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Abstract. MHD free convective flow with oscillations of an infinite non-
conducting vertical flat surface through a porous medium with Hall current in a 
rotating system was studied. The governing equations of the model were 
converted into dimensionless form. Analytical solutions for velocity and 
temperature were obtained with the help of the Laplace transform method. 
Graphs and tables are used in this paper to show the influence of various 
parameters on temperature, skin friction and velocity. It was observed that 
changes in plate oscillation, porous medium, radiation and Hall current have 
significant effects on fluid motion. Further, the skin friction near the surface is 
increased by the radiation parameter. The results obtained have large 
implications in the engineering and science fields. 
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1 Introduction 

The flow past a semi infinite flat plate is a well known model in fluid dynamics. 
Stewarton [1,2] have done significant studies to find out the nature of the flow 
in the boundary layer. The effect of the magnetic field on flow has large 
implications in the development of devices such as magnetohydrodynamic 
generators, MHD pumps, heat exchangers, nuclear reactors, oil exploration, etc. 
In recent years, substantial analysis has been done in the study of factors that 
affect MHD boundary layer flow. For instance, a model that includes the effects 
of radiation and mass transfer on an impulsively started infinite vertical plate 
was studied in Prasad, et al. [3]. They solved the model using a finite-difference 
method and observed that the velocity of the flow decreased in the boundary 
layer when the radiation parameter was increased. Sharidan, et al. [4] have 
investigated the effects of radiative heat and mass transport on time dependent 
MHD convective flow through a porous medium past an infinite plate with 
ramped plate temperature. They obtained analytical solutions for the velocity, 
temperature and concentration fields by using an integral transform technique 
and found that increasing the inclination angle and radiation decreases the fluid 
velocity along the plate.  Recently, an analysis of unsteady MHD Eyring-Powell 
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squeezing flow in a stretching channel was studied by Ghadikolaei, et al. [5]. 
They have also studied [6] the thermal radiation effect on a magneto Casson 
nanofluid over an inclined porous stretching sheet. They found that the 
temperature in the system increases with an increase in radiation. Further, 
considerable interest has been shown by researchers in the effects of heat 
generation/absorption in moving fluids with convection for heat and mass 
transfer. Some of these studies are mentioned here. MHD flow of a uniformly 
stretched vertical permeable surface in the presence of heat 
generation/absorption was studied by Chamka [7]. Makinde and Mhone [8] 
analyzed the combined effects of a transverse magnetic field and radiative heat 
transfer. Recently, a numerical investigation on ethylene glycol-titanium 
dioxide nano-fluid convective flow has been conducted by Hosseinzadeh, et al. 
[9]. Further, two important models related to MHD free convective flow past an 
infinite vertical flat surface have been analyzed by Rajput and Gaurav [10] and 
Prasad, et al. [11]. 

Reports on heat transfer and hydrodynamic characteristics of rotating flows 
have been published by Rajput and Shareef [12], Soong and Ma [13], Soong 
[14], Greenspan [15], Muthucumaraswamy, et al. [16], and Owen and Rogers 
[17]. A number of similar models [18-23] that have been studied are mentioned 
in the reference section. 

The model under consideration is solved by the Laplace transform technique. 
The results are explained using graphs and a table. The table contains data 
related to skin friction. 

2 Mathematical Analysis 

Let the X-axis be taken along the plate and Z normal to the plate. The fluid and 
the plate rotate together as  a  rigid body with a uniform angular velocity Ωഥ 
about the Z-axis. A uniform magnetic field 𝐵௢ [Tesla] is applied along the Z-
axis. As the plate occupying the plane Z = 0 is of infinite extent, all the physical 
quantities depend only on Z and time 𝜏 [sec]. Initially, at time 𝜏 ൑ 0, the plate 
and the fluid are at rest, and at a uniform temperature, 𝑇തஶ. At time 𝜏 ൐ 0, the 
plate starts oscillating in the vertical direction with velocity 𝑢௢ cos 𝜔ഥ 𝜏 in its 
own plane, and the temperature of the plate is raised to 𝑇ത௣. The fluid considered 
is electrically conducting, with a very small Reynolds number, hence the 
induced magnetic field produced is negligible in comparison to the applied one. 
Also, due to the conservation of electric charge, the current density along the Z-
direction, 𝐽𝑧̅, is constant. The plate is assumed to be non-conducting and hence 
𝐽𝑧̅ is taken as zero. Table 1 is the nomenclature that used in this research. 
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Table 1 Nomenclature used in this research. 

𝑢ത    primary velocity of the fluid[m/sec] 
𝑣̅    secondary velocity of the fluid [m/sec] 
𝑇ത    temperature of the fluid [K] 
α    thermal diffusivity [m2/sec] 
𝑐௣  specific heat capacity [J/Kg-K] 
𝑘௘  mean absorption coefficient 
𝑢௢  amplitude of initial velocity [m/sec] 
𝑘    thermal conductivity [W/(m⋅K)] 
𝐽௫̅   current density along X-axis 
𝐽௬̅   current density along Y-axis 
𝐾ഥ   permeability parameter 
𝑄௢  heat source parameter 
𝜔ഥ   angular frequency of oscillation [sec-1] 
𝑣    kinematic viscosity 
𝑔   gravitational aceleration  
𝜎   Stefan-Boltzmann constant [Wm-2K-4] 
𝑞௥  radiative heat flux 
𝜌   density of the fluid[kg/m3] 

𝛽   volumetric coefficient of thermal  
     expansion 
𝑅   radiation parameter 
𝑚

   
Hall parameter 

 
Non-dimensional constants: 
𝑢     primary velocity of the fluid  
𝑣     secondary velocity of the fluid 
𝜃     temperature of the fluid 
𝑧     space coordinate normal to the plate 
𝜔    angular frequency of oscillation 
𝐾   permeability parameter 
Ω    rotation parameter 
𝑄   heat source parameter  
𝑃௥    Prandtl number 
𝑀   magnetic field parameter  
𝐺௥   thermal Grashof number

 

The complete mathematical model is as follows: 
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The following appropriate boundary conditions are taken: 
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Considering the Rosseland approximation (Brewster [24]), the radiative heat 
flux rq  is taken as: 
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If temperature differences in the system are sufficiently small, then, neglecting 

the higher order terms in the Taylor series expansion of 𝑇ത4
 about 𝑇ത∞, we get: 
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By using Eq. (5) and Eq. (6), Eq. (3) reduces to:
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To make the equations dimensionless, we introduce the following non-
dimensional quantities: 
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Eq. (1), Eq. (2), Eq. (7) and Eq. (4) become: 
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For finding the velocity, we combine Eq. (9) and Eq. (10) and by taking 
𝑉 ൌ 𝑢 ൅ 𝑖𝑣, we get: 
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 The boundary conditions in Eq. (12) are reduced to: 
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The model given by partial differential Eq. (11) to Eq. (13) with boundary 
conditions in Eq. (14) is solved by the Laplace transform technique. The 
solution obtained is as follows: 
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3 Skin Friction and Nusselt Number 

The non-dimensional skin-friction components in the primary ሺ𝜏ଵሻ and 
secondary ሺ𝜏ଶሻ directions are obtained as follows: 
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and the expression for the dimensionless Nusselt number is given as: 
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4 Results and Discussion 

From Figure 1 it can be seen that increasing the value of K, the magnitude of the 
primary and the secondary velocity increases. This is because an increase in K 
implies a decrease in the resistance of the porous medium. Hence the 
momentum boundary layer thickness increases with K.  

 

Figure 1 Figure 1. Variation in velocity with K. 
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The heat source effect on the velocity distribution is shown in Figure 2. Here it 
is observed that both components of the velocity are accelerated by heat source 
parameter Q. Hence the effects of the radiation parameter and the heat source 
parameter on the fluid flow are opposite. 

 

Figure 2 Variation in velocity with Q. 

Figure 3 shows the influence of the Hall current on u and v. It can be seen that u 
increases rapidly near the surface of the plate, whereas v decreases throughout 
the boundary layer region along with the increasing parameter ‘m’. This shows 
that the Hall current tends to accelerate u in the region near the surface of the 
plate, whereas it tends to slow down v throughout the boundary layer region. 
This may be attributed to the fact that the value of the term 1/ሺ1 ൅ 𝑚ଶሻ is very 
small for large values of ‘m’; hence a large ‘m’ diminishes the resistive effect of 
the applied magnetic field.  

 
Figure 3 Variation in velocity with m. 

Figure 4 shows the effect of R on both components of the velocity. Here it is 
observed that it slows down the flow. This is because when R increases, the 
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temperature of the system decreases and as a result the fluid flow becomes 
slower. 

 
Figure 4 Variation in velocity with R. 

The effect of rotation on the flow behavior is shown in Figure 5. It is observed 
that when Ω increases, u decreases throughout the boundary layer region, 
whereas v increases continuously near the surface of the plate. This implies that 
the rotation tends to accelerate v, whereas it slows down u in the boundary layer 
region.  

 

Figure 5 Variation in velocity with Ω. 

As the oscillation increases, the primary velocity decreases rapidly near the 
plate and in the region away from the plate, while v decreases throughout the 
boundary layer (Figure 6).  
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Figure 6 Variation in velocity with ω. 

 
Figure 7 Variation in temperature with Q. 

 
Figure 8 Variation in temperature with R. 

The temperature profiles for different values of R and Q and for constant Pr at 
time t = 0.2 are shown in Figures 7 and 8. In Figure 8, it can be seen that the 
temperature of the fluid is inversely proportional to the value of radiation 
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parameter R. Thus the increase in R reduces the temperature in the system. And 
hence the thermal boundary layer thickness decreases with R. Meanwhile, 
Figure 7 shows that the temperature in the system increases with increasing Q. 
The effects of various parameters on the skin-friction at the surface of the plate 
are shown in Table 2.  

Table 2 Skin friction (at t = 0.1). 

m K Q R Ω ω M 𝝉𝟏 െ𝝉𝟐 
1.0 0.5 1.5 2 0.5 𝜋

0.6ൗ 2 0.776 0.490 
2.0 0.5 1.5 2 0.5 𝜋

0.6ൗ 2 0.571 0.442 
3.0 0.5 1.5 2 0.5 𝜋

0.6ൗ 2 0.497 0.380 
1.5 0.3 1.5 2 0.5 𝜋

0.6ൗ 2 0.865 0.457 
1.5 0.6 1.5 2 0.5 𝜋

0.6ൗ 2 0.591 0.482 
1.5 0.5 3.0 2 0.5 𝜋

0.6ൗ 2 0.626 0.478 
1.5 0.5 4.5 2 0.5 𝜋

0.6ൗ 2 0.603 0.480 
1.5 0.5 1.5 2 0.5 𝜋

0.6ൗ 2 0.647 0.477 
1.5 0.5 1.5 4 0.5 𝜋

0.6ൗ 2 0.689 0.473 
1.5 0.5 1.5 6 0.5 𝜋

0.6ൗ 2 0.705 0.471 
1.5 0.5 1.5 2 1.5 𝜋

0.6ൗ 2 0.690 0.808 
1.5 0.5 1.5 2 2.5 𝜋

0.6ൗ 2 0.753 1.134 
1.5 0.5 1.5 2 0.5 𝜋

0.6ൗ 2 0.647 0.477 
1.5 0.5 1.5 2 0.5 𝜋

0.3ൗ 2 -1.132 0.380 
1.5 0.5 1.5 2 0.5 𝜋

0.2ൗ 2 -3.373 0.240 
1.5 0.5 1.5 2 0.5 𝜋

0.6ൗ 4 1.365 1.229 
1.5 0.5 1.5 2 0.5 𝜋

0.6ൗ 6 2.516 2.076 

It can be seen from Table 2 that the value of 𝜏ଵ increases when the values of M, 
Ω, R are increased (keeping other parameters fixed); but if the values of m, Q, ω 
and K are increased, the value of 𝜏ଵ decreases. Also, it is observed that the 
magnitude of 𝜏ଶ increases with M, Ω, Q and K; and it decreases when m, R and 
ω are increased.  

 
Figure 9 Variation in Nusselt number with time. 
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The Nusselt number is plotted against time in Figure 9. Here it is observed that 
initially the number achieves its maximum value at the plate and then decreases 
continuously as time increases. Also, it can be seen that the Nusselt number 
decreases with an increase of the heat source parameter and increases with an 
increase of R or Pr.  

5 Conclusion 

In this study, it was observed that the Hall current speeds up the primary flow 
whereas it slows down the secondary flow. The temperature and velocity 
decrease in the boundary layer with an increase of the radiation parameter. 
Further, it was noticed that both components of the shear stress increase with a 
rise of the radiation parameter, and decrease with a rise in the heat source 
parameter. Also, rotation slows down the primary flow, whereas it speeds up the 
secondary flow. The outcomes obtained have large implications in studies 
related to the structure of rotating magnetic stars, solar physics, geophysics and 
the solar cycle.  
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