

148 J. Math. Fund. Sci., Vol. 50, No. 2, 2018, 148-165

Received May 16th, 2017, 1st Revision October 24th, 2017, 2nd Revision February 17th, 2018, Accepted for
publication March 6th, 2018.
Copyright © 2018 Published by ITB Journal Publisher, ISSN: 2337-5760, DOI: 10.5614/j.math.fund.sci.2018.50.2.4

Introduction of Interpolation and Extrapolation Model in
Lanczos-type Algorithms A13/B6 and A13/B13 to Enhance

their Stability

Maharani 1,3, Abdellah Salhi2 & Rifka Amelia Suharto3

1School of Informatics and Applied Mathematics, University of Malaysia Terengganu,
Gong Badak, Kuala Nerus 21030, Terengganu, Malaysia

2Department of Mathematical Sciences, University of Essex,
Wivenhoe Park, Colchester CO43SQ, Essex, United Kingdom

3Department of Mathematics, University of Jenderal Soedirman,
Jl.Dr.Soeparno No.61, Purwokerto55281, Jawa Tengah, Indonesia

E-mail: maharani@umt.edu.my

Abstract. A new method to treat the inherent instability of Lanczos-type
algorithms is introduced. It enables us to capture the properties of the sequence
of iterates generated by a Lanczos-type algorithm by interpolating on this
sequence of points. The interpolation model found is then used to generate a
point that is outside the range. It is expected that this new point will link up the
rest of the sequence of points generated by the Lanczos-type algorithm if
breakdown does not occur. However, because we assume that the interpolation
model captures the properties of the Lanczos sequence, the new point belongs to
that sequence since it is generated by the model. This paper introduces the so-
called Embedded Interpolation and Extrapolation Model in Lanczos-type
Algorithms (EIEMLA). The model was implemented in algorithms A13/B6 and
A13/B13, which are new variants of the Lanczos algorithm. Individually, these
algorithms perform badly on high dimensional systems of linear equations
(SLEs). However, with the embedded interpolation and extrapolation models,
EIEM A13/B6 and EIEM A13/B13, a substantial improvement in the performance
on SLEs with up to 105 variables can be achieved.

Keywords : breakdown; extrapolation; EIEM A13/B6; EIEM A13/B13; interpolation;
Lanczos-type algorithms; patterns.

AMS Subject Classification: 65F10, 65B05

1 Introduction

Systems of linear equations (SLEs) are ubiquitous in science and engineering
applications. There are several approaches for solving them, broadly classified
as direct and iterative methods. There are two general classes of iterative
methods to solve SLEs: stationary and non-stationary methods. Stationary
methods include Richardson [1], Jacobi, Gauss-Seidel [2], and Successive
Over-relaxation (SOR) [3], among others. Non-stationary methods include

 Lanczos-type Algorithms A13/B6 and A13/B13 149

Conjugate Gradient [4], BCG, BICG [5], GMRES, Arnoldi type [6], and
Lanczos type [7,8]. Non-stationary methods are generally more efficient and
suitable for large systems of linear equations. They are based on orthogonal
polynomials and are often referred to as Krylov subspace methods [9,10].

Among the iterative methods, for solving large linear systems with a sparse
non-symmetric matrix, those based on the Lanczos process are the most
effective. This is because they feature short recurrence relations for the
generation of the Krylov subspace, which means low cost and low memory
requirement [5]. They are, however, prone to breakdown [11]. Ways to avoid
breakdown in Krylov subspace algorithms have been researched extensively in
the last decades, resulting in new, more robust and efficient algorithms using,
for instance, restarting and switching strategies that allow us to restart and
switch between Lanczos-type algorithms before they break down [12,13]. A
recent work, discussed in Maharani & Salhi [14], considered three quality
points for restarting Lanczos-types algorithms.

In this study, we propose a novel strategy for SLEs that have a unique solution,
which takes advantage of the existence of patterns in the solutions generated by
Lanczos-type algorithms. The patterns persist in the entries of the iterates during
the iteration process. Interpolating every entry of the iterates allows to obtain
model functions that can be used to predict the entries of a new iterate. This
iterate is expected to be better than the previous iterates generated by the
Lanczos-type algorithm.

This paper is organized as follows. In Section 1, we look at the background
theory of Lanczos-type algorithms for solving SLEs. The motivation and
derivation of the new approach are given in Sections 2 and 3, respectively.
Section 4 discusses the numerical results of EIEMLA’s implementation of
algorithms A13/B6 and A13/B13. The conclusion is given in Section 5.

2 Review of Lanczos-type Algorithms for the Solution of SLEs

The Lanczos method to solve system

 A x b , (1)

where 𝐴 ∈ 𝑅௡௫௡ and vectors 𝐱, 𝐛 ∈ 𝑅௡, is based on the Krylov subspace
method. If 𝐾௞ and 𝐿௞ are two Krylov subspaces in 𝑅௡, then we can choose an
initial approximate solution 𝐱଴ so that

 0 0(,)k kK A x x r (2)

and
 (,)T

k k k kL K A   r b x y (3)

150 Maharani, et al.

where 𝐫଴ ൌ 𝒃 െ 𝐱଴ is the corresponding residual vector, and 𝐲 is an arbitrary
non-zero vector. Moreover, the residual 𝒓௞ satisfies the condition:

 0, () 0i
kA P A y r , for 0,1,..., 1i n  , (4)

where 𝑃௞ሺ𝑡ሻ ൌ 1 ൅ 𝛼ଵ𝑡 ൅ ⋯ ൅ 𝛼௞𝑡௞ is a residual polynomial, i.e. ሺ𝐫௞ ൌ
𝑃௞ሺ𝐴ሻ𝐫଴ሻ, of degree k at most. This polynomial satisfies the normal condition,
𝑃௞ሺ0ሻ ൌ 1. Let 𝑐 be a linear functional in the vector space of polynomials,
defined by

 ()i
ic c x (5)

If we set 0, i
ic A y r , then Relation in Eq. (4) can be written as

 (()) 0i
kc t P t  , 0,1,..., 1i k  (6)

Relation in Eq. (6) indicates that the highest degree of 𝑃௞is 𝑘, and it belongs to
the family of orthogonal polynomials with respect to function 𝑐. Thus, by using
formula 𝐫௞ ൌ 𝑃௞ሺ𝐴ሻ𝐫଴, we can set up the update solution, which is 𝐱௞ ൌ 𝒃 െ
𝑨𝒓௞. All of this is derived recursively.

Some formulas that Lanczos-type algorithms are based on have been discovered
by Brezinski, et al. (see [15,16]). They include formulas A୧ and B୨ , for 𝑖, 𝑗 ൌ
1,2, … , 10. The extension of these formulas, which involve polynomials with a
difference in degrees of at most two or three, were investigated in Farooq &
Salhi [17]. They are formulas A୧ and B୨, for 𝑖, 𝑗 ൌ 11, 12, … , 16. New variants
of the Lanczos-type algorithm, which combine Baheux-type and Farooq-type
algorithms, have been investigated in Ulah, et al. [18] and Suharto, et al. [19],
who discovered formulas , A13/B6 and A13/B10.

3 Motivation

Breakdown can be avoided in a variety of ways. Here, we suggest regression as
a means for that purpose. When breakdown occurs it is possible to remove the
last iterate that caused breakdown from the sequence of Lanczos-type algorithm
points, regress on this sequence (their entries) to find a suitable model, and then
use this model to generate new points that are within the sequence of points that
would have been generated by the Lanczos-type algorithm if breakdown had not
occurred.

The idea is to exploit patterns that may exist in the sequences generated by a
given Lanczos-type algorithm. After running such an algorithm for a certain
number of iterations it was pre-emptively stopped before it breaks down. We

 Lanczos-type Algorithms A13/B6 and A13/B13 151

then considered the generated iterates to see if any patterns existed. To illustrate
what we mentioned above, we considered a Lanczos-type algorithm such as
Orthodir [15], and ran it for 30 iterations to solve an SLE in 50 dimensions. We
collected all iterates and saved them in Eq. (7) as follows:

(1) (2) (50)
1 1 1
(1) (2) (50)
2 2 2

(1) (2) (50)
30 30 30

...

...

...

soldata

x x x

x x x

x x x

 
 
 
 
 
  


 (7)

We then plotted all the above iterates by using the Parallel Coordinate System
(PCS) [20-23]. By visualizing high-dimensional data, PCS gives insight into the
behavior of high-dimensional iterates generated over a number of iterations.
This is the main motivation behind our idea to exploit patterns that may exist in
iterates generated by Lanczos-type algorithms to improve the robustness of
these algorithms.

Figure 1 Behavior of EIEM Orthodir and Orthodir algorithms on SLEs in 50
dimensions. The blue line corresponding to EIEM Orthodir, has some very good
points and grows much slower than the one corresponding to Orthodir.

Figure 1 illustrates the PCS representation of all iterates generated by Orthodir.
The entries of the iterates are represented on the x-axis, while the values of the
entries are represented on the y-axis. As we can see here, after some time
several iterates start to form similar shapes. Our assumption is that these iterates
are close enough to the true solution. In other words, these iterates have a small

152 Maharani, et al.

residual norm. We investigated this further by exploiting the patterns at the
level of a single coordinate. More precisely, we were interested in the patterns
of the entries of the iterates. This allowed us to work in a single dimension. If
we have k iterates of an n-dimension problem, the following sequence

  1 2, ,..., kS  x x x (8)

holds them all. Now, consider the first entries of all iterates in S, the second
entries of all iterates in S, etc. A regression model over all first entries will be
used to generate the 1st entry of a new point; a regression model over all 2nd
entries will be used to generate the second entry of the new point, etc. In this
fashion we generate a new point that, as we will establish later, belongs to the
sequence of iterates of the Lanczos-type algorithm that was stopped prematurely
according to some norm. This idea should be applicable for instance when
Lanczos process-based algorithms are used to generate eigenvalues and
eigenvectors and in any iterative process where breakdown is an issue.

4 Generating the Approximate Solutions Using Interpolation
and Extrapolation Model

A new approach to enhance the stability of Lanczos-type algorithms was
developed, henceforth called Embedded Interpolation and Extrapolation Model
in Lanczos-type Algorithms (EIEMLA).

4.1 Derivation of EIEMLA

Consider k iterates that form set S as in Eq. (8). As explained above, among the
𝐱୩, there are some iterates with small residual norms in interval ሾ𝑚 െ 𝑗, 𝑘ሿ. Let
𝐱୫ have a corresponding minimum residual norm, ‖𝒓௠‖ and set

  1 1, , ...,m j m j kV    x x x (9)

where

(1) (2) ()

(1) (2) ()
1 1 1 1

(1) (2) ()

[, , ,]

[, , ,]

[, , ,]

n T
m j m j m j m j

n T
m j m j m j m j

n T
k k k k

x x x

x x x

x x x

   

       







x

x

x








. (10)

We assume that the sequences (1) (1) (1)
1 1{ , , , }m j m j kv x x x    ,

(2) (2) (2)
2 1{ , , , }m j m j kv x x x    , …, and () () ()

1{ , , , }n n n
n m j m j kv x x x    have special

properties, such as increasing or decreasing monotonically. In this case,

 Lanczos-type Algorithms A13/B6 and A13/B13 153

𝑣ଵ, 𝑣ଶ, … , 𝑣௡are obtained by rearranging entries in Eq. (10). According to [24],
each 𝑣௜ for i = 1, 2, …,n, is monotonic and convergent to its limit. This means
that

 () *lim i

k i
k

x x


 (11)

If we set

      
      

      

(1) (1) (1)
1 1 1

(2) (2) (2)
2 1 1

() () ()
1 1

, , , ,..., ,

, , , ,..., ,

, , , ,..., ,

m j m j m j m j k k

m j m j m j m j k k

n n n
n m j m j m j m j k k

w t t t

w t t t

w t t t

     

     

     







x x x

x x x

x x x


, (12)

where 𝑡 ∈ 𝑅, then we can use PCHIP to interpolate and extrapolate Eq. (12). Let
𝑓௜, for 𝑖 ൌ 1,2, … , 𝑛, be functions of the interpolation process. This means they
satisfy

 ()() i
i tf t x , for 𝑖 ൌ 1,2, … , 𝑛, (13)

for some 𝑡 ൌ 𝑚 െ 𝑗, 𝑚 െ 𝑗 ൅ 1, … , 𝑘. For * [1,]t k s R   , we have

 * ()() i
i rf t x , for 𝑖 ൌ 1,2, … , 𝑛 (14)

where 𝑠 ൒ 𝑘 ൅ 1. It is guaranteed that 𝑥௥
ሺ௜ሻ has a similar property as 𝑥௧

ሺ௜ሻ since
the later vectors are the extrapolation results of the first one. In fact, we use

PCHIP to produce, 𝑥௧
ሺ௜ሻ, where it preserves the properties of the data and

captures the persistent patterns of the data. This process terminates by

rearranging vectors 𝒙௥, with 𝑥௥
ሺ௜ሻ being the 𝑖௧௛ entries of the vector. This whole

process is called Embedded Interpolation and Extrapolation Model in Lanczos-
type Algorithms (EIEMLA).

Theoretically, since PCHIP captures the persistent pattern of the 𝑖௧௛ entry,
𝑖 ൌ 1,2, … , 𝑛, of the iterates generated by a Lanczos-type algorithm, the entries
of the new iterate, as a result of the model function, are likely to behave the
same as those entries. Furthermore, we can produce as many vector solutions as
we want by applying the functions 𝑓௜ over 𝑡∗ ∈ 𝑅 without running the Lanczos-
type algorithm again. However, we should be aware that the quality of these
generated solutions may not be good enough, in which case we must either
restart the iterative process from the best point or take the best solution found so
far as the candidate solution. It is therefore, reasonable to choose the integer s

154 Maharani, et al.

such that the residual norms of the iterates generated by these functions,
𝐱௞ାଵ, 𝐱௞ାଶ, … , 𝐱௦, are small enough. In this case, we obtain another sequence of
the iterates generated by EIEMLA. It is expected that these iterates replace the
‘missing’ iterates not generated by the Lanczos-type algorithm due to
breakdown.

4.2 Implementation of the EIEMLA Method

The above results suggest a procedure for EIEMLA (see Algorithm 1). As an
illustration of the implementation of EIEMLA, consider System in Eq. (1) with
𝑛 ൌ 5. Orthodir is used to solve it over 50 iterations. Following the above
procedures, we first collect all of the 50 iterates as. 𝑆 ൌ ሼ𝐱ଵ, 𝐱ଶ, … , 𝐱ଵହ଴ሽ. A
visualization of several entries of 𝑆 is shown in Figure 1, Section 1. Secondly,
we calculate index 𝑚 of iterate 𝐱௠ associated with the lowest residual norm,
‖𝒓௠‖. In this particular example, ‖𝐫௠‖ െ 0,0067 with 𝑚 ൌ 17. Thus re-
arranging 𝑆 as in Eq. (1) yields the following sequence:

      
      
      

(1) (1) (1)
1 7 7 8 8 50 50

(2) (2) (2)
2 7 7 8 8 50 50

() () ()
50 7 7 8 8 50 50

, , , ,..., ,

, , , ,..., ,

, , , ,..., ,n n n

w t t t

w t t t

w t t t







x x x

x x x

x x x

 (18)

where 𝑡 is an integer within the range ሾ𝑚 െ 10, 50ሿ. The choice of this range is
based on our observation that some good iterates can be found in it. Also, based
on Figure 1, the entries of the iterates in that range are increasing or decreasing
monotonically.

The next step is to interpolate each 𝑤௜ in Eq. (18) using PCHIP to get functions
𝑓௜. We use these functions to extrapolate and generate points that are outside the
range. In this case, we choose 𝑡∗ ∈ ሾ17,50ሿ. The interpolation and extrapolation
results are captured in Figure 2. As can be seen, PCHIP interpolates the data
accurately and smoothly (see the blue curves). However, the extrapolation
results in some points are of poor quality. In Figure 2(a), for instance, the blue
curve, which represents the PCHIP data, goes up after the ሼ50ሽ௧௛ iteration. The
PCHIP curve, on the other hand, seems monotone after the ሼ50ሽ௧௛ iteration in
Figures 2(b), (2c), and (2d).

Among the iterates generated by Orthdir, some entries behave as in Figure 2(a).
This means their trend goes up or down after 𝑘 iterations. However, there are
many other entries that behave monotonically. Since we put all entries in one
vector, overall, the effect of the fluctuating entries is smaller, which means that
a good approximate solution may be generated.

 Lanczos-type Algorithms A13/B6 and A13/B13 155

After calculating functions 𝑓௜ over 𝑡∗, we now have the approximate solutions
as in Eq. (16). We compute the residual norms accordingly. The behavior of
EIEM Orthodir and Orthodir for this case, is represented in Figure 3. As can be
seen, generally, the residual norms of the iterates generated by EIEM Orthodir
(the blue curve) are found below those generated by Orthodir (the red curve)
from iteration 17 to 50. In fact, at iteration 31, the residual norm hits the value
of 0.003. However, it goes up after iteration 71.

(a) w15 (b) w25

(c) w28 (d) w30

Figure 2 The interpolation and extrapolation results of sequences 𝑤௜, for
𝑖 ൌ 7,8, … 50 as in Eq. (18). The red curve represents all of the entries of the 𝑖௧௛
sequence, while the blue curve represents their interpolation and extrapolation
results using PCHIP.

We can safely say that some iterates generated by EIEM Orthodir have smaller
residual norms than all previous iterates generated by the Orthodir. On its own,
it does not find solutions with such low residual norms, even with a high
number of iterations.

156 Maharani, et al.

Figure 3 Behavior of EIEM Orthodir and Orthodir algorithms on SLEs in 50
dimensions. The blue line, corresponding to EIEM Orthodir, has some very good
points and grows much slower than that corresponding to Orthodir.

Algorithm 1. The EIEMLA method

1. Initialization. Choose 𝐱଴ and 𝐲, Set 𝐫଴ ൌ 𝐛 െ 𝐴𝐱଴, 𝒚଴ ൌ 𝒚, and 𝐳଴ ൌ
𝐫଴.

2. Fix the number of iterations to, say, 𝑘, and the tolerance, 𝜖, to E-13 and
run the Lanczos-type algorithm.

3. IF ሼ‖𝐫௠‖ ൏∈ሽ
4. The solution is obtained
5. Stop
6. ELSE
7. Collect all k vector solutions as in Eq. (7).
8. Choose some 𝑗 such that 𝑚 െ 𝑗 ൏ 𝑘.
9. Set 𝑤௜ as in Eq. (18), for 𝑖 ൌ 1,2, … , 𝑛.
10. Interpolate 𝑤௜ using PCHIP to get 𝑓௜.
11. Choose 𝑡∗ ∈ ሾ𝑚, 𝑠ሿ ⊂ 𝑅, where 𝑠 ൑ 𝑚 ൑ 𝑘 is an integer, and calculate

𝑓௜ሺ𝑡∗ሻ
12. FOR ሼ𝑞 ൌ 1, 2, … , 𝑙ሽ DO
13. Arrange vectors

14.

() *
1

() *
() 2
*

() *

()

()

()

q

q
q

q
n

f t

f t

f t

 
 
   
 
  

x


 (16)

 Lanczos-type Algorithms A13/B6 and A13/B13 157

15. Where 𝑙 ൌ 𝑙𝑒𝑛𝑔𝑡ℎሺሾ𝑚, 𝑠ሿሻ.
16. Calculate the residual norms of Eq. (16) as follows

17. ቛ𝐫∗
ሺ௤ሻቛ ൌ 𝐛 െ 𝐴𝐱∗

ሺ௤ሻ (17)

18. ENDFOR
19. ENDIF

20. The solutions of the systems are ቄ𝑥∗
ሺଵሻ, 𝑥∗

ሺଶሻ, … , 𝑥∗
ሺ௟ሻቅ

21. Stop.

4.3 Formal Basis of EIEMLA

As mentioned in the previous section, the sequences generated by Lanczos-type
algorithms have the property of monotonicity. Since we consider PCHIP, which
preserves monotonicity [25], to interpolate the sequences, we can assume that
points returned by the function are also monotonic. This leads to the theorem
below, which guarantees the monotonicity of sequences generated by Lanczos-
type algorithms. The proofs of the theorems can be seen in the Appendix.

Theorem 1. Given a sequence 𝒙௞ of 𝑘 iterates generated by a Lanczos-type

algorithm, sequences of 𝒙௞
ሺ௜ሻ, 𝑖 ൌ 1, 2, 𝑛, and 𝑘 ൌ 1, ... namely the entries of 𝑘

iterates, are monotonic.

Lemma 1 [26]. Let 𝐴 ൌ 𝑉𝐴𝑉ିଵ be a nonsingular diagonalizable matrix, where
𝑉 is a matrix that consists of the eigenvectors of 𝐴, 𝑆 is a diagonal matrix with

0

0

B I

I B I

A

I B I

I B



 



 



 
 
 
 
 
 
  

 


    


 

𝑎௜௜ ∈ 𝜎ሺ𝐴ሻ being the diagonal entries, and 𝜎ሺ𝐴ሻ

is the set of the eigenvalues of 𝐴. Then, ‖𝑃௞ሺ𝐴ሻ‖ ൑ 𝜅ଶሺ𝑉ሻ maxఒఢఙሺ஺ሻ|𝜆|where
𝜅ଶሺ𝑉ሻ is the condition of matrix 𝑉.

Theorem 2. Let 𝒙ଵ, 𝒙ଶ, … , 𝒙௞, 𝒙௞ାଵ be the iterates generated by the Orthodir
algorithm. Let 𝑥௠௢ௗ௘௟ be a vector returned by EIEMLA as explained in the
previous section. Then, for some ∈൐ 0, ‖𝒙௞ାଵ െ 𝒙௠௢ௗ௘௟‖ ൑∈, where ‖. ‖ is the
Euclidean norm.

Based on the above theorem, we finally show that the residual norm of an
iterate generated by EIEMLA is always smaller or equal to that of an iterate

158 Maharani, et al.

generated by the Lanczos-type algorithm considered. In other words, better
solutions are generated through this process.

Theorem 3. Let 𝒙ଵ, 𝒙ଶ, … , 𝒙௞ be the iterates generated by the Orthodir
algorithm. Let 𝑟௠௢ௗ௘௟ be a residual vector that corresponds to the iterate
generated by EIEMLA. Then, ‖𝑟௠௢ௗ௘௟‖൑ ሺ1 ൅ |𝜆|ሻ‖𝒓௞‖.

5 Numerical Results and Discussion

Our test problems used in this study arise in the 5-point discretization of the

operator െ
డమ

డ௫మ െ
డమ

డ௬మ ൅ 𝛾
డ

డ௫
 on a rectangular region [27]. This yields System in

Eq. (1) with

0

0

B I

I B I

A

I B I

I B



 



 



 
 
 
 
 
 
  

 


    


 

 and

4 0

4

4

0 4

B



 

 





 
 
 
 
 
 
  

 


    

 

and 𝛼 ൌ െ1 ൅ 𝛿, 𝛽 ൌ െ1 െ 𝛿, 𝛿 takes values 0; 0.2; 0.5; 0.8; 5; 8. The
parameter δ plays an important role in the singularity of matrix A. For instance,
when 𝛿 ൌ 0, 𝐴 is a symmetric matrix. The condition number of matrix A for
this particular value of 𝛿 is large enough, i.e. 119.9999. Any system built by this
matrix tends to be ill-conditioned [28-30]. When 𝛿 is large enough, matrix A
can become well-conditioned. We can also say here that the SLEs that involve
matrix 𝐴 have a unique solution.

Furthermore, we use iterations 𝑘 ൌ 100 ൑ 𝑛. The choice of k is based on the
observation that Lanczos-type algorithms generally fail to find a good
approximate solution after 100 iterations. In addition, the right-hand side 𝒃 is
taken to be 𝒃 ൌ 𝐴𝒙, where 𝒙 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ் is the solution of the system,
and 𝑥௜, 𝑖 ൌ 1, 2, … , 𝑛 is a random value between 0 and 1. We use formulas
A13/B6 and A13/B13 in this experiment as representative of Lanczos-type
algorithms. Note, that the first formula is a new type of Lanczos algorithm,
investigated in Ullah, et al. [18], while the second one is found in Suharto, et al.
[19].

5.1 Numerical Results

The test problems were carried out under MATLAB 2015b on a computer with
an Intel 2.40 GHz processor, Core i7, and 16 GB RAM. The aim of the

 Lanczos-type Algorithms A13/B6 and A13/B13 159

experiment was to examine the reduction in the residual norm of the iterates
generated by EIEMLA compared with the original Lanczos-type algorithms. All
of the results are recorded in Tables 1 and 2, and visualized graphically.

Table 1 Comparison of residual norms of iterates generated by A13/B6 and
generated by EIEM A13/B6 over 100 iterations.

Dim A13B6 EIEM A13B6 Time (s)
n ‖𝐫𝒌‖ ‖𝐫𝒎𝒐𝒅𝒆𝒍‖

1000 3.62E+02 10.6498 0.3232
2000 6.42E+04 8.4998 0.3903
3000 NaN 4.9849 0.6783
4000 1.87E+09 12.3174 17.8791
5000 1.87E+09 12.3174 0.6783
6000 NaN 16.6164 0.7714
7000 4.69E+03 12.7736 0.8029
8000 5.03E+08 2.2334 1.0650
9000 3.54E+03 1.1718 0.9489

10000 9.56E+05 14.9270 1.0276
20000 NaN 9.6835 1.6685
30000 7.24E+10 152.9614 2.6506
40000 1.15E+03 13.1240 3.3747
50000 1.13E+10 53.2363 4.3543
60000 1.67E+06 154.0032 5.1728
70000 NaN 138.9045 5.8259
80000 NaN 82.3836 6.6018
90000 7.13E+03 23.2396 7.1726
100000 1.53E+07 4.4710 8.0383

Table 2 Comparison of residual norms of iterates generated by A13/B13 and
generated by EIEM A13/B13 over 100 iterations.

Dim A13B13 EIEM A13B13 Time (s)
n ‖𝐫𝒌‖ ‖𝐫𝒎𝒐𝒅𝒆𝒍‖

1000 NaN 7.0391 0.3607
2000 NaN 3.6217 0.4311
3000 NaN 57.3744 0.7274
4000 NaN 50.1365 1.0101
5000 NaN 40.5467 1.5103
6000 NaN 3.5261 2.0745
7000 NaN 29.2577 2.6821
8000 NaN 78.5510 2.9997
9000 NaN 713.7055 4.2056

10000 NaN 9.9809 4.9926
20000 NaN 19.6627 20.0117
30000 NaN 24.7834 54.4602

160 Maharani, et al.

(a) Dim 1000 (b) Dim 3000

(c) Dim 4000 (d) Dim 6000

(e) Dim 9000 (f) Dim 40000

(g) Dim 60000 (h) Dim 90000

Figure 4 Performance of Lanczos A13/B6 and EIEM A13/B6 on a variety of
SLEs. Blue and red curves illustrate the residual norms of respectively Lanczos
A13/B6 and EIEM A13/B6.

 Lanczos-type Algorithms A13/B6 and A13/B13 161

(a) Dim 1000 (b) Dim 2000

(c) Dim 4000 (d) Dim 7000

(e) Dim 9000 (f) Dim 10000

(g) Dim 20000 (h) Dim 30000

Figure 5 Performance of Lanczos A13/B13 and EIEM A13/B13 on a variety of
SLEs. Blue and red curves illustrate the residual norms of respectively Lanczos
A13/B13 and EIEM A13/B13 .

162 Maharani, et al.

5.2 Discussion

Overall, the approximate solutions generated by the new algorithms, EIEM
A13/B6 and EIEM A13/B13, were better than those from all of the previous
iterates generated by the Lanczos-type algorithms alone. The residual norms of
the iterates generated by both algorithms were smaller than all residual norms of
the iterates generated by algorithms A13/B6 and A13/B13 individually. This is
clearly visible in Tables 1 and 2. This was even worse for Lanczos A13/B13,
where breakdown occurred in every SLE. There were, however, some cases
where the new method seemed unsuccessful. It occurred, for instance, on the
SLEs of dimensions 30000, 60000 and 70000 for algorithm EIEM A13/B6, and
on the SLE of dimension 9000 for algorithm EIEM A13/B13.

Our above observations are supported by Figures 5 and 6. As can be seen in
both figures, the residual norms of the iterates generated by either A13/B6 or
A13/B13 individually, became larger and larger so that convergence was never
reached. In contrast, both EIEM A13/B6 and EIEM A13/B13 generated
approximate solutions with small residual norms, even smaller than the smallest
residual norm of the iterates generated by A13/B6 and A13/B13 alone. Note that
the residual norms of the solutions generated by EIEM A13/B6 and A13/B13 are
still larger than the ambitious tolerance of 1E-13 we have imposed. One way of
improving accuracy is perhaps to restart the algorithms with the final iterates,
which are rather good. A discussion of the restarting strategy can be found in
[31].

6 Summary

We have introduced a new approach to solving high-dimension SLEs by
embedding an interpolation model in Lanczos-type algorithms, called EIEMLA.
We implemented this approach for algorithms A13/B6 and A13/B13, which are
new Lanczos-type algorithms. Experimentally, the idea enables us to find a
good solution in terms of the residual norm, i.e. the solutions must have smaller
residual norms than all of the previous iterates generated by algorithms A13/B6
and A13/B13. This helps avoid breakdown in both algorithms since we
interpolate over a low number of iterations. Further investigation is required to
find a prediction strategy, such as a regression, that fits the data in such a way
that the embedded model produces better iterates still.

Acknowledgements

The experiments using formulas A13/B6 and A13/B13 were carried out by a co-
worker with one of my students, therefore my thanks go to Alifhar Juliansyah.

 Lanczos-type Algorithms A13/B6 and A13/B13 163

References

[1] Golub, G.H. & Overton, M.L., Convergence of a Two-stage Richardson
Iterative Procedure for Solving Systems of Linear Equations, Numerical
Analysis, 912, pp. 125-139, 1982.

[2] Barret, R., Berry, M., Cahn, T.F., Demmel, J., Dongarra, J., Eijkhout, V.
and Pozo, R., Romine, C. & Van der Vorst, V.A., Templates for the
Solutions of Linear Systems: Building Block for Iterative Methods,
Philadelphia: SIAM, pp. 3-155, 1994.

[3] Young Jr., D.M., Iterative Methods for Solving Partial Difference
Equations of Elliptic type, Ph.D dissertation, Department of Mathematics,
Harvard University, Cambridge, 1950.

[4] Magnus, R.H. & Stiefel, E., Methods of Conjugate Gradients for Solving
Linear Systems, Journal of Research of the National Bureau of Standards,
49(6), pp. 409-436, 1952.

[5] Gutknecht, M.H., Lanczos-type Solvers for Nonsymmetric Linear Systems
of Equations, Cambridge University Press, pp. 271-397, 1997.

[6] Morgan, R.B., On Restarting the Arnoldi Method for Large
Nonsymmetric Eigenvalue Problems, Mathematics of Computation,
65(4), pp. 1213-1230, 1996.

[7] Lanczos, C., An Iteration Method for The Solution of the Eigenvalue
Problem of Linear Differential and Integral Operator, Journal of
Research of the National Bureau of Standards, 45, pp. 255-282, 1950.

[8] Lanczos, C., Solution of Systems of Linear Equations by Minimized
Iteration, Journal of Research of the National Bureau of Standards, 49,
pp. 33-53, 1952.

[9] Saad, Y., Krylov Subspace Method for Solving Large Unsymmetric
Linear Systems, Mathematics of Computations, 37(155), pp. 105-126,
1981.

[10] Saad, Y., Iterative Methods for Sparse Linear Systems, Philadelphia:
Society for Industrial and Applied Mathematics, 3rd Ed., pp. 5-10, 2003.

[11] Brezinski, C. & Zaglia, R.H., A New Presentation of Orthogonal
Polynomials with Applications to Their Computation, Numerical
Algorithm, 1, pp. 207-221, 1991.

[12] Farooq, M. & Salhi, A., A Preemptive Restarting Approach to Beating
Inherent Instability, Iranian Journal of Science and Technology
Transaction a Science, 37(Special Issue), pp. 349-358, 2013.

[13] Farooq, M. & Salhi, A., A Switching Approach to Beating the Inherent
Instability of Lanczos-type Algorithms, Journal of Applied Mathematics
and Information Systems, 8(5), pp. 2161-2169, 2014.

[14] Maharani, M. & Salhi, A., Restarting from Specific Points to Cure
Breakdown in Lanczos-type Algorithms, Journal of Mathematical and
Fundamental Sciences, 2(47), pp. 167-184, 2015.

164 Maharani, et al.

[15] Brezinski, C. & Sadok, H., Lanczos-type Algorithms for Solving Systems
of Linear Equation, Applied Numerical Mathematics, 11, pp. 443-473,
1993.

[16] Brezinski, C., Zaglia, R.H. & Sadok, H., The Matrix and Polynomial
Approaches to Lanczos-type Algorithms, Journal Of Computational and
Applied Mathematics, 123, pp. 241-260, 2000.

[17] Farooq, M. & Salhi, A., New Recurrence Relationships between
Orthogonal Polynomials which Lead to New Lanczos-type Algorithms,
Journal of Prime Research in Mathematics, 8, pp. 61-75, 2012.

[18] Ullah, Z., Farooq, M. & Salhi, A., A19/B6: A New Lanczos-type
Algorithm and its Implementation, Journal of Prime Research in
Mathematics, 11, pp.106-122, 2015.

[19] Suharto, Rifka, A., Maharani, Maryani, S. & Juliansyah, A., New Lanczos
Formula Types A13/B6 and A13/B10 for Solving Large Scale of Linear
Systems, 1st International Conference on Mathematics, Science, and
Education (ICOMSE 2017), 2017.

[20] Inselberg, A. & Dimsdale, B., Parallel Coordinates: A Tool for
Visualizing Multi-Dimensional Geometry, IEEE Computer Society Press,
Conference, pp. 361-378, 1990.

[21] Kosara, R., Parallel Coordinates, Cambridge University Press,
http://eagereyes.org/techniques/parallel-coordinates.html, 2012.

[22] Shanon, R., Holland, T. & Quigley, A., Multivariate Graph Drawing
using Parallel Coordinate Visualization, University College Dublin, pp.
361-378, 2008.

[23] Few, S., Multivariate Analysis Using Parallel Coordinates,
https://www.perceptualedge.com/articles/b-eye/parallel_coordinates.pdf,
(30 June 2012).

[24] Sidi, A., William, F.F. & Smith, D.A., Acceleration of Convergence of
Vector Sequences, SIAM Journal on Numerical Analysis, 23(1), pp. 178-
196, 1986.

[25] Delbourgo, R. & Gregory, J.A., Shape Preserving Piecewise Rational
Interpolation, SIAM Journal on Scientific and Statistical Computing, 10,
1983.

[26] Kelley, C.T., Iterative Methods for Linear and Nonlinear Equations,
Philadelphia: Society for Industrial and Applied Mathematics, pp. 25-30,
1995.

[27] Baheux, C., New Implementations of Lanczos Method, Journal of
Computational and Applied Mathmatics, 57(3), pp. 3-155, 1995.

[28] Datta, B.N., Numerical Linear Algebra and Applications, Philadelphia:
Society for Industrial and Applied Mathematics, 5th Ed., pp. 5-10, 2000.

[29] Farooq, M. & Salhi, A., Improving the Solvability of Ill-Conditioned
Systems of Linear Equations by Reducing the Condition Number of their

 Lanczos-type Algorithms A13/B6 and A13/B13 165

Matrices, Journal of the Korean Mathematical Society, 48(5), pp. 939-
952, 2011.

[30] Higham, N.J., Accuracy and Stability of Numerical Algorithms,
Philadelphia: Society for Industrial and Applied Mathematics, 3rd Ed., pp.
5-10, 2002.

[31] Maharani, M., Salhi, A. & Khan, W., Enhanced the Stability of Lanczos-
type Algorithms by Restarting the Point Generated by EIEMLA for the
Solution of Systems of Linear Equations, International Science Journal,
Lahore, 28(4), pp. 3325-3335, 2016.

