
 

 
ITB J. Sci. Vol. 40 A, No. 2, 2008, 151-165                                   151 

 

Received January 21st, 2008, Revised July 4th, 2008, Accepted for publication July 14th, 2008. 

Tight Wavelet Frame Decomposition and Its Application in 
Image Processing 

Mahmud Yunus1,2 & Hendra Gunawan1 

1Analysis and Geometry Group, FMIPA ITB, Bandung 
2Department of Mathematics, FMIPA ITS, Surabaya 

 
 

Abstract. This paper is devoted to the formulation of a decomposition algorithm 
using tight wavelet frames, in a multivariate setting. We provide an alternative 
method for decomposing multivariate functions without accomplishing any 
tensor product. Furthermore, we give explicit examples of its application in 
image processing, particularly in edge detection and image denoising. Based on 
our numerical experiment, we show that the edge detection and the image 
denoising methods exploiting tight wavelet frame decomposition give better 
results compare with the other methods provided by MATLAB Image 
Processing Toolbox and classical wavelet methods. 
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1 Introduction 
In this paper, we provide an alternative method for decomposing functions in a 
multivariate setting. Extension from univariate function space to the 
multivariate setting can be accomplished trivially by considering the space 
generated by tensor product of univariate basis functions. Here, we propose the 
method by using tight wavelet frames, instead of accomplishing a tensor 
product. 

Before going further to the main discussion, let us introduce some notations 
used in this paper. For Zd be a d-copy of the set of integers and a finite subset Ψ 
of L2(Rd), let 
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for all . If )(2 dLf R∈ BA = , then )(ΨΛ  is a tight frame [1]. Such frames, 
which in Hilbert spaces are recognized as a generalization of orthonormal bases, 
play a fundamental role in signal processing, image processing, data 
compression and transmission, sampling theory and more, as well as being an 
interesting subject of research in modern and applied mathematics. 

Ron and Shen [2] introduced the construction of tight wavelet frame from multi 
resolution analysis (MRA). We know that in applications one uses tight wavelet 
frames due to their efficiencies. Tight wavelet frames are efficient tools for 
separating several high-pass frequency parts from low-pass frequency parts. 
Also, frame redundancy is known to be useful for recovering information from 
the corrupted one. 

In this paper, we follow the notion of MRA for wavelet in [2] which is slightly a 
modified version of the classical definition of MRA. Let  be a 
compactly supported function satisfying the following conditions: 

)(2 dL R∈φ

(i) There exists a trigonometric polynomial H in ξie such that 
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Next, we denote for all  Zj∈

 { }djjd
j kksV Zpan ∈−⋅= :)2(2: 2/ φ . 

Then satisfy all conditions in classical definition of MRA [3] except that jV φ  

and its shifts constitute a Riesz (or orthonormal) basis of . In this definition, 
the function 

0V
φ  is familiarly known as the scaling function for the MRA { }jV . 

Now, let  be a compactly supported function which satisfies the 
refinement equation (1). We call H in (1) a filter function and 

)(2 dL R∈φ
{ }kh  a filter 

(sequence) associated with φ . The well known method for constructing 
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wavelet frame is the following condition called Unitary Extension Principle 
(UEP) developed by Ron and Shen in [2]: 
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In this case, we have to find trigonometric functions ’s and wavelet frame 
generators ’s defined by 

μG
μψ

 ),2/()2/(:)( ξφξξψ μμ )) G=   r,,1K=μ .                                 (4) 

As shown in [4], there are sequences{ }μkg  in , 2l r,,1K=μ , and if we write 
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We call  as the filter function associated with  and μG μψ { }μkg  as its 
corresponding filter (sequence). 

Throughout this paper we work with wavelet frames constructed by using UEP 
of Ron and Shen’s as above. In this case, we implement a fast algorithm of 
decomposition and reconstruction of function by using compactly supported 
tight wavelet frame related to an MRA. In particular, we apply the wavelet 
frames constructed by Lai and Stöckler [4] and Skopina [5] in image 
processing. 

The rest of this paper is organized as follows. In Section 2, we briefly introduce 
the wavelet frame decomposition and reconstruction, as well as define the 
algorithm. In Section 3, we implement the algorithm developed in Section 2 and 
adapt it to edge detection and image denoising processes. In addition, the 
numerical results are presented in Section 3 and the conclusions are given in 
Section 4. 

2 Wavelet Frame Decomposition and Reconstruction 
Suppose that φ  is a scaling function for MRA { }jV  with filter sequence  

and 

{ }kh

φ  has an associated wavelet frame generator { }rψ  ,,1 Kψ=Ψ  with filter 
sequences { }μkg , for r , K,1=μ .  



154 Mahmud Yunus & Hendra Gunawan 

For all  and , we denote Z∈j dk Z∈

 )                                                  (6) 2(2 2/
, kff jjd
kj −⋅=

so that we can write, for each Z∈j , 
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Now, by setting 
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it follows that  
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(see for example [1, 3, 6, 7] for the detail of this decomposition). Note that 
decomposition (9) is not a direct sum decomposition since in general 
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Recall that, in fact, any family{ } Iiif ∈:  is a frame for { }Iif i ∈:span  (see e.g. [7, 
Theorem 5.1.3]). We then use this fact together with (7), (8), and (9), for any 
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For all , , and Z∈j dm Z∈ r,,1K=μ , and by two-scale relation (2) and (5) 
we have 
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By taking the inner products with f on both sides of the two equations in (12), 
we have a tight wavelet frame decomposition: 
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Using the fact that jkj V∈,φ  and two-scale relation (2) and (5), from (10) we 
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By taking inner products with f on both sides of (14), we have a tight wavelet 
frame reconstruction: 
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Note that all sequences {  and }kmh 2− { }μ
kmg 2−  are finite for all m, because 

kj ,φ and μψ kj , are compactly supported for all Z∈j ,  . dZ∈k

We summarize and illustrate the tight wavelet frame decomposition and tight 
wavelet frame reconstruction in the Figure 1.  
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Figure 1   Tight wavelet frame decomposition and reconstruction. 

 

It can be seen from the diagram above that in practical use of decomposition 
and reconstruction by using tight wavelet frame are just similar to the one using 
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orthonormal wavelet basis. In this case, the computational complexity of tight 
wavelet frame decomposition is same as the computational complexity of 
orthonormal wavelet decomposition (see e.g. [3]), that is of order O(N) for an 
input 21 MMN ×=  matrix. 

3 Numerical Experiment 
We may consider the function f (in a discrete form) described in Section 2, as an 
image (in a matrix form). The wavelet frame decomposition separates the low 
frequency (smooth) parts from the high frequency (detail) parts of images 
effectively. It is well known that all the edges and noise are related to the high 
frequency parts of images.  

In this numerical experiment, we implement the tight wavelet frame 
decomposition (TWFD) and reconstruction algorithms (13) and (15) by making 
use of wavelet frames based on box splines in [4]. This implementation is 
applied for edge detection and image denoising on six test images (Figure 2).  

 

Bank F16 Head MRI 

Lena Saturn Partition 

Figure 2   Test Images. 
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We choose these six different test images from MATLAB Image Processing 
Toolbox, by virtue of different patterns, namely: linearly edges, common long 
distance outdoor picture, negative film picture, common indoor (face) picture, 
patterned image, and curvy image.  

The test image ⎯ with a gray level intensity ⎯ can be considered as a matrix 
with each component varies from 0 to 255. Here, we consider 0 as black and 
255 as white. Let  be a sub image of size , where I 

and J are usually some power of 2 and 

][:
21 ,

j
kkj xX = jj JI 2/2/ ×
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image and  as the image at the jth level decomposition. We call each value 

as a pixel value at each jth level. Let H be a matrix whose components are 

obtained by the finite sequence { satisfying two-scale relation of the 
compactly supported scaling function 
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We call the matrix H the low-pass filter which extracts the smooth parts of the 
image. Meanwhile, we call   the high-pass filter for μG N,,1K=μ  which 
contains the detail parts of the image. Each component of the matrix  is 
from the two-scale relation of the wavelet frame generators 

μG
μψ  such that 
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Then the image decomposition is the matrix convolution of each H and  
with the matrix  accompanying by down sampling, which is a procedure 
deleting all the even number of rows and columns.  Let  be the down 

sampled matrix after we take convolution of H with  and be the down 

sampled matrix after the convolution of with  . Then, the size of matrices 

, , … ,  is a half of the size of the matrix for each  . We 

call a low-pass sub-image and the ’s high-pass sub-images . The low-
pass sub-image has low-pass (smooth) parts of the image and the high-pass sub-
images have high frequency (detail) parts of the image.  
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The reconstruction process is the reverse process of decomposition. We insert 
zero rows and columns to the even number of rows and columns of 
matrices , , …,  respectively.  1+jX 1

1+jY N
jY 1+

3.1 Edge Detection 
Our wavelet frame method for edge detection can be described as in the 
following consecutive steps.  

(i) Decomposing the original image f, by using (13), into one low-pass sub 
image 1c and several high-pass sub images rdd ,,1 K . 

(ii) Reconstructing the image by using (15), but without the low-pass 
component: 

 rddf ⊕⊕= L1 . 
As we mentioned at the beginning of this section, since the abrupt 
changes and detail parts of the images are located in high-pass 
components, the reconstructed image without low-pass component shows 
edges with noise. This is the noise contained in the original image.  

(iii) Removing the noise after we reconstruct the image to have clear edges: 
 , )(ff D=

where D is a Donoho’s denoising operator (see [8]). 
(iv) Normalizing the reconstructed image into the standard grey level from 0 

to 255 and use a threshold to divide the pixel values into two major 
groups. That is, if a pixel value is bigger than the threshold, it is set to be 
255; otherwise, it is set to be zero.  

(v) Removing all isolated pixel values.  

We use the tight wavelet frames based on the box spline 2211φ in [4] for edge 
detection. The box spline 2211φ  has one low-pass filter and 8 high-pass filters. 

To compare the visual effectiveness of edge detection, we also use wavelet 
method edge detection by using tensor products of Daubechies wavelet D6 and 
three commercial edge detection methods from MATLAB Image Processing 
Toolbox, namely Sobel, Prewitt, and Zero-crossing methods. For box spline 
tight wavelet frame, we choose the best edge representation among three levels 
of decompositions to present here. Tensor products of Daubechies wavelet have 
three high-pass filters each of which detect edges of horizontal, vertical, and 
diagonal direction respectively. Thus they have already had a disadvantage of 
detecting curvy edges. Among the images, tight wavelet frame detects edge 
more effectively in all images. Especially, it detects edge better than the 
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MATLAB commercial edge detection methods in many images. We present the 
results visually in Figure 3 to Figure 8.  

Sobel Prewitt Original image 

Zero Crossing Wavelet D6 TWFD 
Figure 3    Edge detection for Image Bank using 5 different methods. 

 

Original image Prewitt Sobel 

Zero Crossing Wavelet D6 TWFD 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4   Edge detection for Image F16 using 5 different methods. 
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Original image Prewitt Sobel 

Zero Crossing Wavelet D6 TWFD 
Figure 5   Edge detection for Image Head MRI using 5 different methods. 

Original image Prewitt Sobel 

Zero Crossing Wavelet D6 TWFD 
Figure 6   Edge detection for Image Lena using 5 different methods. 
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Original image Prewitt Sobel 

Zero Crossing Wavelet D6 TWFD 
Figure 7   Edge detection for Image Partition using 5 different methods. 

 
 

Original image Prewitt 

Zero Crossing Wavelet D6 

Figure 8   Edge detection for Image Saturn using 5 different methods. 

Sobel 

TWFD 
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According to the results presented visually above, we note some superiority of 
the application of tight wavelet frame decomposition (TWFD) in edge detection 
compared with the other four methods. In general, TWFD affords sharper and 
smoother edges for all cases of the test images. For an image with linearly parts 
(Figure 3), TWFD results sharp and detailed shape of edge more than the other 
four methods. Especially for images containing curvy parts, TWFD shows the 
most readable shape of edge (Figure 4, 5, 6, and 8). In addition, TWFD detects 
edges of patterned image clearly (Figure 7) without generating a new pattern 
within the resulting image.  

3.2 Image Denoising 
In our numerical experiment on image denoising, we make a noisy image first 
by adding a white noise to the pixel values of the image. The white noise 

has a Gaussian distribution 
jix ,

ji ,δ with mean zero and variance σ . Then the pixel 

values  of noisy image can be presented as  jif ,

 jijiji xf ,,, σδ+=  

with ji ,δ ∼ N(0,1) where σ  is chosen from values 5, 10, 15 and 20. We then 
decompose the image into a low-pass part and several high-pass parts of the 
image by using wavelets or tight wavelet frames. 

Next, we apply the soft-thresholding to each high-pass part of the image. 
Finally, we reconstruct the image after we use noise softening. In this step, we 
choose optimal threshold value by using the method introduced by Donoho [8].  

To measure the quality of the denoised image, we use the peak signal to noise 
ratio (PSNR) computed by the following formula. For a given image  of 

size pixels and a reconstructed image , where 
jix ,

NN × ji,'x 0 255, ≤≤ jix , 

 

∑
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For image denoising, we use tight wavelet frame based on the box spline 
1111φ in [4]. The other box spline tight wavelet frames in [4] give similar results. 

Comparing wavelets for denoising, tight wavelet frames give better results in 
the set test images we tested. 
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Since the most of the noise appears in the high-pass parts of the first level of 
decomposition, we consider only the first level of decomposition. In this case, 
for each given image and fixed noise we are able to find the optimal threshold 
values of soft-thresholding (see [8] for the detail) for the sub-images 
decomposed by Haar, Daubechies, or biorthogonal wavelets and wavelet frame. 

We present four tables of average value of PSNR from 100 experiments 
according to each σ  value. Each entry in the tables contains PSNR values of 
noisy images and their denosied images reconstructed by tensor products of 
Haar, Daubechies, biorthogonal wavelets and tight wavelet frame.  The largest 
PSNR values in Table 1 to Table 4 (typed in shaded cell) indicate the best 
denoised image. We see that wavelet frame has the most of largest PSNR 
values.  

Table 1 The PSNR comparison for 5=σ . 

Image  Noisy  Haar  Daubechies  Biorthogonal  TWFD 
Bank  34.27  36.12  36.06  36.06  35.97  
F-16  34.16  36.09  36.45  36.49  36.50  
Head MRI  35.29  37.89  38.47  38.78  38.45  
Lena  34.16  36.06  36.55  36.63  36.67  
Partition 36.11 35.01 37.04 37.77 37.98 
Saturn  36.33  40.00  41.40  41.40  43.14  

 
It can be seen from Table 1, that decomposition by using Haar wavelet gives the 
best denoised image for image Bank with low noise level. In this case, the 
image Bank contains linearly parts, and Haar wavelet is known to be very good 
for handling such kind of images. The other methods render a low-level noisy 
image and result an over-smooth denoised image; without the exception of 
TWFD. 

Table 2 The PSNR comparison for 10=σ . 

Image  Noisy  Haar  Daubechies  Biorthogonal  TWFD 
Bank  28.31  31.16  31.15  31.16  31.32  
F-16  28.16  31.20  31.69  31.76  32.05  
Head MRI  29.31  32.91  33.56  33.84  34.17  
Lena  28.15  31.43  32.07  32.18  32.78  
Partition 30.42 31.90 32.78 32.74 33.04 
Saturn  30.33  35.02  35.92  36.01  39.31  
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For higher noise level, TWFD indicates much better denoised image even for 
image Bank. For curvy image (Saturn), TWFD results a highly significant 
PSNR improvement.  

Table 3 The PSNR comparison for 15=σ . 

Image  Noisy  Haar  Daubechies  Biorthogonal  TWFD 
Bank  24.64  28.26  28.32  28.33  28.80  
F-16  24.66  28.35  28.89  28.96  29.74  
Head MRI  25.82  30.03  30.56  30.77  31.84  
Lena  24.63  28.75  29.33  29.41  30.82  
Partition 25.24 27.54 31.21 30.76 31.78 
Saturn  26.82  32.03  32.62  32.66  37.16  

 
Table 3 still shows the expected results. TWFD delivers the best quality of 
denoised image among the other methods, especially for totally curvy image 
(Saturn).  

Table 4 The PSNR comparison for 20=σ . 

Image  Noisy  Haar  Daubechies  Biorthogonal  TWFD 
Bank  22.38  26.20  26.31  26.31  27.18  
F-16  22.24  26.32  26.87  26.90  28.23  
Head MRI  23.36  27.96  28.35  28.50  30.15  
Lena  22.14  26.80  27.27  27.34  29.55  
Partition 24.33 26.82 28.72 28.21 30.00 
Saturn  24.35  29.82  30.22  30.22  35.54  

 
Again from Table 4, we can see that TWFD yields the best denoised image 
reconstructed from quite high-level noisy image. Also, the highest PSNR 
improvement is achieved for the curviest image.  

4 Concluding Remark  
We know that edge detection is only a small part of an image processing, so that 
we consider only the visual result. We find that the edge detection method using 
wavelet frame decomposition (and reconstruction) provides the best result. 
Here, we get the most clear curvy image through the wavelet frame 
decomposition as this decomposition is done directly --- without doing any 
tensor product of one dimensional process.  

It should be noticed that Donoho in [8] proved theoretically the superiority of 
using wavelet decomposition in image denoising. At that time, wavelet frames 
have not been well-developed. However, according to the results presented in 
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Table 1 to Table 4, in general, the image denoising using wavelet frame 
decomposition gives a better result compare to that of classical wavelets 
decomposition. 

For further work, we might apply our fast algorithm to the image processing by 
using the other wavelet frames. We might also take into account the algorithm 
complexity, including the time complexity as well as the usage of computer 
memory. 
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