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Abstract. The objective of this research was to propose a composite correlation 
coefficient to estimate the rank correlation coefficient of two variables. A 
simulation study was conducted using 228 situations for a bivariate normal 
distribution to compare the robustness properties of the proposed rank 
correlation coefficient with three estimators, namely, Spearman’s rho, Kendall’s 
tau and Plantagenet’s correlation coefficients when the data were contaminated 
with outliers. In both cases of non-outliers and outliers in the data, it was found 
that the composite correlation coefficient seemed to be the most robust estimator 
for all sample sizes, whatever the level of the correlation coefficient.  

Keywords: correlation coefficient; rank correlation coefficient; outliers; robustness; 
estimator. 

1 Introduction 

Pearson’s correlation coefficient [1] is one of the most often used methods to 
estimate the correlation coefficient (ρ) between two random variables (X and Y) 
for a bivariate normality assumption of the data [2-3]. In some problems, we 
may have data with outliers that may arise for purely deterministic reasons: a 
reading, recording, or calculating error in the data [4]. In this case, using 
Pearson’s correlation coefficient may not be suitable for the estimation of ρ 
because it is based on the sample means of random variables X and Y, which are 
known to be very sensitive to the presence of outliers [5-8]. Consequently, 
many robust estimators of ρ are proposed based on different underlying 
methodologies to resist outliers in data. For example, two well-known, 
nonparametric correlation coefficients are Spearman’s rho and Kendall’s tau 
correlation coefficients [9-11], which are based on the ranks of the observations. 
These correlation coefficients are measurements of association between two 
variables that are measured in at least an ordinal scale [11]. However, Abdullah 
[5] suggests that these correlation coefficients are not sufficiently robust 
estimators when the percentage of outliers in the data increases. Moreover, 
Evandt, et al. [12] recommends that Kendall’s tau correlation coefficient is 
heavily biased for most values of ρ. Genest and Plante [13] have proposed 
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Plantagenet’s correlation coefficient, which is the rank correlation measure for 
outlier weight and is a symmetric version of Blest’s correlation coefficient [14]. 
Maturi and Elsayigh [2] studied the efficiency of Plantagenet’s correlation 
coefficient and found that it has the lowest standard error compared with other 
weighted correlation coefficients when the data are contaminated with outliers. 
In this paper, the composite correlation coefficient of two random variables is 
proposed. This rank correlation coefficient is based on a symmetrized version of 
Blest’s index and the jackknife procedure [15-16] is applied for bias reduction 
as in the studies of Balakrishnan and Tony Ng [17], Smith and Pontius [18] and 
Sinsomboonthong [19]. Furthermore, a simulation study was undertaken to 
compare the robustness with regard to data with outliers of the four estimators: 
the composite, Spearman’s rho, Kendall’s tau and Plantagenet’s correlation 
coefficients. 

2 Materials and Methods 

2.1 Rank Correlation Measures  

In the parametric case, the usual measure of correlation is Pearson’s correlation 
coefficient. This estimator requires variables that represent measurement in at 
least an interval scale and assume that the observations are sampled from a 
bivariate normal distribution [11]. If the assumptions associated with this 
estimator are unrealistic, then nonparametric correlation coefficients, which are 
presented in this section, may be used. Let    1 1 n nx , y ,..., x , y  be n observations 

from a population that require that both variables X and Y  are measured in at 
least an ordinal scale. Four measures of the degree of association or correlation 
between the two sets of ranks are studied as follows: 

2.1.1 Spearman’s Rho Correlation Coefficient 

A familiar nonparametric correlation coefficient [11] is Spearman’s rho 

correlation coefficient, rs, which is given by  
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  , pi  and qi  are the ranks of the xi  and yi, respectively. 

2.1.2 Kendall’s Tau Correlation Coefficient 

Kendall’s tau correlation coefficient, Kr , is one of the nonparametric correlation 

coefficients [11] and is defined by  
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is the 

number of concordant pairs and D is the number of discordant pairs. A 
concordant pairs occurs when the rank of the second variable is greater than the 
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rank of the former variables. A discordant pair occurs when the rank of the 
second variable is equal to or less than the rank of the former variables. 

2.1.3 Plantagenet’s Correlation Coefficient 

Genest and Plante [13] proposed Plantagenet’s correlation coefficient, PGr , 

which is given by  3
4 5 6
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    , where pi and qi  are the 

ranks of the xi and yi, respectively. 

2.1.4 Proposed Rank Correlation Coefficient 

Scarsini [20] introduced a set of axioms for concordance measures of ordered 
pairs of continuous random variables. Let    Q :      be the 

function that satisfies the symmetry axiom, which is    i i i iQ x , y Q y ,x , 

where     is a set of all real-valued continuous random variables on some 
probability apace ( , A, P ). A composite correlation coefficient, rC, is 
proposed to estimate the correlation coefficient between the two sets of ranks. 
Initially, the proposed estimator was derived based on Blest’s correlation 
coefficient [14], rB, which is given by Eq. (1). 
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where pi and qi are the ranks of the xi and yi, respectively. Genest and Plante 
[13] suggested the adapted Blest’s correlation coefficient, rAB, which is given by 
Eq. (2), in order to meet the requirements of Scarsini’s symmetry [20].  
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Therefore,  B i ir Q x , y  and  AB i ir Q y ,x  meet the symmetry property, 

which states that rB and rAB are equivalent values. This conforms to the Scarsini 
[20] as mentioned above. We propose a composite correlation coefficient that is 
derived based on Br  and ABr  as shown in Proposition 2.1. 

Proposition 2.1 Let    1 1 n nx , y ,..., x , y  be n observations for a sample from a 

population that require that both variables X and Y  are measured in at least an 
ordinal scale. Let pi and qi denote the ranks of xi and yi among the x and y data, 
respectively. It is assumed there are no tied ranks. Let rB and rAB be the two rank 
correlation coefficients given by Eqs. (1) and (2), respectively. The composite 
correlation coefficient, rC, is given by Eq. (3). 
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where ̂  and  i̂   are defined as the formulas of Eqs. (4) and (5), respectively.  
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ijp
 and ijq  are the ranks of jx  and jy , respectively, of the ith jackknife sample 

  iS  for 1 2i , ,...,n . 

Proof. Let rB and rAB be the Blest’s and adapted Blest’s correlation coefficients. 
It is assumed the weights of rB and rAB are such that wB=wAB=1/2. The estimator 

of the rank correlation coefficient between the two sets of ranks is denoted by ̂
, which is the combination of these two correlation coefficients and written as 
Eq. (6).      
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̂  is derived from a combination of two estimators by using a half of them. This 
is the empirical rank correlation coefficient as studied by Genest and Plante 
[13]. 

Let             1 1 2 2 1 1 1 1     i i i i n niS x , y , x , y , ..., x , y , x , y , ..., x , y  be the ith 

jackknife sample, which consists of the data with the ith observation removed, 

ijp
 denote the rank of jx  among the x data of the ith jackknife sample   iS  and 

similarly ijq
 denote the rank of jy  among the y data of the ith jackknife sample 

  iS  for 1 2i , ,...,n . By using the ith jackknife sample, the estimator of 

correlation that corresponds to ̂  can be computed with Eq. (7).  
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The composite correlation coefficient, Cr , is proposed in the form of an average 
of pseudo jackknife values as given by Eq. (8). 
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where ̂  and  
ˆ

i   are defined as the formulas of Eqs. (6) and (7), respectively. 

2.2 Properties of Point Estimator 

In this section, two properties of the point estimator in terms of absolute bias 
and mean square error are defined to help decide whether one estimator is better 
than the other [21]. 

Definition 2.1 Let ̂  be an estimator of  .  ˆ ˆ( ) ABS E     is defined to 

be the absolute bias of ̂ . The mean square error of ̂  is defined as 

 2
 ˆ ˆMSE( ) E    . 

ˆ( )ABS   can be either positive or zero. ̂  is called an unbiased estimator if 
ˆ( ) 0ABS   . Otherwise, it is said to be biased. We generally prefer an estimator 

with a small mean square error. 

3 Results of a Simulation Study  

In the numerical study, we generated examples of the data from a bivariate 
normal distribution. A simulation study was conducted using 228 situations in 
order to compare the robustness properties of the proposed estimator, rC, with 
the three estimators (rS, rK and rPG) when the data were contaminated with 
outliers. In the study, samples (x,y) of four sizes 10, 30, 50 and 100 were 



268 Juthaphorn Sinsomboonthong 

 

generated from a bivariate normal distribution with means  and  both equal 
to zero, variances  and  both equal to one, and nineteen levels of the 
specified correlation coefficients ρ of the two random variables, X and Y, varied 
from -0.9 to 0.9. Let Q3 and IQR be the third quartile and interquartile range of 
the data y, respectively. Three levels of percentage of mild outliers [22] that fall 
between Q3+1.5IQR and Q3+3IQR in the generated data y were set at 0, 10 and 
20. The four estimators were compared for efficiency in terms of the estimate of 
absolute bias and mean square error using 2,000 samples for each situation. In 
this simulation study, we use the notations ABS and MSE to describe the 
estimates of absolute bias and mean square error, respectively.  

 
Figure 1 Estimates of absolute bias and mean square error of the four rank 
correlation coefficients for n = 10 and percentages of outliers in data y equal  0, 
10 and 20. 

The simulation results are shown in Figure 1 to Figure 4. Figures 1(a), 1(b) and 
1(c) show that the ABSs of the proposed estimator, rC, had the smallest value 
both in the case of non-outliers and outliers in the data for a sample size of 10 
and all levels of ρ. In addition, the rC tended  to  have  the smallest  MSE when 
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ρ < -0.5 or ρ > 0.5   for a sample size of 10 and all percentages of outliers in the 
data, which are shown in Figures 1(d), 1(e) and 1(f). In the case of ρ is between 
-0.5 and 0.5 for a sample size of 10 and all percentages of outliers in the data, 
the MSEs of rK were lower than those of rC. However, the ABSs of rK had the 
largest value in this situation. In the case of non-outliers in the data and sample 
sizes of 30 and 50, the ABSs of rC, which are shown in Figures 2(a) and 3(a), 
seemed to have the smallest values. Moreover, the MSEs of rC, which are 
shown in Figures 2(d) and 3(d), were not greater than 0.05 in these situations. In 
the case of outliers in the data and sample sizes of 30, 50 and 100, the ABSs of 
rC and rPG, which are shown in Figures 2(b), 2(c), 3(b), 3(c), 4(b) and 4(c), 
seemed to be no different and had the smallest value for all levels of ρ. 

 

Figure 2 Estimate of absolute biase and mean square error of the four rank 
correlation coefficients for n = 30 and percentages of outliers in data y equal  0, 
10 and 20. 

For sample sizes of 30 and 50, the MSEs of the proposed estimator, rC, which 
are shown in Figures 2(d), 2(e), 2(f), 3(d), 3(e) and 3(f), tended to have the 
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smallest values for almost all levels of  , whatever the percentage of outliers in 
the data. For a sample size of 100 and non-outliers in the data, the ABSs of rC, 
rPG and rS, which are shown in Figure 4(a), seemed to have the smallest value 
for all levels of  ρ. In addition, the MSEs of these three estimators, which are 
shown in Figure 4(d), were not greater than 0.05 and tended to have the smallest 
values in this situation.   

 

Figure 3 Estimate of absolute biase and mean square error of the four rank 
correlation coefficients for n = 50 and percentages of outliers in data y equal  0, 
10 and 20. 

When the data were contaminated with outliers and sample size of 100, which 
are shown in Figures 4(e) and 4(f), the MSEs of rC  and rPG tended to have the 
smallest value for all level of ρ. In addition, Figures 1(a) to 4(a) show that the 
ABSs of almost all methods, except the Kendall’ tau method, tended to decrease 
when the sample size increased and there were non-outliers in the data, but the 
MSEs of all methods, which are shown in Figures 1(d) to 4(d), tended to 
decrease.  
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Figure 4 Estimate of absolute biase and mean square error of the four rank 
correlation coefficients for n = 100 and percentages of outliers in data y equal  0, 
10 and 20. 

In the case of outliers in the data, there were no effects of sample size with the 
ABSs of rC and rK, except for Plantagenet’s and Spearman’s rho correlation 
coefficients, where their ABSs tended to decrease when the sample size 
increased. Moreover, Figure 4 shows that the composite and Plantagenet’s 
correlation coefficients seemed to have the same levels of ABS and MSE for a 
large sample size of 100, whatever the level of ρ and the percentage of outliers 
in the data, but the composite correlation coefficient was better than 
Plantagenet’s correlation coefficient in terms of the ABSs, which are shown in 
Figures 1(a), 1(b) and 1(c) for a small sample size of 10, whatever the level of  
ρ and the percentage of outliers in the data. Moreover, Kendall’s tau correlation 
coefficient seemed to have a large ABS in all situations studied. Additionally, 
the MSEs of all methods tended to decrease when the sample size increased 
with all percentages of outliers in the data. All methods seemed to have large 
ABS and MSE values when the percentage of outliers in the data increased for 
all sample sizes. 
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4 Discussion 

The simulation results show that Spearman’s rho and Kendall’s tau correlation 
coefficients are not robust estimators when the percentage of outliers in the data 
increases, as mentioned by Abdullah [5]. Moreover, Kendall’s tau correlation 
coefficient is heavily biased for most values of ρ, as mentioned in the studies of 
Evandt, et al. [12]. In this study, we found that Plantagenet’s correlation 
coefficient is not sensitive to outliers, as studied by Maturi and Elsayigh [2].    

5 Conclusion 

The proposed estimator (a composite correlation coefficient) was derived based 
on a combination of Blest’s and the adapted Blest’s correlation coefficients with 
equal weighting between them. Furthermore, the jackknife procedure was 
applied for bias reduction when the data were contaminated with outliers. A 
simulation study was conducted to compare the efficiencies of the proposed 
estimator with three estimators. The good estimators that have small ABS and 
MSE values in each situation are shown in Table 1.  

Table 1 Robust rank correlation coefficients for the bivariate normal 
distribution to resist outliers in the data for each situation. 

Sample Size 
(n) 

Percentages of Outliers 
0 10 20 

10 Composite Composite Composite 
30 Composite Composite 

Plangenet 
Composite 
Plangenet 

50 Composite Composite 
Plangenet 

Composite 
Plangenet 

100 Composite 
Plangenet 
Spearman 

Composite 
Plangenet 

Composite 
Plangenet 

Note: Composite = rC is robust estimator for all levels of ρ, 
          Plantagenet = rPG is robust estimator for all levels of ρ, 

Spearman = rS is robust estimator for all levels of ρ. 

The composite correlation coefficient seems to be the most robust estimator for 
all sample sizes and all levels of ρ, whatever the percentage of outliers in the 
data. This estimator can be calculated without difficultly by computer 
programming (see Appendix). In the case of outliers in the data, Plantagenet’s 
correlation coefficient seems to be the most robust estimator for a large sample 
size (n = 30,50 and 100) and all levels of ρ. In the case of non-outliers in the 
data, the proposed composite correlation coefficient seems to perform well for 
all levels of the sample size and ρ. 
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Appendix 

Example of SAS Programming for A Composite Correlation 
Coefficient Calculation 

Let (0.73, 2.20), (0.30, 1.96), (3.30, 2.89), (3.46, 2.62), (1.52, 0.59), (2.29, 
7.03), (0.61, 1.25), (1.47, 6.28), (2.13, 17.26) and (2.79, 3.39) be ten 
observations of (x,y). A proposed composite correlation coefficient can be 
calculated without difficultly by SAS programming as follows: 

data Dataset; 
input  i  x  y; 
datalines; 
1 0.73 2.20 
2 0.30 1.96 
3 3.30 2.89 
4 3.46 2.62 
5 1.52 0.59 
6 2.29 7.03 
7 0.61 1.25 
8 1.47 6.28 
9 2.13 17.26 
10 2.79 3.39 
; 
run; 
 
proc means data=Dataset noprint;   var x;   output out=number_Obs  n=n;   run; 
data n;   set number_Obs;   do i=1 to n;  output;   end;   run; 
data Dataset;   merge Dataset n;   by i;   run;  
proc rank data=Dataset   out=Rank_Dataset;   var x y;   ranks p q;   run; 
data Rank_Dataset;   set Rank_Dataset;   p2q_q2p = ((n+1-p)**2)*q + ((n+1-q)**2)*p;   run; 
proc means data=Rank_Dataset noprint;   var p2q_q2p;    
output out=Sum_p2q_q2p  n=n   sum=U;   run; 
data Delta_hat;   set Sum_p2q_q2p;    
Delta_hat=(2*n+1)/(n-1)-(6*U)/(n*((n+1)**2)*(n-1));   run; 
data Jack_Dataset;   set Dataset;   do Del=1 to n;   if Del=i then ID=9999999; output;   end;   run;  
proc sort data=Jack_Dataset;   by Del;   run; 
data Jack_Dataset;   set Jack_Dataset;   if Del > i and ID=9999999 then ID = .;    run; 
data Jack_Dataset;   set Jack_Dataset;   if ID=9999999 then delete;   drop ID;   run; 
proc rank data=Jack_Dataset   out=RankJ_Dataset;   by Del;  var x y;  ranks p q;   run; 
data RankJ_Dataset;   set RankJ_Dataset;   p2q_q2p = ((n-p)**2)*q + ((n-q)**2)*p;   run; 
proc means data=RankJ_Dataset  noprint;   var p2q_q2p;   class Del;   output out=Sum_p2q_q2pJ  
n=nJ  sum=UJ;   run; 
data Sum_p2q_q2pJ;   set Sum_p2q_q2pJ;   if Del = . then delete;   run; 
data Delta_hatJ;   set Sum_p2q_q2pJ;   n=nJ+1;    
Delta_hat_i = (2*n-1)/(n-2) - (6*UJ)/((n-1)*(n**2)*(n-2));   run; 
proc means data = Delta_hatJ  noprint;   var Delta_hat_i;   output out=Sum_Delta_hatJ  n=n  
Sum=Sum_Delta_hat_i;   run; 
data Delta_hat;   merge Delta_hat  Sum_Delta_hatJ;   run; 
data r_C;   set Delta_hat;   r_C = n*Delta_hat - ((n-1)/n)*Sum_Delta_hat_i;   keep n r_C;   run; 
proc print data=r_C;   run;  

The output of this programming for a composite correlation coefficient (rC) equals 0.63063. 


