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Abstract. This article presents a new generalized algorithm for developing -
step (m + 1) derivative block methods for solving m'™ order ordinary
differential equations. This new algorithm utilizes the concept from the
conventional Taylor series approach of developing linear multistep methods.
Certain examples are given to show the simplicity involved in the usage of this
new generalized algorithm.
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1 Introduction

The main focus of numerical methods for solving differential equations in
recent times has been placed on presenting numerical methods with an
improved level of accuracy, ranging from first order ordinary differential
equations [1-3] to higher order ordinary differential equations [4-6]. Numerical
methods adopted to solve such ODEs have been developed using two popular
approaches, i.e. numerical integration and collocation. However, there is a need
to introduce new approaches to develop these numerical methods so that they
become easier and less burdensome compared to the conventional approaches.
Referring to the work of [7], three basic methods can be highlighted for
developing single linear multistep methods: numerical integration, interpolation
and Taylor series expansion. Although the derivations originally involved just
single multistep methods for first order ordinary differential equations, over
time the numerical methods evolved into a family of block methods and a
further improvement with the introduction of higher derivatives, sometimes
referred to as Obrechkoff type [8,9].

The aim of this article is to present a novel algorithm that is convenient to adopt
for developing new generalized algorithm k-step (m + 1)t derivative block
methods for solving any m*" order ordinary differential equations. This work is
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an extension of [10], which proposed a generalized algorithm for developing
block methods without the introduction of higher derivatives.

This article is organized as follows: Section 2 presents the generalized
algorithm for developing k-step higher derivative block methods with sample
second order and third order block methods developed in Sections 3 and 4
respectively. The basic properties of the block methods developed in Sections 3
and 4 are also highlighted. Certain numerical examples are considered in
Section 5 and the article is concluded in Section 6.

2 Generalized Algorithm for k-Step Higher Derivative Block
Methods

Considering the general form of mt" order ordinary differential equation
p =f(x,y,y',y",---,y('”‘l)), xela,b]

Extending the generalized algorithm presented by [10] for k-step block methods
to accommodate the presence of higher derivatives, the following algorithm is
presented for developing k-step (m + 1)t" derivative block methods for solving
mt" order ODEs.

k
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with corresponding derivatives obtained from
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and the conditionk > m is set to avoid an underdetermined system. The
unknown @, T, w and ¢ coefficients are obtained from

r -1
(¢§oa¢§1a”'7¢§kaT§07T¢|7"'7T§k) =4 B and



42 Oluwaseun Adeyeye & Zurni Omar
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To ascertain that there are no linearly dependent columns or rows (det(4) #
0), the rank of the matrix is investigated when developing the block methods.
Note that the approach in [7] for developing multistep methods using Taylor
series expansion is adopted to expand individual terms in Eq. (1) and Eq. (2) to
obtain the unknown coefficients. The conventional Taylor expansions concept is

defined for y™ = y™ (x,, + ah) about x,, as

2!

y(") (x” + ah) = y(") (xn ) + ahy(””) (xn ) + ﬂy(m) (xn ) 4. 4)

A more detailed explanation is given in the following subsections, where the
new generalized algorithm is used to develop k-step (m + 1)** derivative block
methods for (m, k) = (2,2) and (m, k) = (3,3).
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3 Development of Two-Step Third Derivative Block Methods for
Second Order ODEs

Consider developing a two-step third derivative block method for second order
ODEs, that is k = 2 and m = 2. Substituting k and m in Eq. (1) and Eq. (2)
gives

h
Voo = Z(i L Z(c@fw 8 ) E=1,2 (5)
i=0 -
and
2
yfy?g = yle) +Z(a)§i1fn+i + ¢)§ilgn+i )’ § = 1> 2 (6)

i=0

where a = 1.

Therefore,

yn+l = yn + hy(l) + (¢10f +¢11f;1+1 + ¢12~f;’1+2 + TIOg + TllgnJrl + TlZgVHZ)

Pz = V0 200 (B f 4 B S + B fos + T + T8 + T80 )

U]
yn+l y +( 101-fl.1 + wlll‘](rwl + wlZl‘](rHZ + ¢101g11 + q)lllgnﬂ + ¢121gn+2)

O _
yn+2 - yn + (wZ()lf;r + a)21] n+l to 22I-](n+2 + ¢201g + ¢2]lgn+] + ¢22lgn+2)

(7

Expanding y,,, using Taylor series yields:

y(xn)+hy“)(xn)+%y(”(n) B0 () + 4 ()

H 0 (e, )+ Ly () + 25D () o= ()
+hy(])(x)+{¢%o(y(2)(x,,)) Y (x,)+ i (x,)

U7 30 (x, )+ L 30 xn)+-~~)+¢12(y(2)(xn)+2hy(3) x,)
B0 (e, )+ B3 (x, )+ 13, (50 (3,)) + 2,00 ()
+hy(“)( x,)+ O (2,) 2O (3, )+ )+ 2,07 ()
120y (x, )+ 55 () + G5O (x, ) )

Equating coefficients of y™(x,,) on both the left- and right-hand sides of the
equation gives the following system of equations:

(n)
21 :¢10 +¢11 +¢12
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&:}wﬁn +2hg, +1,+7, +7,

W Wy e ¢12+hr +2hr,
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() (n) (2h (2h)3
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ﬂ_ h) ¢ (2h) ¢ (h) +ﬂr
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where truncation is made such that the number of unknowns equals the number
of equations. Rewriting Eq. (8) in matrix form Ax = B gives:

1 1 1 0 0 0 y U
0 A 2n 1 1 1 e
Gy ey % i
0 =5 3 0 h 2h ¢12 (’;)!4 (9)
() () e Ty
0 T 31 0 o || Do %
! ! ! ! -
(ny°  (2n) m' ewnt |\T 7
0 T 0 41 4 . %
1 1 1 0 O 0
0 A 2n 1 1 1
0 W & o 4 2
where 0 WG g W e has rank = 6, which implies that there
(' en' ('
0 T4 P 0 B 3!
(n'  (ny’ (n'
0 5 = 0 5= =~

are no linearly dependent columns or rows and the inverse exists. These
matrices correspond to the definitions assigned in Eq. (3) above and to obtain
the unknown coefficients, the matrix inverse approach is adopted to obtain

(¢ ¢ ¢ r ) _ (1B K K 59 8K 1k
105 PP Tios Tis T2) T\ T 26 sz 00 1050 1680 ) -

Following the same approach for y,,.,, the unknown coefficients are obtained
as:

(¢ ¢ ¢ r )T: 796 16K 19K 2K 16K 4k
20 Pa1s Pz Tags Tars Ty 105 2 15 2105 > 21 2 105 > 105 )
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Furthermore, in the case of obtaining the coefficients for y +1, the same
approach is followed as for y,,,; using Taylor series expansion to obtain:

;V(')(x)+hy(2)(X)+(hz—)fy(”(X) G () + 59 ()
HE O () + G () 4o =0 (3,) +Ho (07 (,))
40,0 (3, )+ iy (3, )+ 500 () + 500 () +--)
o, (0 (x,)+ 2 (x,)+ G5 (x,) + G50 (x,) +--)
400 (17 (x,)+ 0,07 (x,) 4 (x,) + 5550 (x,)

TROS y(s)(x")+ V0, 0% (x,)+ 2" (x,)
0 () + 55 (x) 4

Equating coefficients of ¥y (x,,) on both the left- and right-hand side of the
equation gives the following system of equations:

h = a)l()] +a)l]1 +a)l21

—

h 2
_) = ha) + 2h0) + ¢101 + (0111 + ¢121

h h
(33 oy ) w,, +=5- (2 ) o, +he,, +2he,, (10
' _ (2h) (h) c h)’
T C el 2 2 P T P
h) (n)! (2/;) (2h)
ST O T O, +_¢)111+ Dy
(»)° (h) (2h) ( (2’1)
o T s @y S 41 o Pt 41 7121
Rewriting Eq. (10) in matrix form Ax = B gives:
1 1 1 0 0 0 h
a)IOI (h)Z
0 ~h 2h 1 1 1 )
0w @ .
0 5- 5 0 A 24|, o
o oo W Y= ;) an
31 31 2 21 P e
o Wo&r oo & Lhjen| |
ny e ' ent \P ¢
0 5 51 0 41 41 o (?,
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which also corresponds to the definitions assigned in Eq. (3) above. The matrix
inverse approach is adopted to obtain the unknown coefficients as:

101k 8k 11h 134 /S W
(a)IOI’a)lll’a)217¢)101’¢111’¢121) (240 215 7 240 > 240 ° 62 80)

Similarly, the unknown coefficients for y , are obtained as:
( D O D )T — (2 1n 78 K (o _i
2012 772112 221’¢201’¢211’¢221 T\152 150152150 15

Substituting all obtained coefficients back in Eq. (7) gives the two-step third
derivative block method for solving second order ordinary differential equations
as:

Vou =¥, AW+ (131,471, + )+ 15(59g, —128¢,, —11g,.,),
Vor =¥, + 2y + (791, + 112, +19f,,, ) +45(10g, ~16g,,, —4g,.,)
YO =)0 (1017 4128, +117., )+ (13, —40g,, ~3g,.,).
Yo =y + £ (71,4164, +71,,)+ (2, - 2..)

4 Properties of the Two-Step Third-Derivative Block Method

The following properties of the two-step third-derivative block method are
discussed: order, zero-stability, consistency and convergence.

Following the definition of Equation (11), the individual terms of the two-step
third derivative block method are expanded using Taylor series expansions
about x = x,,. The order of the two-step third derivative block method is
obtained to be p = 6.

Secondly, to analyze the two-step third derivative block method for zero-
stability, the modulus of the roots of its first characteristic polynomial is
expected to be simple or less than one. Thus, the correctors of the two-step third
derivative block method are normalized to give the first characteristic

8 1)] with roots satisfying |r]| <1

polynomial as p(r) = det [rlz — (
The two-step third derivative block method is consistent if it has order p = 1 as
satisfied in the previous paragraphs. Therefore, the two-step third derivative
block method is convergent [12].
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5 Development of Three-Step Fourth Derivative Block Methods
for Third Order ODEs

Consider developing a three-step higher derivative block method for third order
ODEs, i.e. k =3 andm = 3.

Substituting £ and m in Eq. (1) and Eq. (2) gives:

h
m—Z(i) Z(@,fm, T8 )s §=1, 23 (12)

i=0

and

(1) Z(f) +1)+Z:(a)“f +0..8,. ) E=1,2,3
(13)
yik= Z((’gh) DY (0t + 08 ) E21 203

i=0
where a = 1,2.
W . ) (2) ¢10fn + ¢1|fn+1 + ¢|2fn+2 + ¢13fn+3
yn+1:yn+hyn +Tyn + s
+TlOgn + Tllgnﬂ + T12gﬂ+2 + Tl3gn+3

¢20f;z + ¢21f;1+1 + ¢22f;1+2 + ¢23fn+3 j

s
+2-20gn + TZIgn-H + z—22g'n+2 + T23gn+3
¢30~fn + ¢31~fn+1 + ¢32~fn+2 + ¢33f;:+3 j

s
+T30gn + T31gn+1 + T32gn+2 + 7'-33><gn+3

1 _ (1) 101f T, 111fn+1 + a)121fn+2 T 05/,
= ey ;
TP08, T Pin8un T P8zt P38

V., =V +2hy(l)+(2h) yn) (

Vo =V, +3hy +—= 3h) y2)+(

Oy [+ Oy [+ O [0 + 001 ]
9
T8, T 0211801 T P2218 042 T P2318043

y’(11+)3 _ y’(q1) + 3hy,(12) 4 (a)301f;’1 + 0y [+ O frin + Oy [ },
T80 T P31180i1t T P32180i2 T P3318043

y(z) _ y(z) + (wlozfn + O [ F O fria + Op fris )
n+tl = Yn s
T80 T Pr128nit T P28 T Pri328013

=+l
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(2) _ (z) zozf +a)212fn+1 +a)222f;1+2 T 0y /13
yn+2 - yn >
+¢202gn + ¢212gn+1 + ¢222gn+2 + ¢232gn+3

(2) _ (2) 302f to 312 n+l to 322 n+2 to 332 n+3
yn+3 - yn
+¢302g)1 + (0312gn+1 + ¢322gn+2 + (0332gn+3

(14)

For ypn41:
p () + 0 () Gy (x, )+ Ay () + G ()
50 (6, )+ (x5, )+ 2 50 (5, )+ 250 ()
H 0 ()= () i () + Sy (x,)
oo (07 (1)) 46,07 (x,) + 9 (x,) + 257 (x,)
OO () + 857 (x, )+ + 4,0 (x,) + 210 (x,)
+(2h (5)(x) (23}’,))/ ( )+2L) ym(xn)+--~)+¢l3(y(3)(xn)
30y (x, )+ 20O (1, )+ B () + S50 () +)
1, (09 () 7, 01 (3, )+ ) (x, )+ 40 (x, )
H 0 (e )+ 450 (x, )+ + 7,00 (v, ) + 2 ()
F O () + G0 ()+4,y”UJ+mhﬁdﬂ“UJ
30y (x, )+ 55O (1, )+ B () + S5 (x,) +-)

Equating coefficients of ¥y (x,,) on both the left- and right-hand side of the
equation gives the following system of equations:

(ny _
T_¢10+¢11+¢12+¢13
@ =he, +2hg, +3hp, +7,,+71,+7,+7,

W Oy Qg G ¢13+hr +2hr,, +3hz,,

(' (0 (2n) (3h )y (2h) (3n)y
T_T¢|1+ 31 ¢12 T 2l Tyt Tt o T

(21) 4, + (3h) 4, + (h) Lo (3h)

4! 1 3! 12 T

ﬂ_ (h) ¢
11

' (h (2h 2h)" 3h
W=y + g+ Sy W, B B

l 4! 12 4! 13
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(' _ o (2n)° (3h)° ()’ (2)’ (Y’
_=T¢11+ ¢12+T¢13+TT11+ Tt 51,

9! 6! 5! ! (15)
' _ (2n) (3n) (n) (2n)° (3n)°
10! _T¢11+ 7 ¢12+T¢13+ ot Tt T
Rewriting Eq. (15) in matrix form Ax = B gives:
1 1 1 1 0 0 0 0 L8
0 h 20 3k 1 1 1 1 |[%] |w
2 2 2 ¢ #
o W BBV g 5 2n 3h ¢“ 0%
N 12
(k) (20 (3h) (hY (20 (3h) 5
0 5 S 5 0 S S || W
4 4 4 3 3 3 = (16)
(n) (2h) (3h) (n) (2h) (3h) 7
0 4 4 4 0 T T T AT (};),
Y (20 (kY ' (2n)t Gy s
U e U e el AL B O
(n)  (2n)°  (3h) (nyY  (2h) Gy || T 5
0 6! 6! | 0 T 5 T TlZ %
() (@n @ (n)°  (2h)° (A 13 0
0 TN 71 7 0 6! 6! 6! (?g!
1 1 1 1 0 O 0 0
0 A 2h 3h 1 1 1
(n? (e’ (R’
0 5 5 5 0 & 2h  3h
(' (@n G () (21) (n)y
0 5 =5 =5 0 5 5 5 .
where 0 W e o W e ow has rank = 8, which
m P 4 T3 T3 Ta
(n  (r’ G (' en' G
O ? 5! T O T | 41
) (@n G Y (2nY ()
0 %% % « 0 5 5 S
) (2n) @) ) (en)’ @)
0 T 7 BET 0 6! 6! T

implies that there are also no linearly dependent columns or rows and the
inverse exists. These matrices likewise correspond to the definitions in Eq. (3).
The unknown coefficients are obtained below:

T
(¢IO’¢1]’¢12’¢13’T]0’T1]’T12’T13)

3 3

439h
544320 2 3360 > 20160 °> 272160 * 181440 10080 960 °> 18144

:(62387/;3 89 10314°  1879h* _ 359h* Rt a7kt )

Next the unknown coefficients for y,,,, and y, ., are obtained as:
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(¢20’¢21 ’¢22’ ¢23’ TZO’ T21 57229 23)
1724* 4nt 34h

:(504811‘ 1641° 4k 244k _ _

3 ant
8505 2 315 2 21 % 8505 > 2835 ? 15 ° 315 2 567

4

T
(¢30’ ¢3l’ ¢32’¢33’ T30’T3l’ T32’ z-33)

— ( 6571 2187h 2187h 174°

3sint  720nt 129t 274
448 2 1120 ° 2240 * 1120 > 2240 > 1120 > 2240 > 1120

In obtaining the coefficients for yn +1, Taylor series expansion is used, which
gives:

M (x, )+hy(2)(x,,)+(h2—)fy(”(X) S () + 859 ()
3 (o, )+ 407 () + B0 (3, )+ 50 () +--

=y”(x,,)+hy (x,)+1o, (07 (x,)) + 0,61 (x,)

iy (x,)+ 400 (x,) + & y(“(x )+ (x,) 4+
40, 07 (x,)+ 20 () + 55 (x,) + G550 ()
B0 (x,) 40+ @, 0 (x,) + 300 (x, ) + 225 99 (x,)
By () + 5507 (3, )+ 9 + 00 (09 (5,)) + 0,01 ()

+hy(5)(xn)+%y(6)(ﬂ S () + 5 (3, )+

+¢’121(y(4)(x,,)+2hy(5( )+ () + 85 ()

+2 - yg)( ")+~-«)+(pm(y4)(xn)+3hy(5)(x")+%y6)(x")
Sy () + 5590 (x,) 43

Equating coefficients of y™ (x,,) gives:
% =, + [ + @y, + @5,

h 3
Q = ha) + 2ha)121 + 3ha)]31 + ¢101 + ¢]1I + ¢I21 + ¢13]

(' _ @ (21)’ (3”)

T Oy T @y @y + h(om + 2h(/7121 + 3}140131

(1 _ ) (2n)’ [N (Zh) (3h
I T C P T T O zl ¢111 2 Pt o P
(OO (2h)“ (311) (211) 3a)

[Tl a)111+ 41 + l (Dlll ¢)121+ 3! (0131
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(1 _ @ (2n)’ (3n)y (n)' (2n)’ (€N

T O TS O TS O T Oy T Py T P

() _ o (2n)° Gn) (n)’ 2y’ (3n)’

ST e Ot Oyt O 5P S P TS P (17)
1 _ (2n)’ @n) (h)° (2h)° (3h)°

T O T Oy T Oy T Pyt Pt Py

Rewriting Eq. (17) in matrix form Ax = B gives:

11 1 1 0 0 0 0 i

0 h 20 3 1 1 1 1 |[%] |w

31

) ) [0)

o W B G o 4 o2p 3| V| |w

. , , |l @ #

o & G- &L oo G gL i) e
! : ! : 131 | | s (18)

(' ent e (O D) - o

0 2 4 P 0 3 3! 3 || P (2

(n’  (ny () (' en' e 7

0 s 51 TS 0 P 4 T Pin (l;)l

(m° @n G oy e ey || P 5

0 6! 6! 6! 0 s 51 51 (0121 %

(@ @) () (' G 131 o

0 - 71 71 0 5 6! 6! (l;)!

corresponding to the definitions in Eq. (3). The values of the unknown
coefficients are given below:

T
(a)lol’a)lll’wlﬂ’w13l’¢)101’¢1117¢)121’(0131)

3

— (19519 13014 181h® 3320A7 370K _ 313K _ 89K’ _ 137K
68040 ° 10080 > 2520 * 272160 * 12960 > 2520 > 2016 > 45360

Similarly, the unknown coefficients for ng)z and yT(Li_)3 are obtained as:

T
(a)ZOl 2 a)le’ a)221’ a)23l’ ¢201 2 ¢211 2 ¢221’ ¢231)

:(5731;,2 2064 109K 344K>  2606K° 20K _ 52K’ 4h3)

8505 > 315 2 315 ° 8505 > 2835 2 63 2 315 > 405

T
(a)SOI 2 Co}ll 2 a)321 ’ w}}l s ¢301 s ¢311 s ¢321 ’ ¢331 )

:(6()3112 20871 729K 27K 274 2430°  _ 243K° _9h3)

560 % 1120 > 560 > 160 °> 224 ° 560 1120 > 280

while the coefficients for y(z) @ and y,(li)3 are obtained as:

n+1’ yn+2

T
(0)102 4 0)112 4 a)122 > a)132 ? ¢102 2 ¢112 ? ¢122 2 ¢l32 )

=(6893h 3134 89h 397h 1283k _ 851h%

269K 163K
18144 ° 672 ° 672 ° 18144 > 30240 > 3360 > 3360 > 30240
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T
(a)202 2 a)212 ’ a)222 ’ a) 2322 ¢202 ’ ¢212 2 ¢222 i ¢232 )

:(22311 206 13h 20h 43K 16K 19K _s/f)

567 % 21 % 21 %567 % 945 ° 105 ° 105 > 945

T
( 302 4 312 4 322 4 a)332 2 ¢302 ? ¢312 2 (0322 > ¢332 )

— (93h 243h 243h 93k 57H° _ 8L 81 _ 57k
2242 224 % 224 222421120 > 1120 > 1120 > 1120

Substituting all obtained coefficients back in Eq. (14) gives the three-step fourth
derivative block method for solving third order ordinary differential equations

as:
@) (623871, + 144181, +11853f, , +2062f. )

_7371gn+2 _Slogn+3)’

yn+| y +hy(1)+ 21 y
—(5637g, —19386¢

544320 n+l

yn+2 y o+ 2kl 4 20y (5048 f, + 44281, +1620f., +244f, )

2!

544320 (516g - 2268gn+l _918gn+2 - 6Ogn+3 )7

Yy =y, 300+ LG (3085 ¢ 14374 +2187f, +2341.)

—(351g, —1458g,,-729g,., —54g, ., ),

(78076 f, +35127f, , +19548f. , +3329f. )
272160(7791g —33804g,,, —12015g, , —822g, .),

yfjjz =y 2my® 4 (5731f, +7992 1, +2943 1, +344f. )
272160 (618g _2700g - 1404gn+2 _84gn+3 )’

YW=y 4 3my?) £ (1206 £, + 2187 f,, +1458f., +1891. )
272160(135g 486g +1 243g +2 36gn+3)

Y =y 4 (34465 + 4221, +19548 1., +33291,.,)
272160(7791g —33804g,,, —12015g, , —822g, .),

Y =y 4 (5731f, 479921, +2943f, +344 . )
272160(618g _2700g +1 1404g +2 84g +3)

yg; y )+ (1206, + 2187 f, , +1458f. , +189f. .)

(135g —486g,., —243g, ,—36g,.,)

544320

W=y ey 4

n+l

272 160
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6 Properties of the Three-Step Fourth-Derivative Block Method

The following properties of the three-step fourth derivative block method are
discussed: order, zero-stability, consistency and convergence.

Following the same approach as the two-step third derivative block method, the
correctors of the three-step fourth derivative block method are also expanded
using Taylor series about = x;,. The order of the three-step fourth derivative
block method is obtained to be p = 8.

Secondly, to analyze the three-step fourth derivative block method for zero-
stability, the modulus of the roots of its first characteristic polynomial is
expected to be simple or less than one. Thus, the correctors of the three-step
fourth derivative block method are normalized to give the first characteristic

0 0 1
polynomial as p(r) = det lr13 — (0 0 1)] with roots satisfying |r]| <1.
0O 0 1

The three-step fourth derivative block method is consistent if it has order p > 1
as satisfied in the previous paragraphs. Therefore, the three-step fourth
derivative block method is convergent [12].

7 Numerical Examples

This section considers certain linear and non-linear second and third order
ordinary differential equations. The developed methods in Sections 3 and 4
above are adopted to solve these ODEs (encompassing both initial and
boundary value problems) and a comparison is made with previous works.

Problem 1. Consider the non-linear second order initial value problem
" 1 2 1
¥ —x(y ) = O,y(O) =1,y (0) =1, X€ [0,1]

with exact solution: y = 1 + %lﬂ (g)

This initial value problem was compared with [9], where a hybrid order six
block method was presented with h = ﬁ as presented in Table 1. The common

ground for comparison is in terms of the order of the block methods since the
two-step third-derivative block method and the hybrid block method presented
by [9] are both of order six.

Problem 2. Consider the linear second order initial value problem
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yes ey =0, y(1) =1y (1) =1, xe[0mN]

. . 5 2
with exact solution: y = Fyel

The number of steps (N) considered for this initial value problem is N = 10
with respect to the selected step-size h = %. The results as displayed in Table

2 were compared to the solution obtained by order six hybrid block method
presented by [13]. The block method compared to [13] is the order six two-step
third-derivative block method.

Problem 3. Consider the non-linear second order boundary value problem
y'=(32+22 —yp").y(1)=17.9(3) =2, x[1L,3]
with exact solution: y = x* + 1

The boundary value problem defined here was solved by [14] using an order six
self-starting block method and h = 0.1. Thus, since the basis for comparison is
the equal order of the methods, the suitable block method is the two-step third-
derivative block method. The details of the results obtained can be seen in
Table 3.

Problem 4. Consider the special third order initial value problem

y"=-,3(0)=1y"'(0)=-1»"(0)=1 x[0,1]

with exact solution: y = e™*.

This third order IVP was compared with [4] in which the authors present an
order eight block method with h = 0.1. Table 4 shows the comparison of the
method in [9] with the order eight three-step fourth-derivative block method.

Problem 5. Consider the non-linear third order boundary value problem
y"=-2¢" +4(1+x)",»(0)=0,y'(0) =L, y(1) =In2, x €[0,1]
with exact solution: y = In(1 — x).

The third order BVP defined here was solved by [15] using an order eight block
method and compared with the three-step fourth-derivative method also of order
eight. The step-size 4 for this problem varied with respect to the number of
steps (V) as shown in Table 5. The maximum error (MAXE) at the boundary
x = 1 was recorded for N = 7,14,28,56.
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Table 1 Comparison of the Two-Step Third Derivative Block Method with [9]
for Solving Problem 1.

X Exact Solution Computed Solution Error [9] Error (TSTD)
0.1 1.0500417292784914 1.0550555592082120 6.661338E-16 2.220446E-16
0.2 1.1003353477310756 1.1003353477310753 1.332268E-15 2.220446E-16
0.3  1.1511404359364668 1.1511404359364668 4.440892E-16 0.000000E+00
0.4 1.2027325540540823 1.2027325540540821 1.332268E-15 2.220446E-16
0.5 1.2554128118829952 1.2554128118829952 3.774758E-15 0.000000E+00
0.6 1.3095196042031119 1.3095196042031116 1.065814E-14 2.220446E-16
0.7 1.3654437542713964 1.3654437542713957 2.642331E-14 6.661338E-16
0.8 1.4236489301936019 1.4236489301936006 5.861978E-14 1.332268E-15
0.9 1.4847002785940520 1.4847002785940489 1.265654E-13 3.108624E-15
1.0  1.5493061443340550 1.5493061443340488 2.711165E-13 6.217249E-15
CPU Time N/A ~ (.59 secs

Note: TSTD: Two-step third derivative block method.

Table 2 Comparison of the Two-Step Third Derivative Block Method with

[13] for Solving Problem 2.

X Exact Solution Computed Solution Error [13] Error (TSTD)
1.003125 1.0030765258576961  1.0030765258576961  N/A 0.000000E+00
1.006250  1.0060575030835164  1.0060575030835164 N/A 0.000000E+00
1.009375 1.0089449950888376  1.0089449950888376  9.661126E-08  0.000000E+00
1.012500 1.0117410181679887  1.0117410181679887  9.425732E-08  0.000000E+00
1.015625 1.0144475426864139  1.0144475426864139  9.197108E-08  0.000000E+00
1.018750 1.0170664942356729  1.0170664942356726  8.975049E-08  2.220446E-16
1.021875 1.0195997547562881  1.0195997547562876  8.759359E-08  4.440892E-16
1.025000 1.0220491636294322  1.0220491636294318  8.549846E-08  4.440892E-16
1.028125 1.0244165187384029  1.0244165187384029  8.346327E-08  0.000000E+00
1.031250 1.0267035775008062  1.0267035775008062  8.148622E-08  0.000000E+00
CPU Time N/A = 0.06 secs

Note: TSTD: Two-step third derivative block method.

Table 3 Comparison of the Two-Step Third Derivative Block Method with

[14] for Solving Problem 3.

X

Exact Solution

Computed Solution

Error [14]

Error (TSTD)

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
22
23
2.4
2.5

15.755454545454546
14.773333333333333
13.997692307692306
13.388571428571428
12.916666666666666
12.559999999999999
12.301764705882352
12.128888888888888
12.031052631578946
12.000000000000000
12.029047619047619
12.112727272727273
12.246521739130435
12.426666666666666
12.650000000000000

15.755455083760621
14.773334073676603
13.997693050796402
13.388572125044842
12.916667287517622
12.560000544356562
12.301765175115765
12.128889289986821
12.031052970831665
12.000000284503839
12.029047854947255
12.112727465928481
12.246521894771508
12.426666789477615
12.650000094140001

1.50E-06
3.97E-07
8.12E-08
1.57E-06
1.83E-06
1.79E-06
1.58E-06
7.93E-07
1.07E-06
1.07E-06
6.42E-07
1.27E-06
2.18E-07
1.84E-06
3.82E-07

5.383061E-07
7.403433E-07
7.431041E-07
6.964734E-07
6.208510E-07
5.443566E-07
4.692334E-07
4.010979E-07
3.392527E-07
2.845038E-07
2.358996E-07
1.932012E-07
1.556411E-07
1.228109E-07
9.414000E-08
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X Exact Solution Computed Solution Error [14] Error (TSTD)
2.6 12.913846153846155 12.913846223094138 1.86E-06 6.924798E-08

2.7 13.215925925925927 13.215925973633468 1.35E-06 4.770754E-08

2.8 13.554285714285715 13.554285743482653 1.22E-06 2.919694E-08

2.9 13.927241379310345 13.927241392694905 2.75E-06 1.338456E-08

3.0 14.333333333333336 14.333333333333336 0.000000 0.000000E+00
CPU Time N/A ~ (.12 secs

Note: TSTD: Two-step third derivative block method.

Table 4 Comparison of the Three-Step Fourth

[4] for Solving Problem 4.

Derivative Block Method with

Computed Solution

Error [4]

Error (TSFD)

0.90483741803595963
0.81873075307798204
0.74081822068171832
0.67032004603564022
0.60653065971263520
0.54881163609402939
0.49658530379141408
0.44932896411722822
0.40656965974060832
0.36787944117145466

2.138401E-12
6.055156E-13
7.395751E-12
2.158163E-12
1.484579E-11
1.098521E-11
3.142886E-11
2.309530E-11
5.154149E-11
8.200535E-11

1.110223E-16
2.220446E-16
5.551115E-16
8.881784E-16
1.776357E-15
2.997602E-15
4.607426E-15
6.661338E-15
9.270362E-15
1.243450E-14

X Exact Solution

0.1 0.90483741803595952
0.2 0.81873075307798182
0.3 0.74081822068171777
0.4 0.67032004603563933
0.5 0.60653065971263342
0.6 0.54881163609402639
0.7 0.49658530379140947
0.8  0.44932896411722156
0.9 0.40656965974059905
1.0 0.36787944117144222
CPU Time

N/A

~ (.06 secs

TSFD: Three-step fourth derivative block method.

Table 5 Comparison of the MAXE for the Three-Step Fourth Derivative Block
Method with [15] for Solving Problem 5.

Computed Solution

MAXE

N Exact Solution (TSFD) CPU Time MAXE (TSFD) [15]
7 0.69314718055994529  0.69314718055994529 =~ 0.10 secs 0.000000E+00 5.24E-09
14  0.69314718055994529  0.69314718055994529 ~ (.15 secs 0.000000E+00 2.39E-11
28  0.69314718055994529  0.69314718055994529 ~ 0.30 secs 0.000000E+00 9.50E-14
56  0.69314718055994529  0.69314718055994529 ~ 0.61 secs 0.000000E+00 3.62E-16
Note: TSTD: Two-step third derivative block method, TSFD: Three-step fourth derivative
block method, N: Number of steps, MAXE: Maximum error, N/A: Not available.
8 Conclusion

This article presented a new approach to developing block methods for solving
mt" order ordinary differential equations with the presence of (m + 1)**. The
generalized approach is seen to be quite flexible as the algorithm can
simultaneously produce block methods of step length & for solving any order m
of ordinary differential equations. The sample methods developed using this
new approach were seen to satisfy the basic properties to ensure convergence
and their accuracy is also displayed (see Tables 1-5). Thus, this new generalized
approach is quite suitable for developing block methods for solving higher order
ODEs.
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