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Abstract.This study has analyzed a rainfall estimation using a modified
convective stratiform technique (CSTm). Unlike the original convective
stratiform technique (CST), which only utilizes infrared (IR) data, CSTm applies
not only IR data but also passive microwave (PMW) data. Two major
modifications contained in CSTm are: (1) the application of a variability index
(VD) method that uses PMW data to perform convective and stratiform
separation, and (2) the ability to determine the average extensive coverage of the
new areas of each pixel point as a result of the utilization of the PMW data. In
this study, rainfall estimation was conducted for 23 points spread over four major
islands in Indonesia. The estimation was performed based only on IR and PMW
data obtained from coincident observations. For verification, the estimation
results were compared with real observations. The main verification action
conducted in this study used multi-category contingency tables for 4 categories
and this action was supported by the root mean square error (RMSE) method.
The verification results of the hourly estimation conducted for 4 days in early
November 2011 showed that CSTm can effectively improve the performance
quality of CST.
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1 Introduction

One method used to estimate the amount of rainfall through the infrared (IR)
channel of weather satellites is the convective stratiform technique (CST) [1-5].
According to Levizzani, et al, [6] and Kimani [7], this method can be
categorized as a cloud model technique. It considers cloud physics, while the
estimation process utilizes only infrared weather satellite data. Based on
previous studies, CST is considered to have the best performance compared to
other infrared methods [1].This method has also shown good results when
applied in Indonesia [5]. However, the IR data utilized in CST are reported to
have a number of limitations, such as having a weak interaction and low
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sensitivity to hydrometeors. This is due to the infrared data’s lack of a strong
physical connection between the remotely sensed signal and surface rainfall.
They correspond only to cloud top brightness temperature, which is indirectly
related to surface rainfall [8-10]. This condition can affect the performance of
CST in estimating rainfall. However, these limitations can be overcome by,
alternatively, utilizing passive microwave (PMW) data. These data also have
limitations, in time and spatial resolution, but they are better than IR in
detecting hydrometeors and there is a strong connection between the remotely
sensed signal and surface rainfall [9,11,12]. As the two types of data potentially
complement each other, combining PMW and IR data is another alternative
solution for improving the quality of the estimation result [9,11-14].

The objective of this study was to estimate rainfall using a modified CST, called
CSTm, created by applying a variability index (VI) that leverages PMW data.
The VI separates convective and stratiform rainfall in CSTm using PMW data,
replacing the role of the slope parameter (S) in CST, which uses IR data. The
fact that the implementation of PMW data results in a wider scope of the
average covered area was considered.
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Figure 1 Distribution of rainfall observation points on the islands of Sumatra
(A), Java (B), Kalimantan (C) and Sulawesi (D).

Due to the limited availability of PMW data, the rainfall estimation in this study
was only done on IR and PMW data obtained at the same or at adjacent
observation times and from the same area. The IR data were available for every
hour or 24 times a day and always covered the same area, while the PMW data
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were available only twice a day (every 12 hours) and did not always cover the
same area. Therefore, in general, there were two sets of data that relatively
coincided daily. The utilization of both IR and PMW data was expected to
improve the ability of the modified CST to correctly estimate rainfall. To verify
the results, the estimated rainfall values were compared with real observation
data that were available from 23 observation points spread over the four major
islands in Indonesia, as shown in Figure 1.

2 Modification of CST

2.1 The Original Form of CST

The original form of CST used in this study applies rainfall estimation steps
similar to the procedures proposed by Adler and Negri [1], Goldenberg, et al.
[2] and Islam, ef al. [4]. The estimation actions include, among others, the
application of techniques to identify convective cores and their locations,
utilizing IR imagery from geostationary meteorological satellites (GMS), and
determination of the intensity of convective and stratiform rain. The
calculations of other precipitation components in the estimation process were
still used in this study. GMS imagery as the IR data source in this study was
replaced by multi-functional transport satellite (MTSAT) 1R imagery, as the
GMS was no longer working. To identify the location of convective cores, an
examination was conducted toward the equivalent infrared blackbody
temperature (7p) to find 7,,,. After the pixel location of 7, was identified, its
strength was measured by calculating the slope parameter (S), which is shown
by:

S=k(T_;+T,;+T , +T

i+l,j i,j—1 i,j+1

_4Ti,j) (1)

where 7 and j refer to the position of the pixel for which S is calculated,while the
factor k=0.25 is a value that depends on the amount of surrounding data that are
taken into account. In this study, the slope parameter (S) was calculated by
considering the eight surrounding pixels, so & became 0.125 [5]. For this
purpose, Eq. (1) was rewritten as follows:
Szk(]}_l,_]._1+1;_,wj+T +T +7 . +T
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According to Goldenberg, et al., [2], to distinguish convective cores at the
identified location, the criteria as shown by Eq. (3) should be fulfilled:

S>exp [0.0826 (T, —207)] 3)
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The convective precipitation area (A4.), according to Adler and Negri [1], is
directly related to cell top height as indicated by the cloud top temperature
(T,uin)- The A, is determined by the following formula:

I td)=al, +b )

where a = -0.0492 and b = 15.27 are constants that were calculated by Adler
and Negri [1] for FACE (Florida Area Cumulus Experiment) and by
Goldenberg, ef al. [2] for WMONEX (Winter Monsoon Experiment). The term
Tinin Eq. (3) is then replaced by T, where index i refers to the i-¢4 core.

In the original CST, there is a separation step necessary to determine convective
or stratiform rainfall. The calculations for convective and stratiform rainfall are
different, depending on the results of a comparison between the slope parameter
(S) and the identified T, as shown in Eq. (3). Islam, et al. [4] proposed to
calculate convective and stratiform rainfall as follows:

Convective rainfall (mm)=c(A./ A) TR, (5)
Stratiform rainfall (mm) =s (A, / A) TR, (6)

where ¢ = number of convective cells within a grid, s = number of stratiform
cells within a grid, 4. = convective rain area from Eq. (4), 4; = stratiform rain
area in that grid, 4 = average area covered by each pixel, 7 = length of period in
hour, R, = convective rain rate in mm h™' (20 mm h™) [4], R, = stratiform rain
rate inmm h™ (3.5 mm h™") [4].

2.2 Modifications

In the separation of the convective and stratiform portions in the algorithm steps
of CST, the modification of CST to become CSTm was started by replacing the
slope parameter (S), which uses IR data, with the variability index (VI), which
uses PMW data. If the value of S shown in Egs. (1), (2) and (3) is equal to or
higher than the threshold, the separation result will show the convective portion,
and otherwise, it will show the stratiform portion. In the modified CST, Egs.
(1), (2) and (3) — the algorithm steps that calculate the value of S— are replaced
by the VI, while Egs. (4) to (6) of the same steps are still used in CSTm.
Therefore, the VI is only used in CSTm to separate the convective from the
stratiform portion in the algorithm steps and not to determine the estimated
rainfall value. In CSTm, the VI utilizes PMW data instead of IR data, as they
have a better interaction with the hydrometeors. Thus, it was expected that the
separation result using the VI would be more accurate and would have a
significant contribution in improving the quality of the estimation results.
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Anagnostou and Kummerow [15] define the determination of the value of VI in
the separation process that utilizes PMW data as follows:

1
VI=NZ|X,. - X,| (7)

Where X, is the value of the central pixel, X; denotes the values of the
surrounding pixels, and N is the total number of surrounding pixels used. The
value X can be any observed quantity related to rainfall; in this study X was
replaced by the satellite brightness temperature. Determination of the stratiform
and convective portions based on the VI value is shown in Table 1[15], which
displays the probabilistic relationship between the stratiform coverage over the
view of the satellite field and horizontal polarization of mean absolute 85-GHz
brightness temperature. This study, however, used a brightness temperature of
89 GHz due to the limited data available in the Advanced Microwave Sounding
Unit (AMSU) B. Based on the data in Table 1, the convective portion is
determined if the VI threshold value is higher than 8, where the occurrence
probability of stratiform coverage exceeding 70 percent is only 0.44. This
probability value becomes smaller if the threshold value is higher than 8. If the
VI threshold value reaches 8 or lower, then the stratiform portion is determined.

Table 1 Classification scheme —probability of stratiform coverage occurrence.

Stratiform coverage (%)

\%! >70 % 40% - 70% <40%
Probability of occurrence
0-38 0.67 0.17 0.15
8—24 0.44 0.21 0.34
>24 0.15 0.22 0.63

Source: Anagnostou and Kummerow [15].

The data used in the VI are passive microwave data (PMW) and as a
consequence the average covered area is different for each pixel (A) of the IR
data. Here, the average area covered by each pixel was 123.21 km? for IR and
202.12 km® for PMW. This means that in this study the area covered by CST
was 123.21 km’ whereas the CSTm’s was 202.12 km® Because each
observation had a different spatial resolution for the passive microwave area,
this study used the average value of the dominant spatial resolution or of the
dominant area.

3 Data and Verification Method
The types of data used in this study were:
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1. Blackbody temperature (73p) of infrared channell (IR 1) of multi-functional
transport satellite (MTSAT-1R) as IR data.

2. 89-GHz brightness temperature of NOAA satellite series of Advanced
Microwave Sounding Unit B (AMSU B) as PMW data.

3. Hourly rainfall observation data at 23 location points from automated
weather stations (AWS).

The blackbody temperature (73) of MTSAT-1R was used in the separation and
estimation process of CST, while the 89-GHz brightness temperature of NOAA
AMSU B was mainly employed in the separation process of CSTm. All data
were taken during four days of observation in early November 2011, with 1-3
daily observation times for each location point. For purposes of comparison,
this study also used data taken during three days of observations in early July
2011 and early January 2012. For verification purposes, the real values of the 1-
hour (60 minutes) rainfall accumulation were used as a comparator to the 1-hour
estimation results from CST and CSTm. The comparison revealed the impact of
the modification as well as the quality of its estimation through its accuracy
level or correct percentage, and root mean square (RMSE) value. Verification
was done by using multi-category contingency tables[7,16,17], where all data
were divided into four ranges of categories, representing no rain, light rain,
moderate rain, and heavy rain, as shown in Table 2. These categories are in line
with the categories released by the Indonesian Agency for Meteorological,
Climatological and Geophysics, as shown in Table 3.

Table 2 Contingency table with 4 categories.

Estimation

No Rain Light Moderate Heavy Total
No Rain a b c d Q
Observation  Light e f g h R
Moderate i ] k 1 S
Heavy m n 0 p T
Total U Vv W X Z

Source: Stanski, et al. [16]

Table 3 Classification of rainfall intensity for one-hour category

Classification One-hour category

(mm)

No Rain 0-1
Light Rain >1-5
Moderate Rain >5-10

Heavy Rain >10

Source: Indonesian Agency for Meteorological, Climatological and Geophysics
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From the contingency table, the accuracy level or correct percentage of the
estimation can be determined. The accuracy value is in the range of 0 tol, where
the perfect value is 1. According to Stanski, et al. [16], and referring to Table 2,
the accuracy level or correct percentage can be determined by:

a+f+k+
Aoaracy = Tp

where a, f, k, and p are the numbers of correct estimations for each category,
and Z is the total number of estimations.

(®)

In addition, this verification also uses the root mean square error (RMSE) as a
continuous verification to measure the average magnitude error, where the
smallest magnitude or close to zero error is the expected magnitude of a good
estimation [17]. The RMSE is determined by:

RMSE= -3 (Y,-0,)’ ©)

where N is the number of observations or estimations, Y; is the i™ estimation and
O, is the i™ observation.

4 Results and Discussion

4.1 Convective-Stratiform Separation

As a consequence of different techniques and different data utilized in the
separation process, the results between CST and CSTm differed, as shown in
Figure 2. From 4 days of detailed observations performed at different locations
throughout 4 major islands of Indonesia, namely Java, Sumatra, Kalimantan and
Sulawesi, we obtained 161 different data sets for convective-stratiform
separation. As a consequence of differences in method and data used in the
separation process, however, there were some discrepancies regarding the
separation results between CST and CSTm, as shown in Figure 2. We can see
that 71.4% of the data indicate matching separation results between the two
methods, whereas 28.6% are marked by mismatching separation results, 7.5%
of which indicate occurrences where CST identified a cloud as convective but
CSTm identified it as stratiform, 21.1% of which indicate occurrences where
CST identified a cloud as stratiform but CSTm identified it as convective.

It is important to note that the separation results are crucial in both CST and
CSTm, as they significantly influence the quality of the estimation results.
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Discrepancies between the separation results of the two methods suggest
differing abilities to estimate rainfall values.

CST identified separation results as convective when CSTm identified them
as stratiform;

® CST identified separation results as stratiform when CSTm identified them as
convective;

® CST and CSTm have matching separation results.

Figure 2 Comparison between convective-stratiform separation results of CST
and CSTm at 161 different observation points throughout the four major islands
of Indonesia.

Even though PMW data are already recognized for their hydrometeor
interaction [8, 9,13,18], there has been no strong evidence as to whether they
can contribute to applicational advantages. This study, however, hopes to
provide the first step for evaluating the benefit of using PMW data in the
convective-stratiform separation process.

4.2 Rainfall Estimation

After having performed the separation process, we subsequently proceeded to
the estimation of rainfall. Rainfall estimation was performed by using
separation results as previously obtained. In this study, the duration of the
estimation process as used in both CST and CSTm was 1 hour. Rainfall
estimation results and their comparisons against real observation data in
different periods and locations are shown in Figures 3, 4, 5 and 6.

It can be seen that CST and CSTm led to different estimation values, where
those of CST were generally higher than those of CSTm, as shown especially in
Figures 3, 4 and 5. Real observation values, meanwhile, were generally lower
than those of both CST and CSTm. It should be noted that these estimation
results could not provide us with an objective conclusion regarding the quality
of estimation of either method. For this a verification method was required.
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Figure 3 One-hour rainfall estimation at every point on Sumatra.
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Figure 5 One-hour rainfall estimation at every point in Kalimantan
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Figure 6 One-hour rainfall estimation at every point in Sulawesi.

4.3 Verification Results

In order to verify the estimation results of CST and CSTm as previously
obtained, a multi-category contingency table method was applied. This method
helped to determine the degree of estimation accuracy of both CST and CSTm,
be it on a per location basis or for all locations taken together. We used 4
rainfall intensity categories in the tables, namely no rain, light rain, moderate
rain, and heavy to very heavy rain, as shown in Table 3.

4.3.1 Eye Verification (Comparison)

Figure 7 shows a comparison between the degrees of accuracy of both CST and
CSTm at each point of observation. These results were obtained by virtue of a
multi-category contingency table that was plotted on a per location basis, from
point 1 to 23. From this comparison it can be noted that the degree of accuracy
of CSTm was mainly better than that of CST, especially for points 1 to 18. In
general, the accuracy values of CSTm exceed 0.5, whereas a few of those of
CST are below 0.5 (where 1.0 denotes perfect accuracy). From points 19 to 23,
however, the degree of accuracy of CST can be seen to be slightly better than
that of CSTm. Even so, the accuracy values of both methods generally exceed
0.5.
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Comparison of Accuracy Between CST and CSTm
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Figure 7 Comparison of accuracy of rainfall estimationat each point of
observation.

A recapitulation of the comparison of the accuracy degree of both methods is
shown in Table 4: 39.1% suggests a similar degree of accuracy between the two
methods; 47.8% suggests CSTm to have better accuracy than CST, while the
remainder 13.1% suggests a higher degree of accuracy of CST than that of
CSTm.

Table 4 Comparison of accuracy between CSTm and CST.

Condition Percentage (%)
The CSTm is same with CST 39.1%
The CSTm is better than CST 47.8 %
The CST is better than CSTm 13.1 %

From these verification results, it can be noted that although CSTm is generally
a better estimator than CST, this does not always guarantee better results. We
are of the opinion that such a limitation is caused by the following factors: i) the
PMW data obtained were not the result of direct measurementsof the
hydrometeor condition; ii) the spacial resolution of the PMW data obtained was
not always consistent, i.e. varying;and iii) there were instances of unavailable
observational data as provided by the satellites, most likely due to errors. These
factors led to a lower degree of accuracy of CSTm estimation than the authors
had hoped to see. However, it is interesting to note that the use of PMW data
can be said to have improved both the convective-stratiform separation process
and the rainfall estimation process, as supported by the verification results at
each observation point.
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4.3.2 Categorical Verification

To verify the estimation results for all the observational points taken together,
the degree of accuracy of each method was calculated by means of a multi-
category contingency table, as shown in Tables 5 and 6.

Table 5 Contingency table of CST for 1-hour estimation and 1-hour rainfall
category (accuracy = 0.65).

Estimation
Total
1 2 3 4
1 101 37 7 6 151
Ob " 2 0 31 3 7
servation 30 0 0 1 1
4 1 0o 1 0 2
Total 102 40 9 10 161

Table 6 Contingency table of CSTm for 1-hour estimation and 1-hour rainfall
category (accuracy = 0.75).

Estimation
Total
1 2 3 4
1 114 28 6 3 151
. 2 5 0 1 7
Observation
3 0 0O 0 1
4 1 0 0 1 2
Total 116 34 6 5 161

Where the previous verification (comparison) could only provide a qualitative
evaluation by considering each of the observation points, the categorical
verification considers all the observation points simultaneously, giving rise to a
more quantitative evaluation, as described by Eq. (8). Subsequently, Table 7
shows that the degree of accuracy of CST was 0.65, whereas that of CSTm was
0.75.

Table 7 Accuracy coefficients ofestimation results for CST and CSTm.

Technique Accuracy Coefficient

CST 0.65
CSTm 0.75

Up to this point, we can draw a few conclusions from the verification results:
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CSTm is generally better than CST, both qualitatively and quantitatively.
CSTm is able to improve the quality of estimation of CST, especially for
estimations done in Indonesia.

3. A convective-stratiform separation process that utilizes the VI method plays
a significant role in improving the quality of estimation, as reflected in the
accuracy coefficients.

4. Using a combination of both PMW and IR data in CSTm’s algorithm leads

to a better result than merely using IR data (CST).

[N

To further guarantee some degree of consistency in the results, we performed a
few more categorical verifications under different circumstances: 1)
verifications done for different time periods, namely July 2011 and January
2012; and 2) verifications done as adjusted to an extended rainfall classification.

Tables 8 and 9 show the accuracy coefficients of the rainfall estimations that
were done for 3 days in July 2011 (representing the dry season) and 3 days in
January 2012 (representing the rainy season).

Table 8 Accuracy coefficients of estimation results for each technique in July
2011.

Technique Accuracy Coefficient

CST 0.936
CSTm 0.974

Table 9 Accuracy coefficients of estimation results for each technique in
January 2012.

Technique Accuracy Coefficient

CST 0.709
CSTm 0.718

As shown in the figures, the accuracy coefficients of CSTm were higher than
those of CST, both for July 2011 and January 2012. Consequently, we can
conclude that CSTm gives a better quality of estimation, even for different time
periods.

Furthermore, we extended the number of rainfall categories from 4 categories to
5 categories, namely no rain (0-1 mm hr-1), light rain (>1-5 mm hr-1),
moderate rain (>5-10 mm hr-1), heavy rain (>10-20 mm hr-1), and very heavy
rain (>20 mm hr-1). The accuracy coefficients of both methods as adjusted to
the new classification are shown in Table 10.
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Table 10  Accuracy coefficients of estimation results with extended
classification.

Accuracy Coefficient

Time (Month)
CST CSTm
November 2011 0.658 0.745
July 2011 0.936 0.974
January 2012 0.689 0.709

From these verification results, it can be seen that the accuracy coefficients of
CSTm were always higher than those of CST, even when we extended the
number of rainfall categories.

4.3.3 Continuous Verification

To further verify the advantages of using CSTm over CST, we performed a
continuous verification involving the calculation of the RMSE values of both
methods, as shown in Table 11.

Table 11 The RMSE of the CST and the CSTmat different times

. RMSE
Time/Month CST CSTm
November 2011 120.320 55.890
July 2011 7.401 6.402

January 2012 49.852 30.891

As can be noted, the RMSE values (margin for errors) of CSTm were always
lower than those of CST. We can therefore conclude that CSTm gives better
estimations than CST, as there is less room for error in its calculation.

4.3.4 Evaluation of Verification Results

It is easy to see that all methods of verification we have performed supported
the claim that CSTm is able to improve the estimation quality of CST,
particularly when applied in Indonesia. The improvement is also apparent in the
convective-stratiform separation process utilizing the VI method. The change in
covered area value as used in the estimation process is also a significant factor
that allows the estimation results to be improved. These factors may not seem
influential at first, but as we examine the processes as a whole it is apparent that
each factor plays an important role in improving the quality of rainfall
estimation.
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5 Concluding Remarks

We have developed CSTm as a modified method for estimating rainfall that
utilizes a combination of PMW and IR data as opposed to only IR data in CST.
This method has been proven to be an improvement of CST. It is then desirable
to apply the CSTm method as an improved method for providing rainfall
estimations. That being said, we do not discourage the practical use of CST.
Although its degree of accuracy is lower than that of CSTm, it is still
sufficiently high to give reliable rainfall estimations. Furthermore, our analysis
suggests that the convective-stratiform separation method plays a significant
role in affecting the quality of rainfall estimation. We are of the opinion that a
combination of PMW and IR data gives superior results than if one were to use
only IR data in the separation process.
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