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procedures by means of Single Photon Emission Computed Tomography 
(SPECT) modality. The most widely applicable technique for Tc-99m 
production is by bombarding natural molybdenum targets consisting of Mo-98 
atoms using neutrons generated from nuclear reactors via a 
98Mo(n,γ)99Mo→99mTc nuclear reaction. The direct result of the bombardment is 
Mo-99, which immediately decays into Tc-99m; thus, an Mo-99/Tc-99m 
generator is required for extracting Tc-99m properly to meet radiochemical 
purity requirements. Nevertheless, due to the declining number of available 
nuclear reactors capable of such production and tight regulations related to 
uranium enrichment, reports on Tc-99m supply shortages have emerged [5-6]. 
The supply shortages have caused the price of Mo-99/Tc-99m generators to 
soar. A new method of cyclotron-based Tc-99m production has therefore been 
proposed to tackle these Tc-99m supply shortages [7-8].  

Recent theoretical calculations [9] suggest that as much as 42.18 GBq/uA.hr can 
be produced from 11-MeV proton irradiation of enriched 100Mo targets at the 
end of bombardment, while experimental studies highlighted the possibility of 
generating high yields of Tc-99m using medium- and high-energy cyclotrons 
[10-11]. Nevertheless, no reports have been published on the commercial use of 
cyclotron-based Tc-99m radionuclide due to the low Tc-99m yield as well as 
radionuclide impurities produced during bombardment. 

Gaining a better understanding of all radionuclides produced during proton 
irradiation of molybdenum targets is therefore of paramount importance. In this 
experimental study, the temporal evolution of the post-irradiated MoO3 
spectrum was evaluated in order to observe changes in the presence of all 
produced radionuclides. Furthermore, in this paper we only concentrated on the 
analysis of the Tc-99 spectra produced from an 11-MeV proton bombardment. 
Further studies, particularly on the produced Tc-99m in the form of 
pertechnetate, Tc O4 (including its practical use), will be discussed in another 
paper. To the best of the authors’ knowledge, there no publication has yet 
reported a detailed spectral analysis of the produced Tc-99m and the impurities 
following 50 days of irradiation. The outcomes of this research are useful for 
Tc-99m production as well as for safety concerns regarding long-lived 
radionuclides. In addition, no Tc-99m has previously been produced using an 
11-MeV cyclotron. 

2 Experimental Set-up 

2.1 Target Preparations 

As much as 1.1 gram MoO3 powder (purchased from Sigma-Aldrich Germany) 
was pressed into a solid disk of 1.8 cm in diameter and 0.3 cm thick using a 30-
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N hydraulic presser. The solid MoO3 target was then heated in a furnace at a 
constant temperature of 600 °C for 3 hours to remove vapors and other possible 
watery impurities. The final product of this target preparation was a clear white 
disk of MoO3. In this experiment, the natural molybdenum consisted of several 
Mo atoms, including Mo-92 (14.84%), Mo-94 (9.25%), Mo-95 (15.92%), Mo-
96 (16.68%), Mo-97 (9.55%), Mo-98 (24.13%), and Mo-100 (9.63%). 

2.2 Target Irradiation 

The disk target of MoO3 was placed in an aluminum-based target holder so that 
the proton beam would hit the target perpendicularly during irradiation of the 
target, which was performed using an 11 MeV cyclotron at Dharmais Cancer 
Hospital in Jakarta. The 11 MeV proton beams bombarded the MoO3 target at a 
constant beam current of 20 µA. During the bombardment, the proton dose was 
varied by varying the irradiation time from 2 minutes to 5 minutes, resulting in 
proton doses between 0.67 and 1.67 µAh. The general proton irradiation 
procedure was performed using an 11 MeV cyclotron has been discussed 
previously in [12]. 

2.3 Target Dissolving 

The post-irradiated MoO3 target was dissolved in a solvent containing 6M 
NaOH, followed by mixing the solution using a magnetic stirrer at a speed of 
1000 rpm for 15 minutes. The final solution after dissolving was visibly clear.  

2.4 Target Analysis 

The radioactivities of the solid MoO3 as well as the NaOH-dissolved MoO3 
target were measured using a portable gamma ray spectroscopy system, which 
had been described elsewhere [12-13]. The measurement was performed by 
sampling 10 µL of the NaOH-dissolved MoO3 solution for a counting time of 5 
minutes for each sample, and each spectrum was analyzed after background 
subtraction. For radioactive impurity measurement, gamma ray detection was 
carried out from 2 hours after the end of bombardment (EOB) to 50 days after 
the EOB to obtain the temporal evolution of the NaOH-dissolved MoO3 

spectrum.    

3 Results and Discussion 

3.1 Spectral Analysis of Post-Irradiated MoO3 

The gamma ray spectrum of the proton-irradiated solid MoO3 target observed 2 
hours after the end of the bombardment is shown in Figure 1, which indicates 
that apart from the intensity, there was no significant difference in the energy of 
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the gamma rays recorded for two different proton doses (0.67 and 1.67 µAh). 
The relatively strong gamma rays at 0.181 MeV correspond to the Mo-99 peak. 
Two possible nuclear reactions for Mo-99 production in this experiment can be 
explained as follows:  

1. Direct Mo-99 production via 100Mo(p,d)99Mo nuclear reactions. According 
to the TALYS code calculations performed previously [9], while the proton 
threshold energy for such a nuclear reaction to occur is only 6.1 MeV, this 
typical nuclear reaction is very likely undetectable due to very low nuclear 
cross-section at the 11 MeV proton beam, which is theoretically only 
7.5 × 10-3 mbarn. The presence of a 100Mo(p,d)99Mo nuclear reaction has 
been suggested by Lebeda and co-workers [14] since they employed 18-
MeV proton beams in their investigation. For 18-MeV proton beams, the 
nuclear cross-section is theoretically 107.6 mbarn, which potentially causes 
a 100Mo(p,d)99Mo nuclear reaction to occur.        

2. Since secondary neutrons are also generated during the proton 
bombardment of the MoO3 target, Mo-99 could also potentially be 
produced via a 98Mo(n,γ)99Mo nuclear reaction. Again, based on the 
TALYS calculated results [9], such a nuclear reaction is very likely to 
occur due to high nuclear cross-sections for slow to fast neutrons. Thus the 
most possible nuclear reaction for Mo-99 generation in this experiment was 
98Mo(n,γ)99Mo. 

 
Figure 1 The gamma ray spectrum of the proton-irradiated solid MoO3 after 2 
hours of decay for proton doses of 0.67 (red line) and 1.67 µAh (blue line).  

Another pronounced peak, at 0.511 MeV, is presumably due to gamma rays 
emitted by nitrogen-13 (N-13) radionuclide. The presence of N-13 relates to the 
oxygen-16 (O-16) content in the MoO3 target, which undergoes a 16O(p,α)13N 
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nuclear reaction when proton beams hit the target. The unstable N-13 emits 
positron (β+) particles that immediately interact with free electrons around them 
and then are annihilated by emitting gamma rays at 0.511 MeV. With a half-life 
of 9.97 minutes, the N-13 impurity is expected to vanish after a few hours 
decay.   

Also in Figure 1, slightly weak intensity can be observed at 0.739 MeV, which 
is emitted by Mo-99, while the very strong peak at 0.850 MeV is presumably 
due to Tc-96 radionuclide following 96Mo(p,n)96Tc and 97Mo(p,2n)96Tc nuclear 
reactions. Both nuclear reactions are possible since their threshold energies are 
3.830 MeV for the 96Mo(p,n)96Tc reaction and 10.687 MeV for the 
97Mo(p,2n)96Tc reaction, respectively. The identified Tc-96 is also supported by 
the weak gamma ray intensity at 1.127 MeV. This result agrees with previous 
theoretical calculations [9] and a previous experimental investigation [14]. Note 
that at this point, Tc-99m is weakly detected due mostly to self absorption of the 
emitted gamma ray by the solid MoO3. 

 
Figure 2 The gamma ray spectrum of the NaOH-dissolved MoO3 after 2 hours 
of decay for proton doses of 0.67 and 1.67 µAh.  

Compared to the solid MoO3 spectrum, there was a slight difference in the types 
of radionuclides detected in the NaOH-dissolved MoO3, particularly the 
presence of the Tc-99m spectrum at 0.140 MeV, as can be seen in Figure 2. 
Moreover, the intensities of Mo-99 at 0.181 and 0.740 MeV looked more 
pronounced in the solution. Self absorption of Mo-99 gamma rays clearly 
occurred in the solid MoO3, resulting in lowering Mo-99 intensity before the 
post-irradiated target was dissolved in the NaOH solution. Another interesting 
feature is that the Tc-96 intensity was higher with increasing proton dose.  
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At a proton dose of 1.67 µAh, as much as 0.84 ± 0.05 µCi of Tc-99m was 
recorded 2 hours after the EOB, while 0.87 ± 0.04 µCi of Mo-99 was detected 
at the same time. The almost identical amounts of Mo-99 and Tc-99m 
radioactivity observed in the experiment indicate that the Tc-99m measured 
comes from both Mo-99 decay as a result of a 98Mo(n,γ)99Mo→99mTc nuclear 
reaction and direct production of Tc-99m via a 100Mo(p,2n)99mTc nuclear 
reaction.  

According to the Mo-99/Tc-99m equilibrium equation, the radioactivity ratio of 
daughter radionuclide (Ad) and parent radionuclide (Ap) depends on the decay 
constants of the daughter (λd) and the parent (λp), which can be calculated as 
follows: 

 
஺೏஺೛ = ఒ೏ఒ೏ିఒ೛ ቀ1 − ݁ି൫ఒ೏ିఒ೛൯௧ቁ, (1) 

where t is the decay time. 

In the case of Mo-99/Tc-99m, by substituting λd = 0.1155 hour-1, λp= 0.0105 
hour-1, and t = 2 hours, one can immediately obtain that the radioactivity ratio of 
Tc-99m to Mo-99 as a result of Mo-99 decay is theoretically 20.84%. However, 
the experimental ratio was found to be 96.55%, which indicates that the 
majority of the Tc-99m (75.71%) generated in the experiment reported here was 
due to direct production of Tc-99m via a 100Mo(p,2n)99mTc nuclear reaction.    

3.2 Temporal Evolution of MoO3 Spectrum  

In order to better understand the produced Tc-99m and the radionuclidic 
impurities in the NaOH-dissolved MoO3, careful observations were carried out 
from day 1 to 50 after the end of the bombardment. The recorded spectra are 
shown in Figure 3 and 4, which surprisingly indicate significant amounts of 
another radionuclidic impurity not observed shortly after the EOB. As can be 
seen in Figure 3, the remaining radionuclides detected in the NaOH-dissolved 
MoO3 solution were dominated by Mo-99 over weaker intensity of Tc-96. As 
predicted earlier, N-13 radionuclide was no longer observed after 1 day of 
decay since its half-life is 9.97 minutes.     

The new radionuclidic impurity discovered in this investigation was Nb-96, 
which gave rise to the pronounced peak at 0.569 MeV, as shown in Figure 4. 
The Nb-96 peak emerged as a result of lower background radiation after several 
days of decay. The presence of Nb-96 (half-life = 23.35 hours) in this 
experiment agrees with previous investigation [14], which is possibly due to 
97Mo(p,2p)96Nb (threshold energy = 9.321 MeV), 98Mo(p,He-3)96Nb (threshold 
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energy = 8.488 MeV), and 100Mo(p,αn)96Nb nuclear reactions (threshold energy 
= 3.575 MeV).  

 
Figure 3 The gamma ray spectrum of the NaOH-dissolved MoO3 after 1 day 
and 6 days of decay.  

 
Figure 4 The gamma ray spectrum of the NaOH-dissolved MoO3 after 20, 34 
and 50 days of decay.  

After radioactive decay of over 20 days, 4 radionuclides (Tc-99m, Mo-99, Nb-
96 and Tc-96) were detected in the NaOH-dissolved MoO3 solution, while N-13 
had completely decayed, as can be seen in Figure 3. Details of the observed 
radionuclides following a 2-hour to 50-day cooling period of the NaOH-
dissolved MoO3 target is given in Table 1.  

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5
x 10

4

Energy (MeV)

In
te

ns
ity

 (
C

ou
nt

s)

Back
scatters

99Mo

99Mo

6 day decay

1 day decay

96Tc

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1000

2000

3000

4000

5000

6000

7000

Energy (MeV)

In
te

ns
ity

 (
C

ou
nt

s)

34 day decay

99Mo

96Nb

99Mo

96Tc

20 day decay

50 day decay
99mTc



 Proton-Irradiated MoO3 for Technetium-99m Production 229 
 

Table 1 Radionuclides recorded from proton-irradiated MoO3 following 2 
hours to 50 days of decay. 

Radionuclide 
Gamma energy 

(MeV) 
Half-life Nuclear reaction 

Threshold energy 
(MeV) 

Tc-99m 0.140 6 h 100Mo(p,2n)99mTc 7.793 

Mo-99 
0.141 
0.181 
0.740 

65.95 h 98Mo(n,γ)99Mo 6.126 

N-13 0.511 9.97 m 16O(p,α)13N 5.547 

Tc-96 
0.850 
1.127 

4.28 d 
96Mo(p,n)96Tc; 
97Mo(p,2n)96Tc 

3.795 
10.687 

Nb-96 0.596 23.35 h 

97Mo(p,2p)96Nb; 
98Mo(p,He-3)96Nb; 

100Mo(p,αn)96Nb 

9.322 
10.255 
3.828 

According to Polatom, the price of an imported Mo-99/Tc-99 generator is Rp 32 
million (USD 2,265) for 400 mCi or Rp 80,000 (USD 57) per mCi. If it is 
produced locally at Dharmais Cancer Hospital in Jakarta it would cost Rp 
37,500 (USD 2.65) per mCi. In order to produce a more competitive Tc-99m 
supply it is recommended that Tc-99m is locally produced using a cyclotron 
since the price of a new cyclotron is much lower than that of a new nuclear 
reactor. In addition, the new cyclotron should be a medium energy cyclotron 
(15-30 MeV). 

4 Conclusion 

Experimental production of Mo-99/Tc-99m radionuclide was carried out by 
bombarding a solid MoO3 target with 11-MeV proton beams at variable proton 
beam currents. Using a portable gamma ray spectroscopy system, several 
radionuclides were detected, i.e. Tc-99m, Mo-99, N-13, Tc-96 and Nb-96. Due 
to the short half-life of only 9.97 minutes, the N-13 radionuclide decayed 
completely after a cooling period of 1 day, while the other radionuclides were 
still observed after 50 days of decay. The experimental data also indicate that 
nearly 75.71% of the Tc-99m detected in this experiment were a result of direct 
production of Tc-99m via a 100Mo(p,2n)99mTc nuclear reaction, while the rest of 
the Tc-99m radioactivity came from a 98Mo(n,γ)99Mo→99mTc nuclear reaction. 
Instead of irradiating a natural Mo target, future research is suggested to use 
enriched 100Mo target for a higher Tc-99m yield as well as reducing the number 
of radioactive impurities. 
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