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Abstract. We propose a model for predicting the fluctuation of electron states in
thin films as a function of film thickness. The model is derived based on the
assumption of the existence of potential barrier fluctuation on the film surface.
Since the wave functions of electrons in the film are determined by the boundary
conditions of the potential on the film surface, the potential fluctuation on the
film surface implies fluctuation of the electron states in the film. The model was
extended to predict the effect of size on the lattice constant of thin films or
nanoparticles.
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1 Introduction

The motion of electrons in small structures such as thin films is confined in the
direction normal to the film and results in quantization of energy [1]. The
eigenstates of the electrons in thin films are generally solved with the
assumption that the electrons are in a one-dimensional potential well. The
potential inside the well is assumed to be zero and the potential outside the well
is assumed to be a very large constant. A further simplification that is
commonly used is that the potential well is infinitely high. With these
assumptions, the boundary conditions of the wave functions are zero in the
potential well and the resulting solutions are sinusoidal functions (standing
waves) [2].

The assumption that the potential well has an infinite height is merely an
idealization that is commonly adopted to introduce elementary quantum theory
to students. A more realistic assumption is actually a finite potential well [3].
With such finite potential barrier, the electrons can still jump out of the film
surface and give rise to a number of phenomena such as the photoelectric effect,
thermal emission, electric field induced electron emission, and so on.
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Since the film surface is always in contact with another material, such as air,
there is an interaction between the atoms on the film surface and the atoms of
the surrounding material. Such interaction is expected to cause a fluctuation of
the atomic states on the film surface, especially when the states of the atoms
outside the film also fluctuate (for example, air atoms or molecules), which in
turn causes fluctuation in the height of the potential well. Because the
eigenstates of the electrons inside the potential well depend on the boundary
conditions of the potential on the well, fluctuation in the potential barrier causes
fluctuation in the electron eigenfunctions inside the well. If the film is very
thick or the material is in bulk state, the effect of fluctuation in the surface
potential is negligible so that the fluctuation in the potential barrier does not
affect the eigenstates of the electrons inside the well. Conversely, if the film is
very thin, the surface effect becomes preeminent such that fluctuation in the
potential barrier affects the eigenstates of the electrons inside the well.

There are actually a large number of observations as well as explanations
regarding the change of lattice constant or lattice parameter when the size of a
material is reduced to nanometer scale. The transition from bulk crystals to
nanoparticles is accompanied by a change of interatomic distances and unit cell
parameters. When either expansion or contraction is observed, some materials
show only contraction or expansion, and some materials show both expansion
and contraction, measured relative to the corresponding parameters in the bulk
state. Expansion of the lattice parameter is generally observed in oxides such as
CeO, [4-6], Fe,0; [7], MgO [8], TiO; (rutile) [9], ZrO, [10], BaTiO; [11], cubic
PbTiO; [12], and BiFeO; [13]. In contrast, contraction in the lattice parameter,
is observed in most metals, such as Au [14-16], Ag [17-20], Sn [21], Bi [21,22],
Pt [15,23], Si [24], Cu [25], Ni [25], Pd [26,27], ZnS and CdSe [28,29].
Shrinkage of the Cu-Cu distance up to 9% for very small sizes has been
reported by Apai, et al. in [25].

Many mechanisms that could be responsible for the lattice parameter change
when the size of the material is reduced have been proposed, but final
conclusions have never been achieved. Tsunekawa, et al. in [5,6,30] proposed
that the lattice parameter expansion in CeO, is caused by the presence of
surface stable Ce’" anion vacancy sites within the surface layer at low
nanoparticle dimensions. Shin, et al. in [31] have proposed that the lattice
dilatation in Sn nanowire is caused by strong anisotropy on the surface stress. In
spherical nanoparticles, the effect that is assumed to be responsible for lattice
compression is the increase of the surface curvature [32-35]. However, in
different structures, such as nanowires or nanolayers, lattice expansion is
observed instead of lattice contraction, which is assumed to be caused by lattice
imperfection [36,37]. There is also an assumption that the lattice expansion is
caused by the grain boundary effect [37]. Differently, Ayyub, et al. in [7]
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proposed that an increase in unit cell volume when the material size is reduced
can be attributed to covalent oxides. Internal stress relaxation during
nanocluster growth has also been proposed to affect the lattice parameter [38].
An interesting phenomenon has been observed in anatase TiO,. In some cases,
contraction of the lattice parameter when reducing the particle size has been
observed [39-43], which is similar to the behavior of metals. In other cases the
antithetical phenomenon was investigated, where expansion of the lattice
parameter was observed when reducing the material size [44].

Although several models as well as empirical equations have been proposed to
explain the contraction of the lattice parameter when reducing particle size, to
the best of our knowledge a fundamental explanation has not been proposed yet.
With a fundamental explanation we mean a formulation based on the formalism
of quantum mechanics. The objective of this work is to formulate a model for
predicting the effect of film thickness on the fluctuation of eigenstates of the
electrons in thin films. Further, we examine its implications for predicting the
variation of the lattice constant when the film thickness changes.

Assessment of our proposed model was conducted by analyzing our results and
comparing them with experimental data from various research publications, i.e.
concerning platinum (Pt) [15,45], gold (Au) [15], ceria (CeO,) [46], tantalum
(Ta) [47], and titania (TiO,) [48]. Using scanning high-energy electron
diffraction, Soliard and Fliieli in [15] observed that small particles of Au and Pt
(size 39-500 A) experienced a lattice constant reduction when the particle size
decreased. This phenomenon was observed for all measurement temperatures
from about 100 K to 600 K. Leontyev, ef al. in [45] have disclosed that the unit
cell parameters of synthesized C supported Pt (Pt/C) nanoparticles with
diameters ranging from 2 to 28 nm are always lower than the value of bulk Pt. It
is compelling to study this phenomenon since in fact Pt/C is one of the most
promising catalysts for low temperature fuel cells. Moreover, the decrease of
the interatomic Pt—Pt distance is eminently known as one of the reasons for a
positive influence on the catalytic activity in oxygen reduction reactions. On the
other hand, Chen, et al. in [46] have reported that changes in the lattice
parameter of CeO, can occur in crystallites with size 2-500 nm, which also has
notable application in catalysis.

2 Modelling

2.1 Fluctuation of Electron States

We model the thin film as a one-dimensional potential well of width L (Figure
1). The potential inside the well is taken to be zero while the potential outside
the well is V and finite. The potential outside the well is the surface potential of
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the film and assumed to be slightly fluctuating. We determine the solutions of
the Schrodinger equation while ignoring the potential barrier fluctuation at first.
We consider the height of the potential well to be constant so that the
eigensolutions can be obtained easily. After obtaining the solutions, we consider
the effect of potential barrier fluctuation.

(a)

(b)

x=0 x=L

Figure 1 (a) Thin film and (b) model of thin film as a one-dimensional potential
well of width L. The potential inside the well is 0 and 7 outside of the well. The
potential is divided into regions I, II, and III. In regions I and III, £ < V" whereas
inregion II, £E> V.

The Schrodinger equations for the electrons in regions I, II, and III (as

. o d’y . d'y s d’y )
illustrated in Figure 1) are: 72’:0: v, dxzn =-p’v,, dxzm =ay,
with
2m(V - E
o= /% (1)
2mE
A=\ @)

Since the fluctuation in the potential barrier is not taken into consideration, o is
a constant. Considering that the wave functions must be finite in regions I, II,
and III, the general solutions to the wave functions are:

v, (x) = de™ 3)

v, (x) = Ce”™ + De™** @))
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W, (x)=Fe ™ (5)

with 4, C, D, and F are constants, which in general are complex numbers.

The boundary conditions that must be met are w,(0)=w,(0) and
v, (L)=w,,;(L) so the wave function is continuous and also y',(0) =y ', (0)

and ', (L)=y",(L) to ensure that the wave function varies smoothly. Such

boundary conditions yield the following equation set:

A=C+D (6)
Ce’" + De™Pt = Fe™* (7
aA=ipB(C - D) (8)
iB(Ce” —De " )= —aFe 9)

From Egs. (6)-(9) we get the following relationship:

[,B_iaj _ 2L (10)

p+ia

Let us write f—ia=+/a’ + e, where tangp =a / . By this definition, Eq.
(10) can be written as exp[—i4@]=exp[-2/L]. The solution to this equation is
—4o=-2BL+2nr or p=pBL/2—nx/2,which can be expressed as:

tan @ = tan(ﬁ—nzj
2 2

or
g:tan(%—an (11)

where 7 is an integer. By substituting Eq. (1) and (2) into Eq. (11) we obtain
JV-E)/E = tan(ﬂL/2—n7r/2) , which produces:

E=Vcosz(£—n£] (12)
2 2

Taking into account the definition of £ in Eq. (2) and noticing that the electron
energy here becomes discrete with quantum number #, Eq. (12) can be rewritten
as follows:
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E =Vcosz{§ 2—mE”z—nfj (13)

L /2
cos| — —TEiu—nz
2\ A 2

It appears from Eq. (13) or (14) that if V' — oo, the right-hand side of the
equation approaches infinity, while the left-hand side remains finite. To ensure
that both sides remain consistent, i.e. the right-hand side also stays finite, the
following condition must be fulfilled:

oS 5,/2—21Ei/2—n£ -0
2\ h 2

which causes (L/2~2m /W E* —nz/2=7/2 or:

or

E’ll/z =V1/2 (14)

232
T°h

2ml?

E =(n+1) (15)

Eq. (15) is the standard solution for electron energies inside a potential well of
infinite height [2]. Thus, we can conclude that Eqs. (13) or (14) are the general
solutions for electron energies in a potential well of arbitrary height and satisfies
V>E.

Let us write Eq. (14) as follows:

cos[ x—nzj
4 2

where x = Ei/z and y = (L/2)\2m/h* . Parameter y is the wave number that

is proportional to the film thickness. We can determine the solution of Eq. (16)
1/2

(16)

1/2
v

by plotting the curves of x/V"'° and |cos(7/x—n7r/ 2)| simultaneously. The

intersection of both curves is the solution for x. Figure 2 shows the curves of
these two functions as a function of x. We plot two curves of x/V"? at two

different /" and plot two curves of |cos( yx—nr/ 2)| at two different y. A wider

|cos(7/x—n7z/ 2)| curve is produced using a smaller y. Since y oc L, a wider

curve belongs to a thinner film.
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Let us examine what happens if the potential barrier height fluctuates. The
straight-line curve will change its gradient. As a result, the solution for x also
fluctuates. Let us examine the span in fluctuation in x due to the potential
fluctuation. The distance between the intersection points of two straight lines
and the curved curve obtained using a large y (large L) is smaller than the
distance between the intersection points of two straight lines and the curved
curve obtained using a small y (small L). From these results we can conclude
that the same fluctuation in the potential barrier produces greater energy
fluctuation on a thinner film. In other words, the fluctuation of energy in the
film is greater if the film is thinner.
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Figure 2 Curves of x/V/2 and |cos(yx — %)| as the function of x. Two curves

of x/V1/2 are plotted using two different V. The intersection of the two curves is
the solution for x.

Now we will look for more quantitative-fluctuation expressions. We start from
Eq. (13). Suppose a fluctuation of the potential barrier of 6/ causes an energy
fluctuation of 8F,. Thus we can write:

E +0E, :(V+5V)cos2(7/ E +0E, —n%j

=V cos’ (7, E +0FE - n%) + 6V cos’ (}/ E +0FE, - n%j
which gives the following equation:

oE, zé'Vcosz(;/ E +0JE, —n%)
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OFE
zé‘VCOSZ(}/Ei/Z n> +7/E1/2J (17)

where we have already assumed that |3E,/E,"?| << 1. We factorize the right-

hand side of Eq. (17) with the following trigonometry identities:

2
T OE, T . OoE,

OE, = 5V[cos(7E}'/2 - nzjco{y £ J— sm(}/E”2 EJSIH[yWH

2
1/2 T 5E V2 T
z&V[cos(;/En _HEJ % £ sm[}/E Eﬂ
; V4 OE, , T . V4
~ §V{cos2 (yEi : —ngj—%/ Pl cos(}/E1 : 2jsm(7/Ei/2 —naﬂ

~ 6V cos’ (;/E;/z —nzj—yngE” sin2(7Ei/2 —n%j (18)

2
Rearranging Eq. (18) yields:

SV cos’ (yE,'l/z - n;rj
OoF, =

19
! L [2m oV . 2 V4 (19)
1+5 hTWSIHZ ]/En —}’ZE

Based on Eq. (13) we can write cosz(}/E:,/z—mr/Z):En/V, and

sin2(yE\? —nz/2)=2sin(yE\* —nz / 2)cos(yE.* —nx / 2) = 2\/En / V\/l -E/V
Thus, Eq. (19) can be rewritten as:

E

f Tl

- E
1+L %’%JV—@
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Furthermore, we approximate E, in the equation above with E, for a potential
well of infinite height as appeared in Eq. (15) to obtain more explicit form of
energy fluctuation as follows:

_ (n+)’72’R’ /2m [Wj(lj
OE, ~ — = (20)
_ v \L
1{JWE”>5V]L

Vi

It appears from Eq. (20) that greater energy fluctuation occurs if the film gets
thinner. If we assume that the potential well is high enough so that the discrete
energies inside the well are quite small compared to the potential height, or

E, <<V and the potential fluctuation on the well is very small compared with

\/; , we can make the following approximation:

(n+1)*7°n* VvV IV) |1
5En z|: ?

. 21

It is clear that fluctuation in the energies changes according to the inverse
square of the film thickness. Also shown by Eq. (21), the fluctuation in the
energies is proportional to the relative fluctuation in the potential barrier. The
greater this ratio, the smaller the energy fluctuation.

2.2 Effects on Lattice Constant

Fluctuation in the energy states is a manifestation of fluctuation in the electron
wave functions inside the well. The electron density inside the well is N |l//|2,

where N is the concentration of electrons. Accordingly, the fluctuation of the
electron density inside the well is:

SN ) =N | | {NZ/’() i } i (22)

with f(n) is a function of index n. The root mean square fluctuation of the
electron density is:

([a(mwr)])- {szu L] } .

If p, is the average density of the electrons inside the well, the electron density
fluctuation can be written as:
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ol T
p=pyt [NZf(n)%} v (23)

The ions that compose the material are unified by the force of attraction
between the positively charged ions and the electrons. The magnitude of the
attractive force is roughly proportional to the electron density. In the presence
of fluctuation in the electron density, the force between the ions and the
electrons also fluctuates. The change in force experienced by the ions is:

, 2

PP _K @|W| 1
AF=—-—F =5— [(| N — | )= 24
o T { ;f(n) £ | |7 24

with Fy is the force when fluctuation is absent. The force produces a lattice
constant change that can be predicted by the formula for Young’s modulus (¥ =
(F/az)/(Aa/a)). It appears that the change in the lattice constant is proportional to

the change in the force. Thus, the lattice constant change satisfies da = —u/ L”,

where x is a parameter that may be different for different materials. Because the
fluctuation can increase or decrease the potential, the u parameter can be a
positive or negative number. Thus the fluctuation of electron states can cause
the distance between atoms to expand or shrink.

Eq. (20) or (21) has been derived for thin films. The energy states of electrons
in a thin film are inversely proportional to the square of the film thickness. The
resulting change in the lattice constant is inversely proportional to the square of
the film thickness. For a particle (sphere), the energy states are inversely
proportional to the diameter [49]. With these properties, it is expected that the
lattice constant change in the particle is inversely proportional to the square of

the diameter of the particle, or oa = —,u/Dz. As a result, we get equations
describing the variation in the lattice constant of thin films or nanoparticles as:

ay = a,() T (25)
- _H
ay, =4, (OO) D2 (26)

By X-ray diffraction, Leontyev, et al. in [15] have observed dependence of the
lattice constant of Pt/C with a particle size between 2 and 28 nm. They obtained
a fitting equation a = a+ b/D with ay = 3.9230 + 0.0017 A and b = —0.0555 +
0.0067 nm™ (D in nm). For comparison of the size dependence of the lattice



Thickness Effect on Fluctuation of Electron States 235

parameter, Tsunekawa, ef al. in [4] reported the change of lattice parameter a in
CeO, as Aa = 0.0234D — 1.06, while Ahmad and Bhattacharya in [50] have
reported a variation according to Aa = 0.0234D — 1.08. For Ni nanoparticles,
Wei, et al. in [51] reported the change of the lattice parameter as Aa o« —1/D. A
size-dependent lattice structure studied by X-ray absorption spectroscopy, as
reported by Lin, et al. in [52], showed a change in the lattice parameter as a
function of particle size for both Pd and Au that satisfies Aa oc 1/D. Koska, et al.
in [53] have reported the change of the lattice parameter of Au thin film
sputtered on glass and showed that the lattice parameter changes with the layer
thickness, L, according to Aa oc 1/L" with y > 1.

3 Confirmation with Experimental Data

Now we will compare our results with some reported data. For example, the
symbols in Figure 3 indicate the measurement results of the lattice constant in
platinum (Pt) nanoparticles in the (220) and (422) orientations as reported by
Soliard and Flueli in [15].

3937 T:300 K
o O Platinum (220)
O Platinum (422)
— 3.921
5 o
&
oo
c
o,
< 3.91- Q)
3.9 T T T T T L] L]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1/R? [nm?2]

Figure3 The symbols indicate the lattice constants of platinum (Pt)
nanoparticles at a temperature of 300 K in the (220) and (422) orientations as
reported by Soliard and Flueli in [15]. The curve is obtained using Eq. (26).

The presented data are the measured results at 300 K. Measurement of the
diameters of the (220) and (422) diffraction rings indicates for Pt a decrease in
the lattice occurs proportional to the reciprocal of the particle size. The curve in
the figure is obtained using Eq. (26). The fitting equations that give the smallest
error are (ao = 3.926 — 0.0473/D* A, 6 = 0.00142) and (a, = 3.917 — 0.0568/D*
A, 6 = 0.00119) for (220) and (422) orientations, respectively, and o is the
variance. Further, Soliard and Flueli in [15] have reported that the lattice
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constant depends on the inverse of the diameter. For comparison, we also
determine the fitting curve that varies with the inverse of the diameter as
proposed by Soliard and Fueli [15]. The fitting equations that give the smallest
error are (ap = 3.9323 — 0.0364/D A, ¢ = 0.00104) and (ay = 3.9247 —
0.0426/DA, & =0.00078) for the (220) and (422) orientations, respectively.
From these results it appears that fitting with a function that is inversely
proportional to the radius or inversely proportional to the square of the radius is
acceptable because they both give a very small variance and are almost equal.
Based on the experimental data reported by Soliard and Flueli in [15], the lattice
constants of gold (Au) nanoparticles in the (220) and (422) orientations are
shown in Figure 4.

4.08 7

E

4.07 1

T:300 K

O Gold(220)
O Gold (422)

4.06 7

ap [angstrom]

4.05

4.04 T T T T 1
0 0.1 0.2 0.3 0.4 0.5

1/R2 [nm?]

Figure 4 The symbols indicate the lattice constants of gold (Au) nanoparticles
at a temperature of 300 K in the (220) and (422) orientations as reported by
Soliard and Flueli in [15]. The curve is obtained using Eq. (26).

The presented data are the results measured at 300 K. The curve is obtained
using Eq. (26). The fitting equations with the smallest error are (ay = 4.0717 —
0.0714/D2 A, 6 = 0.00207) and (ao = 4.0682 — 0.0673/D2 A, ¢ = 0.00284) for
the (220) and (422) orientations, respectively. Likewise for Pt, Soliard and
Flueli in [15] have reported that the lattice constant depends on the inverse of
the diameter. For comparison, we also determine the fitting curve that varies
with the inverse of the diameter. The fitting equations with the smallest error are
(ao=4.0792 - 0.05126/D A, 6 = 0.00192) and (ay = 4.0755 — 0.04902/D A, c =
0.00226) for the (220) and (422) orientations, respectively. From these results,
we can conclude that fitting with the function that is inversely proportional to
the radius or inversely proportional to the square of the radius is acceptable.
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In Figure 5, the result of the measurement of the lattice parameters for the C
supported Pt (Pt/C) nanoparticles as reported by Leontyev, et al. [45] is
presented. The smallest error is achieved when the fitting equation is (ap =
3.9173 — 0.1170/D* A, 6 = 0.0040). In their report, Leontyev, et al. in [45] also
mentioned that the lattice constant depends on the inverse of the diameter.
Hence, we determine the fitting curve that varies with the inverse of the
diameter as proposed by Leontyev, et al. [45] and obtained (ap = 3.9247 —
0.06866/D A, 6 = 0.0212) as the fitting equation with the smallest error. It can
be seen that the result of fitting a function that varies with the inverse of the
square diameter as given by Eq. (26) gives a smaller standard deviation. In other
words, the result of fitting using Eq. (26) is more accurate than the result of
fitting using the equation that varies with the inverse of the diameter.

3.93
3.92
391 4

3.9 4

ag [angstrom]

3.89 -

3.88

3.87

T T T T T T |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1/R2 [nm?]

Figure 5 The symbols indicate the lattice constants of carbon-supported
platinum (Pt/C) nanoparticles as reported by Leontyev, et al. in [45]. The curve
is obtained using Eq. (26).

The symbols in Figure 6 indicate the measurement results of the lattice
parameters for ceria (CeO,) nanoparticles, as reported by Chen, et al. in [46],
who in their paper show that observation of a CeO, lattice expansion is highly
dependent on the preparation. The square symbols indicate the data for
nanocrystals synthesized with the micelle template method, while the circle
symbols are the data for nanoparticles synthesized with a simple reverse
precipitation method. The fitting curve that gives the smallest error for micelle
template particles is (ao = 5.4168 — 0.1066/D* A, 6 = 0.00071), while for simple
precipitated particles it is (ao = 5.4085 — 0.2284/D* A, o = 0.00146). It can also
clearly be seen here that the standard deviations obtained for both fittings are
very small, which proves that the proposed model is reasonably good in
explaining the experimental data.
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Figure 6 The symbols indicate the results of the measurement of the lattice
parameters for ceria (CeO,) nanoparticles as reported by Chen, ef al. in [46]. The
square symbols are the data for nanocrystals synthesized with the micelle
template method, while the circle symbols indicate the data for nanoparticles
synthesized with a simple reverse precipitation method. The curves are obtained
using Eq. (26).

In Table 1 we summarize the results of the measurements of the lattice
parameters from the aforementioned experimental data using Eq. (26). It is clear

that parameter a,(c0) refers to the lattice constant of a bulk material and, as we
have mentioned, # is a parameter that may be different for different materials.
Based on the discussions above we can deduce that the value of x actually
depends on the material, structure and lattice orientation.

Table 1 Results of Measurement of Lattice Parameters using the Proposed Model.

Material a,(©) (A) 4 (nm)
Pt (220) [15] 39260 0,0473
Pt (422) [15] 39170 0,0568
Au (220) [15] 40717 0,0714
Au (422) [15] 40682  0,0673

PYC [45] 39173 0,170

CeO, (micelle template) [46] 5,4168 0,1066
CeQ, (simple precipitated) [46] 5,4085 0,2284

4 Conclusion

We have successfully developed a model for predicting the fluctuation of
eigenstates of electrons in thin films. The equation that describe the effect of
film thickness or particle diameter on lattice constant variation has also been
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successfully established. The obtained equation can adequately explain several
experimental data expressing the variation of the lattice constant when the
particle size changes.
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