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Abstract. We discuss the problem of deriving an estimative prediction limit as 
well as a simulation-based improved prediction limit for a future realization from 
the stationary, first-order Poisson INAR(1) process. An assessment of these 
limits was carried out by calculating their coverage probability, conditional on 
the last observation. It was found that while an estimative prediction limit may 
always be calculated, an improved prediction limit may not be obtained due to its 
discreteness and expectation to obtain a coherent prediction. 
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1 Introduction 
Integer-valued time series models continue to receive an enormous amount of 
attention. This is not only due to the usefulness of such models for counting 
processes in many settings, but also due to challenges in the derivation of their 
statistical properties. One of the important topics in integer-valued time series 
analysis is the prediction of future realizations. This paper is concerned with 
prediction for the integer-valued autoregressive process of order one, or 
INAR(1) process, studied from a frequentist point of view. 

Suppose { }tY  is a discrete-time, stationary, non-negative INAR(1) process 
satisfying Eq. (1): 
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where the tiV ’s are i.i.d. random variables following a certain (discrete) 
distribution and the tε ’s are uncorrelated, non-negative, integer-valued random 
variables. The first term on the right hand side of Eq. (1) may be represented as 
" "tYθ  , see e.g. Al-Osh and Alzaid [1], McKenzie [2], and McKenzie [3], 
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where   is the thinning operator. The parameter θ  is the probability of 
‘success’ of the random variables tiV , as described in Section 2. 

Suppose 1 2, ,..., nY Y Y  are observed. Let 1−α  denote a future realization of the 
process, where d  is a specified positive integer. Our goal is to obtain an upper 
prediction limit 1 2( , ,..., )nz Y Y Y  for n dZ Y += , such that it has coverage 
probability, conditional on the last observation, equal to the target nominal 
value of 1−α , i.e. such that 

 1 2( ( , ,..., ) | ) 1n nP Z z Y Y Y Y≤ = −α  
Note that because of the Markov property, conditioning on 1 2( , ,..., )nY Y Y  
reduces to conditioning on the last observation nY  for the INAR(1) process. 

For the continuous-valued autoregressive (AR) process, the problem of 
obtaining prediction limits for future realizations and their (conditional) 
coverage probabilities has been noted by a number of authors, see for example, 
Barndorff-Nielsen and Cox [4], Vidoni [5], and Kabaila and Syuhada [6]. These 
authors have constructed prediction intervals or limits with better coverage 
properties by analytical-based and/or simulation-based approaches. 

In this paper, we develop a one-step-ahead upper prediction limit obtained by 
taking the (1 )−α -quantile of the conditional probability distribution of a future 
realization Z . This prediction limit may be a non-integer. Following Vidoni [7], 
we expand the (1 )−α -quantile so that 

 1 2 1( , ,..., ) | ) inf{ : ( ; ,..., ) 1 }n n Z nz Y Y Y Y z F z Y Y= ∈Ω ≥ −α  
where ZΩ  is the support and ( )F ⋅  is the distribution function of Z . 

We evaluate the resulting upper prediction limit by calculating its coverage 
probability, conditional on n nY y= . It will be shown (in Section 4) through a 
Monte Carlo simulation that the coverage probability is close to the target 
nominal. Furthermore, an attempt to modify this prediction limit is carried out, 
motivated by the work of Kabaila and Syuhada [6]. The aim of this attempt is to 
find an upper prediction limit with better coverage properties. 

The remainder of this paper is organized as follows. In Section 2, the model 
specification and prediction problem for the Poisson INAR(1) process is 
described. The construction of prediction limits and their assessment through 
overage probability is presented in Section 3. We discuss the Monte Carlo 
simulation in Section 4. Discussion follows in Section 5. 
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2 Description of the Specification and Prediction Problem for 
the INAR(1) Process 

In the INAR(1) process, assume that the tiV ’s are Bernoulli random variables 
with probability of ‘success’ θ , i.e.  

 ( 1) 1 ( 0)ti tiP V P V= = − = = θ  
and also assume that tε  follows a Poisson distribution with parameter (1 )− θ λ . 
Then tY  has a Poisson distribution with parameter λ . We refer to the process in 
Eq. (1) as a Poisson INAR(1) process. 

Let ( , )ω= θ λ . Conditional on n nY y= , the probability mass function of 

n dZ Y +=  is given by (Freeland [8]) 
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for 0,1,2,...z = . The corresponding moment generating function (mgf) is 
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since the nε ’s are independent of iV , and n kY − and the nε are independent for all 

1k ≥ . 

Let ( ; )nz Y ω  denote the upper prediction limit for Z . It is easy to find ( ; )nz Y ω , 
for a known ω , which satisfies the coverage probability (1 )−α . In practice,  
however, ω  is unknown and needs to be estimated from the data. We can then 
replace ω  by ω . The resulting upper prediction limit, ( ; )nz Y ω , is called the 
‘estimative’ prediction limit. Our task in the next section is to find this 
prediction limit and to assess it by calculating its coverage probability. 
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The estimative prediction limit may be adjusted or modified such that the 
coverage probability is closer to the target nominal of (1 )−α . We will call this 
the ‘improved’ prediction limit. For a stationary Gaussian AR(1) model, this has 
been done by authors (for example, Kabaila and He [9] and Vidoni [5]). Whilst 
some authors have done the adjustment analytically, i.e. through (a) Taylor 
expansion of the conditional distribution of Z , or (b) predictive density of Z , 
Kabaila and Syuhada [6] have constructed a simulation-based approach to 
obtain the improved prediction limit. This method is efficient and can handle 
complicated models such as Gaussian AR( p ) and ARCH( p ) processes. 
Motivated by their work, an attempt of finding an improved prediction limit 
along with its coverage probability for the case of a Poisson INAR(1) process 
will be presented. 

3 Prediction Limits and Their Coverage Properties 
We consider the following d -step-ahead upper (1 )−α -estimative prediction 
limit for n dZ Y += , Eq. (2): 

 
       
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d d d d d
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where 1q −α is the (1 )−α -quantile of standard Gaussian distribution. The use of 

1q −α  is valid due to normal approximation. The conditional coverage probability 
of [2] is obtained as follows. We observe that Eq. (3): 
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The conditional expectation Eq. (3) is estimated by simulation. To do this, we 
use the method of Kabaila [10], which will be described in Section 4. All the 
computations were carried out with programs written using MATLAB and its 
Statistics Toolbox. 

Now, to obtain a better coverage probability property, i.e. closer to the target 
value, we adjust the above estimative prediction limit, Eq. (2). The main idea 
behind this adjustment is to absorb the correction term as the result of 
estimating Eq. (3). Accordingly, we define 

 
( , ) ( ( ; ) | ) (1 )n n n nc y P Z z Y Y yωω = ≤ ω = − −α  
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so that the order (1 )−α  is the same as the order of the correction term of the 
coverage probability of the estimative prediction limit, Eq. (3). The improved 
prediction limit is given by Eq. (4): 

 
 

* ( ; ) ( ; ) ( , )n n nz Y z Y d yω = ω + ω   (4) 

where ( , )nd yω  is such that 
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for ( , ) 0nc yω < . The coverage probability of [4], conditional on n nY y= , is 
given by Eq. (5): 
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and we estimate it by simulation. For ( , ) 0nc yω > , we find ( , )nd yω  such that 
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The improved prediction limit is Eq. (6): 

  

* ( ; ) ( ; ) ( , )n n nz Y z Y d yω = ω − ω   (6) 

A detailed description of how the Monte Carlo simulation estimates were 
carried out will be provided in the next section. It will be shown that there is 
improvement in the coverage properties of the improved prediction limit, 
compared to that of the estimative limit.  

4 Monte Carlo Simulation 
In this section, Monte Carlo simulation estimates are presented to obtain a one-
step-ahead upper estimative prediction limit and improved prediction limit (the 
case of 1d = ) along with their coverage probability. We begin by obtaining 
simulated data from a Poisson INAR(1) model, with sample sizes 50n =  and 

100n = , for 0.1,0.2,0.5,0.75θ =  and 2λ = . We have used the following Yule-
Walker estimators 
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to estimate θ  and λ , respectively. The reason for using these estimators is that 
the method of Kabaila and Syuhada [6] is also applicable for any estimators 
other than either a maximum likelihood estimator or a conditional maximum 
likelihood estimator. 

Now, to estimate [3] by using the simulation algorithm of Kabaila, we first 
define 1 1( ,..., )nX Y Y −= and nY Y= . Thus, the conditional expectation in Eq. (3) 
is equal to 

 ( ( , ) | )E h X y Y yω =  
where 
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and ny y= . Meanwhile, the probability density function of Y , conditional on 
X x= , ( | )P Y y x= , is given by 
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for 0,1,...y = . Thus, the estimate of Eq. (3) is 
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for M  independent simulation runs. It is noted that the standard error of this 
estimate is calculated by Theorem 4.2 of Kabaila [10]. 

The performance of the coverage probability of the estimative prediction limit 
for the Poisson INAR(1) model are provided in Table 1 and Table 2, based on 
200 replications. The values close to the target nominal and the standard error 
were reasonably small, except when 0.5θ = . The coverage probability, 
conditional on 2nY = , for various λ  ( 0.1θ = ) is presented in Figure 1. The 
number of simulation runs was 200 for a sample size of 100. The coverage 
probability was far from the target value as λ  increased. 
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To find the improved prediction limit and its coverage probability, we 
considered the case that 0.2θ =  and 2λ =  with the number of samples is 50. 
The estimative 0.95 prediction limit  ( ; , ) 5nz Y θ λ = . The coverage probability, 
conditional on 3nY = , was calculated based on 200 replications. We obtained 
Eq. (2) is equal to 0.9390(0.0014). The improved prediction limit obtained is 6. 

Table 1 Estimated conditional coverage probabilities of the estimative 0.95 
prediction limit for Poisson INAR(1) Model (λ=2), conditional on Yn=2,3. 
Standard errors are in brackets. 

n θ  2nY =  3nY =  
50 0.1 0.9507(0.0018) 0.9502(0.0016) 

 0.2 0.9347(0.0029) 0.9390(0.0014) 
 0.5 0.9063(0.0025) 0.9285(0.0013) 
 0.75 0.9445(0.0007) 0.9517(0.0025) 
 

100 0.1 
 

0.9507(0.0014) 
 

0.9470(0.0012) 
 0.2 0.9412(0.0021) 0.9356(0.0008) 
 0.5 0.8918(0.0010) 0.9293(0.0001) 
 0.75 0.9483(0.0001) 0.9556(0.0001) 

Table 2 Estimated conditional coverage probabilities of the estimative 0.90 
prediction limit for Poisson INAR(1) Model (λ=2), conditional on Yn=2,3. 
Standard errors are in brackets. 

n θ  2nY =  3nY =  
50 0.1 0.9134(0.0032) 0.9229(0.0026) 

 0.2 0.8898(0.0030) 0.9064(0.0033) 
 0.5 0.8906(0.0017) 0.8557(0.0059) 
 0.75 0.8920(0.0081) 0.8496(0.0082) 
 

100 0.1 
 

0.9109(0.0032) 
 

0.9296(0.0025) 
 0.2 0.8816(0.0027) 0.9098(0.0030) 
 0.5 0.8890(0.0000) 0.8314(0.0057) 
 0.75 0.9005(0.0074) 0.8156(0.0060) 

Note that the improved prediction limit may not be found unless it satisfies the 
following condition 

 


min

( ( ; ) ; ) ( , )
i

n n
i

p z Y i c yω + ω ≤ − ω∑
 

for ( , ) 0nc yω < . The example can be observed from Table 1, when 100n = , 
0.1θ =  and 2λ = , in which the coverage probability, conditional on 3nY = , is 

0.9470. Here, ( , ) 0.003nc yω = − . The estimative prediction limit is 4.4667, 
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Figure 1 Conditional Coverage Probabilities of the 0.90 Estimative Prediction 
Limit for various ( 0.1, 2, 100)nY nλ θ = = =  with 200 replications. 

which can be rounded to either 4 or 5. We expect the improved prediction limit 
to be longer than the estimative one. However, either 5p =  or 6p =  has a 
value greater than 0.003. Thus, we conclude that the improved prediction limit 
is the estimative one. In other words, our best prediction limit is the estimative 
prediction limit. 

5 Discussion 
The use of Kabaila’s method [10] to estimate the conditional coverage 
probability may be avoided if we can have the backward representation of the 
Poisson INAR(1) process. Note that, for the AR( p ) process, the backward 
representation is obtained only if we assume normality for the error of the 
process. 

Unlike the continuous-valued autoregressive process, the INAR process may 
not always give us the improved prediction limit due to its discreteness and 
expectation to obtain a coherent prediction. The possible improved prediction 
limit really depends on the value of ( , )nc yω . As mentioned in Section 4, a 
similar condition should also be satisfied when ( , ) 0nc yω > , in which the 

minimum sum of ( ( ; ) ; )np z Y iω − ω  should be greater than or equal to ( , )nc yω . 
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