

Algorithm 4 has two cases in which it either finishes successfully or aborts 

because of the division by 0. In Algorithm 4, we need the conditions (22) for 

expressing all of 𝑞𝑘, 𝑒𝑘 as Eqs. (25), (26). Therefore, we need the condition of all 

𝑞𝑘 ≠ 0 and 𝑒𝑘 ≠ 0. 

As a result, we proved the following Theorem 1. 

Theorem 1.  If Algorithm 4 finishes successfully, then Algorithms 1-4 can 

compute 𝐴 = 𝐿𝑅 under the condition of all 𝑞𝑘 ≠ 0, 𝑒𝑘 ≠ 0 from the prescribed 

eigenvalues 𝛬 and the specified entries 𝑈specified. If Algorithm 4 aborts, then there 

does not exist 𝐴 = 𝐿𝑅 under the condition of all 𝑞𝑘 ≠ 0, 𝑒𝑘 ≠ 0. 

4 Examples 

We demonstrate the proposed algorithm’s efficiency by showing some examples, 

including cases with real, complex, and multiple eigenvalues. We also include a 

case for the algorithm that does not solve the IEP. 

We consider 4 × 4 matrix 𝐴 = 𝐿𝑅 be expressed by 

 𝐿 = (

1 0 0 0
𝑒1 1 0 0
0 𝑒2 1 0
0 0 𝑒3 1

),    𝑅 = (

𝑞1 1 0 0
0 𝑞2 1 0
0 0 𝑞3 1
0 0 0 𝑞4

), 

 𝐴 = 𝐿𝑅 = (

𝑞1 1 0 0
𝑞1𝑒1 𝑞2 + 𝑒1 1 0
0 𝑞2𝑒2 𝑞3 + 𝑒2 1
0 0 𝑞3𝑒3 𝑞4 + 𝑒3

). 
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Using the proposed Algorithms 1-4, we solve the IEP with the prescribed 

eigenvalues 𝛬 = {𝜆1, 𝜆2, 𝜆3, 𝜆4}  of 𝐴  and the specified entries 𝑈specified =

{𝑢1, 𝑢2, 𝑢3} = {𝑞1, 𝑒1, 𝑞2} to obtain unknown entries 

  𝑈unknown = {𝑢4, 𝑢5, 𝑢6, 𝑢7} = {𝑒2, 𝑞3, 𝑒3, 𝑞4}. 

Let 𝑚 = 4 and 

 𝜓1 = 𝜙1
(0)
= 𝑧 + 𝑏1,1

(0)
, 𝜓2 = 𝜙1

(1)
= 𝑧 + 𝑏1,1

(1)
, 

 𝜓3 = 𝜙2
(0)
= 𝑧2 + 𝑏2,1

(0)
𝑧 + 𝑏2,2

(0)
, 

 𝐹specified = {𝑓1, 𝑓2, 𝑓3}, 𝐹unknown = {𝑓4, 𝑓5, 𝑓6, 𝑓7}, 

 𝑝(𝑧) = (𝑧 − 𝜆1)⋯ (𝑧 − 𝜆4) = 𝑧
4 + 𝑎1𝑧

3 + 𝑎2𝑧
2 + 𝑎3𝑧 + 𝑎4, 

 𝛴unknown = {𝜎1, 𝜎2, … , 𝜎7} = {𝜏1
(1)
, 𝜏2
(0)
, 𝜏2
(1)
, 𝜏3
(0)
, 𝜏3
(1)
, 𝜏4
(0)
, 𝜏4
(1)
}. 

The results of examples are as follows. 

4.1 Case 1: Real and Single Eigenvalues 

Inputs: 𝛬 = {1,2,3,4}, 𝑈specified = {2,1,3}. 

Algorithm 1: 𝜓1 = 𝑧 − 2, 𝜓2 = 𝑧 − 3 and 𝜓3 = 𝑧
2 − 6𝑧 + 6. 

Algorithm 2: 𝑓0 = 1, 𝐹specified = {2,6,24}. 

Algorithm 3: 

 𝑝(𝑧) = 𝑧4 − 10𝑧3 + 35𝑧2 − 50𝑧 + 24, 

 𝐹unknown = {106,472,2066,8864}. 

Algorithm 4: 

 𝛴unknown = {2,2,12,−4,−104,−32,−768}, 

 𝑈unknown = {−
1

3
,
13

3
, −

12

13
,
12

13
}. 

Output: Successfully, the tridiagonal matrix 𝐴 = 𝐿𝑅  with 𝛬  and 𝑈specified  is 

computed by 
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 𝐴 =

(

 
 

1 0 0 0
1 1 0 0

0 −
1

3
1 0

0 0 −
12

13
1)

 
 

(

 
 

2 1 0 0
0 3 1 0

0 0
13

3
1

0 0 0
12

13)

 
 
= (

2 1 0 0
2 4 1 0
0 −1 4 1
0 0 −4 0

) . 

4.2 Case 2: Complex and Multiple Eigenvalues 

Inputs: 𝛬 = {1 + 𝑖, 1 + 𝑖, 1 − 𝑖, 1 − 𝑖}, 𝑈specified = {2,1,3}. 

Algorithm 1: 𝜓1 = 𝑧 − 2, 𝜓2 = 𝑧 − 3 and 𝜓3 = 𝑧
2 − 6𝑧 + 6. 

Algorithm 2: 𝑓0 = 1, 𝐹specified = {2,6,24}. 

Algorithm 3: 

 𝑝(𝑧) = 𝑧4 − 4𝑧3 + 8𝑧2 − 8𝑧 + 4,    𝐹unknown = {60,88,40,−160}. 

Algorithm 4: 

 𝛴unknown = {2,2,12,−96,−2688,25600,102400}, 

 𝑈unknown = {−8,
14

3
,
25

21
,
1

7
}. 

Output: Successfully, the tridiagonal matrix 𝐴 = 𝐿𝑅  with 𝛬  and 𝑈specified  is 

computed by 

 𝐴 =

(

 

1 0 0 0
1 1 0 0
0 −8 1 0

0 0
25

21
1)

 

(

 
 

2 1 0 0
0 3 1 0

0 0
14

3
1

0 0 0
1

7)

 
 
=

(

 
 

2 1 0 0
2 4 1 0

0 −24 −
10

3
1

0 0
50

9

4

3)

 
 
. 

4.3 Case 3: Nonexistent 

Inputs: 𝛬 = {1,2,3,4}, 𝑈specified = {1,−1,2}. 

Algorithm 1: 𝜓1 = 𝑧 − 1, 𝜓2 = 𝑧 and 𝜓3 = 𝑧
2 − 2𝑧 + 2. 

Algorithm 2: 𝑓0 = 1, 𝐹specified = {1,0, −2}. 

Algorithm 3: 𝑝(𝑧) = 𝑧4 − 10𝑧3 + 35𝑧2 − 50𝑧 + 24, 

           𝐹unknown = {6,106,750,4138}. 



 An Algorithm to Construct a Tridiagonal Matrix 255 

 

Algorithm 4: 

 𝛴unknown = {1,−1,−2,−10,−240,0,0},     𝑈unknown = {−5,12,0,∗}. 

The symbol ‘*’ indicates failure to compute 𝑞4 =
𝜎7𝜎4

𝜎6𝜎5
=

0⋅(−10)

0⋅(−240)
. 

Output: The tridiagonal matrix 𝐴 = 𝐿𝑅 with 𝛬 and 𝑈specified does not exist under 

the condition of all 𝑞𝑘 ≠ 0 and 𝑒𝑘 ≠ 0. 

5 Conclusion 

This paper presents an algorithm for constructing a tridiagonal matrix factored by 

bidiagonal matrices based on a given set of eigenvalues and specified matrix 

entries. We derive recurrence relations connecting the eigenvalues to the 

unknown matrix entries using the discrete soliton theory. The algorithm was 

tested on examples, including real, complex, and multiple eigenvalue cases, 

demonstrating its efficiency and applicability to different IEP scenarios. Future 

work could explore extending this approach to other classes of band matrices and 

further generalizing the problem. 
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