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Abstract. We discuss the problem of deriving an estimative prediction limit as
well as a simulation-based improved prediction limit for a future realization from
the stationary, first-order Poisson INAR(1) process. An assessment of these
limits was carried out by calculating their coverage probability, conditional on
the last observation. It was found that while an estimative prediction limit may
always be calculated, an improved prediction limit may not be obtained due to its
discreteness and expectation to obtain a coherent prediction.
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1 Introduction

Integer-valued time series models continue to receive an enormous amount of
attention. This is not only due to the usefulness of such models for counting
processes in many settings, but also due to challenges in the derivation of their
statistical properties. One of the important topics in integer-valued time series
analysis is the prediction of future realizations. This paper is concerned with
prediction for the integer-valued autoregressive process of order one, or
INAR(1) process, studied from a frequentist point of view.

Suppose {Y,} is a discrete-time, stationary, non-negative INAR(1) process
satisfying Eq. (1):

Yia
Yo=YV, +g,t21 (1)
i=1

where the V,’s are i.i.d. random variables following a certain (discrete)
distribution and the ¢, ’s are uncorrelated, non-negative, integer-valued random
variables. The first term on the right hand side of Eq. (1) may be represented as
"0oY,", see e.g. Al-Osh and Alzaid [1], McKenzie [2], and McKenzie [3],
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where o is the thinning operator. The parameter 6 is the probability of
‘success’ of the random variables V, , as described in Section 2.

Suppose VY,,Y,,...,Y. are observed. Let 1-o denote a future realization of the

process, where d is a specified positive integer. Our goal is to obtain an upper
prediction limit z(Y,,Y,,....Y,) for Z=Y such that it has coverage

n+d !

probability, conditional on the last observation, equal to the target nominal
value of 1-a., i.e. such that

P(Z<z(Y,Y,,..Y,)]Y,)=1-a

Note that because of the Markov property, conditioning on (Y,,Y,,...,Y,)
reduces to conditioning on the last observation Y, for the INAR(1) process.

For the continuous-valued autoregressive (AR) process, the problem of
obtaining prediction limits for future realizations and their (conditional)
coverage probabilities has been noted by a number of authors, see for example,
Barndorff-Nielsen and Cox [4], Vidoni [5], and Kabaila and Syuhada [6]. These
authors have constructed prediction intervals or limits with better coverage
properties by analytical-based and/or simulation-based approaches.

In this paper, we develop a one-step-ahead upper prediction limit obtained by
taking the (1—a) -quantile of the conditional probability distribution of a future

realization Z . This prediction limit may be a non-integer. Following Vidoni [7],
we expand the (1— o) -quantile so that

(Y, Y, Y)|Y,)=inf{ze Q, : F(z;Y,,...,Y,) 21— a}

where Q. is the supportand F(-) is the distribution function of Z.

We evaluate the resulting upper prediction limit by calculating its coverage
probability, conditional on Y, =y, . It will be shown (in Section 4) through a

Monte Carlo simulation that the coverage probability is close to the target
nominal. Furthermore, an attempt to modify this prediction limit is carried out,
motivated by the work of Kabaila and Syuhada [6]. The aim of this attempt is to
find an upper prediction limit with better coverage properties.

The remainder of this paper is organized as follows. In Section 2, the model
specification and prediction problem for the Poisson INAR(1) process is
described. The construction of prediction limits and their assessment through
overage probability is presented in Section 3. We discuss the Monte Carlo
simulation in Section 4. Discussion follows in Section 5.
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2 Description of the Specification and Prediction Problem for
the INAR(1) Process

In the INAR(1) process, assume that the V, ’s are Bernoulli random variables

with probability of ‘success’ 9, i.e.

P(V, =1)=1-P(V, =0)=6

and also assume that ¢, follows a Poisson distribution with parameter (1—0)A .
Then Y, has a Poisson distribution with parameter A . We refer to the process in
Eq. (1) as a Poisson INAR(1) process.

Let ®=(6,1). Conditional on Y =y, , the probability mass function of
Z =Y__, isgiven by (Freeland [8])

n+d
p(zly,,w)=P(Z=2|Y,=Y,)
Sereya-eyr Lo
= H(0%) (1—0°)""
o (z-k)!

for z=0,1,2,.... The corresponding moment generating function (mgf) is

e—(l—ed )}L{(l_ ed ))\‘}z—k

M (v) :{ed e +(1- 0 )}y e—(l—e")k e -1)

while the conditional mean and variance are, respectively,

E@ZIY, =y,) =Y 2p(z]y,;0) = 0%y, + 1—0°)

z=0

and

VarZ|Y, =y,) =Y (z-E@Z Y, =y,) p(z| Yy )

z=0

=0°(L—0%)y. +(1-0°)

since the ¢, ’s are independent of V,, and Y, , and the ¢_are independent for all
k>1.

Let z(Y,;®) denote the upper prediction limit for Z. It is easy to find z(Y,; ),
for a known ®, which satisfies the coverage probability (1—a). In practice,
however, o is unknown and needs to be estimated from the data. We can then

replace o by ®. The resulting upper prediction limit, z(Yn;(S), is called the

‘estimative’ prediction limit. Our task in the next section is to find this
prediction limit and to assess it by calculating its coverage probability.
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The estimative prediction limit may be adjusted or modified such that the
coverage probability is closer to the target nominal of (1—a). We will call this

the ‘improved’ prediction limit. For a stationary Gaussian AR(1) model, this has
been done by authors (for example, Kabaila and He [9] and Vidoni [5]). Whilst
some authors have done the adjustment analytically, i.e. through (a) Taylor
expansion of the conditional distribution of Z, or (b) predictive density of Z,
Kabaila and Syuhada [6] have constructed a simulation-based approach to
obtain the improved prediction limit. This method is efficient and can handle
complicated models such as Gaussian AR(p) and ARCH( p) processes.

Motivated by their work, an attempt of finding an improved prediction limit
along with its coverage probability for the case of a Poisson INAR(1) process
will be presented.

3 Prediction Limits and Their Coverage Properties

We consider the following d -step-ahead upper (1— o) -estimative prediction
limitfor Z =Y, ,, Eq. (2):

~ ~ ad ~ ~ ~ ad ~ L
2V ) =0, +@—0)A) 0. (0 @-0")Y, +(1-0"))? @

where q, _is the (1—a)-quantile of standard Gaussian distribution. The use of
q, , Is valid due to normal approximation. The conditional coverage probability
of [2] is obtained as follows. We observe that Eq. (3):

P(Z<z(Y;0)|Y,=Y,)
~ ad A~ ~ ~ Ad A L
—Pz<@Y,+a-0")7)+q., 0 a-08"), +@a-0"70)2|Y, =v,) (3)

B (RO, + =80 + g, (8 @-8'), + -8")D)2)1Y, = y,)

The conditional expectation Eq. (3) is estimated by simulation. To do this, we
use the method of Kabaila [10], which will be described in Section 4. All the
computations were carried out with programs written using MATLAB and its
Statistics Toolbox.

Now, to obtain a better coverage probability property, i.e. closer to the target
value, we adjust the above estimative prediction limit, Eq. (2). The main idea
behind this adjustment is to absorb the correction term as the result of
estimating Eqg. (3). Accordingly, we define

c(w,Y,)=P,(Z <2(Y,;0)[Y, = y,) ~(L-a)
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so that the order (1—a) is the same as the order of the correction term of the
coverage probability of the estimative prediction limit, Eq. (3). The improved

prediction limit is given by Eq. (4):
Z (Vo) =2(Y,;0) +d(w,,) 4

where d(w,y,) is such that
d(w,y,) R ]
c(@,y,)+ D, (Y)Y, +i;0) <0,
i=1

for c(w,y,)<0. The coverage probability of [4], conditional on Y =y, is
given by Eq. (5):

P(Z<Z'(Y;0)Y,=Y,)=P,(Z<z(Y,;0)+d(oY,)|Y, =,)

=E, (R (2(Y,;0) + d(@y )Y, = ,)

and we estimate it by simulation. For c(w,y,) >0, we find d(w,y,) such that

(®)

d(@,y,)
1

p(z(Y,;0)|Y,) +i;0) <c(®, Y,).

The improved prediction limit is Eq. (6):
2 (Y,i0) = 2(Y,;0) ~d(@,Y,) (6)

A detailed description of how the Monte Carlo simulation estimates were
carried out will be provided in the next section. It will be shown that there is
improvement in the coverage properties of the improved prediction limit,
compared to that of the estimative limit.

4 Monte Carlo Simulation

In this section, Monte Carlo simulation estimates are presented to obtain a one-
step-ahead upper estimative prediction limit and improved prediction limit (the
case of d=1) along with their coverage probability. We begin by obtaining
simulated data from a Poisson INAR(1) model, with sample sizes n=50 and
n=100, for 6=0.1,0.2,0.5,0.75 and A = 2. We have used the following Yule-
Walker estimators
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n-1

XN
6= and 2.=——2 (Y, ~6¥,.)
T At=2

i(Yt _?)2

to estimate 0 and A, respectively. The reason for using these estimators is that
the method of Kabaila and Syuhada [6] is also applicable for any estimators
other than either a maximum likelihood estimator or a conditional maximum
likelihood estimator.

Now, to estimate [3] by using the simulation algorithm of Kabaila, we first
define X =(Y,,...,Y,,)and Y =Y_. Thus, the conditional expectation in Eq. (3)

is equal to

E,(h(X,y)[Y =Yy)
where

h(X,y) =F, ((0y, + 1 0)A) +q, ., (6L-0)y, + L-B)%)?)

and y =y, . Meanwhile, the probability density function of Y , conditional on
X =x,P(Y =y|X), is given by

min(y,x)
P(Y=y[X=x)= > Co@1-0)" ﬁe-ﬂ-m{(l—e)xy-k
k=0 y—K):

for y=0,1,.... Thus, the estimate of Eq. (3) is

3TP(Y =yIX' =X )h(x',y)

M
D P(Y =y|X =X
s=1

for M independent simulation runs. It is noted that the standard error of this
estimate is calculated by Theorem 4.2 of Kabaila [10].

The performance of the coverage probability of the estimative prediction limit
for the Poisson INAR(1) model are provided in Table 1 and Table 2, based on
200 replications. The values close to the target nominal and the standard error
were reasonably small, except when 6=0.5. The coverage probability,
conditional on Y =2, for various A (0=0.1) is presented in Figure 1. The
number of simulation runs was 200 for a sample size of 100. The coverage
probability was far from the target value as A increased.
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To find the improved prediction limit and its coverage probability, we
considered the case that 6=0.2 and A =2 with the number of samples is 50.
The estimative 0.95 prediction limit z(Yn;é,X):S. The coverage probability,
conditional on Y, =3, was calculated based on 200 replications. We obtained
Eqg. (2) is equal to 0.9390(0.0014). The improved prediction limit obtained is 6.

Table 1 Estimated conditional coverage probabilities of the estimative 0.95
prediction limit for Poisson INAR(1) Model (A=2), conditional on Yn=2,3.
Standard errors are in brackets.

n 0 Y, =2 Y, =3

50 0.1 0.9507(0.0018)  0.9502(0.0016)
02  0.9347(0.0029)  0.9390(0.0014)

05  0.9063(0.0025)  0.9285(0.0013)

0.75 0.9445(0.0007)  0.9517(0.0025)

100 0.1  0.9507(0.0014)  0.9470(0.0012)
02  0.9412(0.0021)  0.9356(0.0008)

05  0.8918(0.0010)  0.9293(0.0001)

075 0.9483(0.0001)  0.9556(0.0001)

Table 2 Estimated conditional coverage probabilities of the estimative 0.90
prediction limit for Poisson INAR(1) Model (A=2), conditional on Y,=2,3.
Standard errors are in brackets.

no0 Y =2 Y =3
50 0.1 0.9134(0.0032)  0.9229(0.0026)
0.2  0.8898(0.0030)  0.9064(0.0033)
05  0.8906(0.0017)  0.8557(0.0059)
0.75 0.8920(0.0081)  0.8496(0.0082)
100 0.1  0.9109(0.0032)  0.9296(0.0025)
02 0.8816(0.0027)  0.9098(0.0030)
05  0.8890(0.0000)  0.8314(0.0057)
0.75 0.9005(0.0074)  0.8156(0.0060)

Note that the improved prediction limit may not be found unless it satisfies the

following condition

min;

> p(2(Y,;0) +ii0) < (o, Y,)

for c(m,y,)<0. The example can be observed from Table 1, when n=100,
0=0.1 and A =2, in which the coverage probability, conditional on Y, =3, is
0.9470. Here, c(w,Yy,)=-0.003. The estimative prediction limit is 4.4667,
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Figure 1 Conditional Coverage Probabilities of the 0.90 Estimative Prediction
Limit for various A(6=0.1Y, =2,n=100) with 200 replications.

which can be rounded to either 4 or 5. We expect the improved prediction limit
to be longer than the estimative one. However, either p=5 or p=6 has a
value greater than 0.003. Thus, we conclude that the improved prediction limit
is the estimative one. In other words, our best prediction limit is the estimative
prediction limit.

5 Discussion

The use of Kabaila’s method [10] to estimate the conditional coverage
probability may be avoided if we can have the backward representation of the
Poisson INAR(1) process. Note that, for the AR(p) process, the backward
representation is obtained only if we assume normality for the error of the
process.

Unlike the continuous-valued autoregressive process, the INAR process may
not always give us the improved prediction limit due to its discreteness and
expectation to obtain a coherent prediction. The possible improved prediction
limit really depends on the value of c(w,y,). As mentioned in Section 4, a

similar condition should also be satisfied when c(w,y,)>0, in which the

minimum sum of p(z(Yn;(:)) —i;®) should be greater than or equal to c(w,Y,) .
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