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Abstract. A new method to treat the inherent instability of Lanczos-type 
algorithms is introduced. It enables us to capture the properties of the sequence 
of iterates generated by a Lanczos-type algorithm by interpolating on this 
sequence of points. The interpolation model found is then used to generate a 
point that is outside the range. It is expected that this new point will link up the 
rest of the sequence of points generated by the Lanczos-type algorithm if 
breakdown does not occur. However, because we assume that the interpolation 
model captures the properties of the Lanczos sequence, the new point belongs to 
that sequence since it is generated by the model. This paper introduces the so-
called Embedded Interpolation and Extrapolation Model in Lanczos-type 
Algorithms (EIEMLA). The model was implemented in algorithms A13/B6 and 
A13/B13, which are new variants of the Lanczos algorithm. Individually, these 
algorithms perform badly on high dimensional systems of linear equations 
(SLEs). However, with the embedded interpolation and extrapolation models, 
EIEM A13/B6 and EIEM A13/B13, a substantial improvement in the performance 
on SLEs with up to 105 variables can be achieved. 

Keywords : breakdown; extrapolation; EIEM A13/B6; EIEM A13/B13; interpolation; 
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1 Introduction 

Systems of linear equations (SLEs) are ubiquitous in science and engineering 
applications. There are several approaches for solving them, broadly classified 
as direct and iterative methods. There are two general classes of iterative 
methods to solve SLEs: stationary and non-stationary methods. Stationary 
methods include Richardson [1], Jacobi, Gauss-Seidel [2], and Successive 
Over-relaxation (SOR) [3], among others. Non-stationary methods include 
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Conjugate Gradient [4], BCG, BICG [5], GMRES, Arnoldi type [6], and 
Lanczos type [7,8]. Non-stationary methods are generally more efficient and 
suitable for large systems of linear equations. They are based on orthogonal 
polynomials and are often referred to as Krylov subspace methods [9,10]. 

Among the iterative methods, for solving large linear systems with a sparse 
non-symmetric matrix, those based on the Lanczos process are the most 
effective. This is because they feature short recurrence relations for the 
generation of the Krylov subspace, which means low cost and low memory 
requirement [5]. They are, however, prone to breakdown [11]. Ways to avoid 
breakdown in Krylov subspace algorithms have been researched extensively in 
the last decades, resulting in new, more robust and efficient algorithms using, 
for instance, restarting and switching strategies that allow us to restart and 
switch between Lanczos-type algorithms before they break down [12,13]. A 
recent work, discussed in Maharani & Salhi [14], considered three quality 
points for restarting Lanczos-types algorithms.  

In this study, we propose a novel strategy for SLEs that have a unique solution, 
which takes advantage of the existence of patterns in the solutions generated by 
Lanczos-type algorithms. The patterns persist in the entries of the iterates during 
the iteration process. Interpolating every entry of the iterates allows to obtain 
model functions that can be used to predict the entries of a new iterate. This 
iterate is expected to be better than the previous iterates generated by the 
Lanczos-type algorithm. 

This paper is organized as follows. In Section 1, we look at the background 
theory of Lanczos-type algorithms for solving SLEs. The motivation and 
derivation of the new approach are given in Sections 2 and 3, respectively. 
Section 4 discusses the numerical results of EIEMLA’s implementation of 
algorithms A13/B6 and A13/B13. The conclusion is given in Section 5. 

2 Review of Lanczos-type Algorithms for the Solution of SLEs 

The Lanczos method to solve system 

 A x b , (1) 

where 𝐴 ∈ 𝑅௡௫௡ and vectors 𝐱, 𝐛 ∈ 𝑅௡, is based on the Krylov subspace 
method. If 𝐾௞ and 𝐿௞ are two Krylov subspaces in 𝑅௡, then we can choose an 
initial approximate solution 𝐱଴ so that  

 0 0( , )k kK A x x r  (2) 

and 
 ( , )T

k k k kL K A   r b x y  (3) 
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where 𝐫଴ ൌ 𝒃 െ 𝐱଴ is the corresponding residual vector, and 𝐲 is an arbitrary 
non-zero vector. Moreover, the residual 𝒓௞ satisfies the condition: 

 0, ( ) 0i
kA P A y r , for 0,1,..., 1i n  , (4) 

where 𝑃௞ሺ𝑡ሻ ൌ 1 ൅ 𝛼ଵ𝑡 ൅ ⋯ ൅ 𝛼௞𝑡௞ is a residual polynomial, i.e. ሺ𝐫௞ ൌ
𝑃௞ሺ𝐴ሻ𝐫଴ሻ, of degree k at most. This polynomial satisfies the normal condition, 
𝑃௞ሺ0ሻ ൌ 1. Let 𝑐 be a linear functional in the vector space of polynomials, 
defined by 

 ( )i
ic c x  (5) 

If we set 0, i
ic A y r , then Relation in Eq. (4) can be written as 

 ( ( )) 0i
kc t P t  , 0,1,..., 1i k   (6) 

Relation in Eq. (6) indicates that the highest degree of 𝑃௞is 𝑘, and it belongs to 
the family of orthogonal polynomials with respect to function 𝑐. Thus, by using 
formula  𝐫௞ ൌ 𝑃௞ሺ𝐴ሻ𝐫଴, we can set up the update solution, which is 𝐱௞ ൌ 𝒃 െ
𝑨𝒓௞. All of this is derived recursively.  

Some formulas that Lanczos-type algorithms are based on have been discovered 
by Brezinski, et al. (see [15,16]). They include formulas A୧ and B୨ , for 𝑖, 𝑗 ൌ
1,2, … , 10. The extension of these formulas, which involve polynomials with a 
difference in degrees of at most two or three, were investigated in Farooq & 
Salhi [17]. They are formulas A୧ and B୨, for 𝑖, 𝑗 ൌ 11, 12, … , 16. New variants 
of the Lanczos-type algorithm, which combine Baheux-type and Farooq-type 
algorithms, have been investigated in Ulah, et al. [18] and Suharto, et al. [19], 
who discovered formulas , A13/B6 and A13/B10. 

3 Motivation 

Breakdown can be avoided in a variety of ways. Here, we suggest regression as 
a means for that purpose. When breakdown occurs it is possible to remove the 
last iterate that caused breakdown from the sequence of Lanczos-type algorithm 
points, regress on this sequence (their entries) to find a suitable model, and then 
use this model to generate new points that are within the sequence of points that 
would have been generated by the Lanczos-type algorithm if breakdown had not 
occurred. 

The idea is to exploit patterns that may exist in the sequences generated by a 
given Lanczos-type algorithm. After running such an algorithm for a certain 
number of iterations it was pre-emptively stopped before it breaks down. We 
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then considered the generated iterates to see if any patterns existed. To illustrate 
what we mentioned above, we considered a Lanczos-type algorithm such as 
Orthodir [15], and ran it for 30 iterations to solve an SLE in 50 dimensions. We 
collected all iterates and saved them in Eq. (7) as follows: 

 

(1) (2) (50)
1 1 1
(1) (2) (50)
2 2 2

(1) (2) (50)
30 30 30

...

...

...

soldata

x x x

x x x

x x x

 
 
 
 
 
  


 (7) 

We then plotted all the above iterates by using the Parallel Coordinate System 
(PCS) [20-23]. By visualizing high-dimensional data, PCS gives insight into the 
behavior of high-dimensional iterates generated over a number of iterations. 
This is the main motivation behind our idea to exploit patterns that may exist in 
iterates generated by Lanczos-type algorithms to improve the robustness of 
these algorithms. 

 
Figure 1 Behavior of EIEM Orthodir and Orthodir algorithms on SLEs in 50 
dimensions. The blue line corresponding to EIEM Orthodir, has some very good 
points and grows much slower than the one corresponding to Orthodir. 

Figure 1 illustrates the PCS representation of all iterates generated by Orthodir. 
The entries of the iterates are represented on the x-axis, while the values of the 
entries are represented on the y-axis. As we can see here, after some time 
several iterates start to form similar shapes. Our assumption is that these iterates 
are close enough to the true solution. In other words, these iterates have a small 
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residual norm. We investigated this further by exploiting the patterns at the 
level of a single coordinate. More precisely, we were interested in the patterns 
of the entries of the iterates. This allowed us to work in a single dimension. If 
we have k iterates of an n-dimension problem, the following sequence 

  1 2, ,..., kS  x x x  (8) 

holds them all. Now, consider the first entries of all iterates in S, the second 
entries of all iterates in S, etc. A regression model over all first entries will be 
used to generate the 1st entry of a new point; a regression model over all 2nd 
entries will be used to generate the second entry of the new point, etc. In this 
fashion we generate a new point that, as we will establish later, belongs to the 
sequence of iterates of the Lanczos-type algorithm that was stopped prematurely 
according to some norm. This idea should be applicable for instance when 
Lanczos process-based algorithms are used to generate eigenvalues and 
eigenvectors and in any iterative process where breakdown is an issue. 

4 Generating the Approximate Solutions Using Interpolation 
and Extrapolation Model 

A new approach to enhance the stability of Lanczos-type algorithms was 
developed, henceforth called Embedded Interpolation and Extrapolation Model 
in Lanczos-type Algorithms (EIEMLA). 

4.1 Derivation of EIEMLA 

Consider k iterates that form set S as in Eq. (8). As explained above, among the 
𝐱୩, there are some iterates with small residual norms in interval ሾ𝑚 െ 𝑗, 𝑘ሿ. Let 
𝐱୫ have a corresponding minimum residual norm, ‖𝒓௠‖ and set  

  1 1, , ...,m j m j kV    x x x  (9) 

where 

 

(1) (2) ( )

(1) (2) ( )
1 1 1 1

(1) (2) ( )

[ , , , ]

[ , , , ]

[ , , , ]

n T
m j m j m j m j

n T
m j m j m j m j

n T
k k k k

x x x

x x x

x x x

   

       







x

x

x








. (10) 

We assume that the sequences (1) (1) (1)
1 1{ , , , }m j m j kv x x x    , 

(2) (2) (2)
2 1{ , , , }m j m j kv x x x    , …, and ( ) ( ) ( )

1{ , , , }n n n
n m j m j kv x x x     have special 

properties, such as increasing or decreasing monotonically. In this case, 
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𝑣ଵ, 𝑣ଶ, … , 𝑣௡are obtained by rearranging entries in Eq. (10). According to [24], 
each 𝑣௜ for i = 1, 2, …,n, is monotonic and convergent to its limit. This means 
that 

 ( ) *lim i

k i
k

x x


  (11)  

If we set 

 

      
      

      

(1) (1) (1)
1 1 1

(2) (2) (2)
2 1 1

( ) ( ) ( )
1 1

, , , ,..., ,

, , , ,..., ,

, , , ,..., ,

m j m j m j m j k k

m j m j m j m j k k

n n n
n m j m j m j m j k k

w t t t

w t t t

w t t t

     

     

     







x x x

x x x

x x x


, (12) 

where 𝑡 ∈ 𝑅, then we can use PCHIP to interpolate and extrapolate Eq. (12). Let 
𝑓௜, for 𝑖 ൌ 1,2, … , 𝑛, be functions of the interpolation process. This means they 
satisfy 

 ( )( ) i
i tf t x , for 𝑖 ൌ 1,2, … , 𝑛, (13) 

for some 𝑡 ൌ 𝑚 െ 𝑗, 𝑚 െ 𝑗 ൅ 1, … , 𝑘. For * [ 1, ]t k s R   , we have  

 * ( )( ) i
i rf t x  , for 𝑖 ൌ 1,2, … , 𝑛 (14)  

where 𝑠 ൒ 𝑘 ൅ 1. It is guaranteed that 𝑥௥
ሺ௜ሻ has a similar property as 𝑥௧

ሺ௜ሻ since 
the later vectors are the extrapolation results of the first one. In fact, we use 

PCHIP to produce, 𝑥௧
ሺ௜ሻ, where it preserves the properties of the data and 

captures the persistent patterns of the data. This process terminates by 

rearranging vectors 𝒙௥, with 𝑥௥
ሺ௜ሻ being the 𝑖௧௛ entries of the vector. This whole 

process is called Embedded Interpolation and Extrapolation Model in Lanczos-
type Algorithms (EIEMLA). 

Theoretically, since PCHIP captures the persistent pattern of the 𝑖௧௛ entry, 
𝑖 ൌ 1,2, … , 𝑛, of the iterates generated by a Lanczos-type algorithm, the entries 
of the new iterate, as a result of the model function, are likely to behave the 
same as those entries. Furthermore, we can produce as many vector solutions as 
we want by applying the functions 𝑓௜ over 𝑡∗ ∈ 𝑅 without running the Lanczos-
type algorithm again. However, we should be aware that the quality of these 
generated solutions may not be good enough, in which case we must either 
restart the iterative process from the best point or take the best solution found so 
far as the candidate solution. It is therefore, reasonable to choose the integer s 



154 Maharani, et al. 
 

such that the residual norms of the iterates generated by these functions, 
𝐱௞ାଵ, 𝐱௞ାଶ, … , 𝐱௦, are small enough. In this case, we obtain another sequence of 
the iterates generated by EIEMLA. It is expected that these iterates replace the 
‘missing’ iterates not generated by the Lanczos-type algorithm due to 
breakdown. 

4.2 Implementation of the EIEMLA Method 

The above results suggest a procedure for EIEMLA (see Algorithm 1). As an 
illustration of the implementation of EIEMLA, consider System in Eq. (1) with 
𝑛 ൌ 5. Orthodir is used to solve it over 50 iterations. Following the above 
procedures, we first collect all of the 50 iterates as. 𝑆 ൌ ሼ𝐱ଵ, 𝐱ଶ, … , 𝐱ଵହ଴ሽ. A 
visualization of several entries of 𝑆 is shown in Figure 1, Section 1. Secondly, 
we calculate index 𝑚 of iterate 𝐱௠ associated with the lowest residual norm, 
‖𝒓௠‖. In this particular example, ‖𝐫௠‖ െ 0,0067 with 𝑚 ൌ 17. Thus re-
arranging 𝑆 as in Eq. (1) yields the following sequence: 

 

      
      
      

(1) (1) (1)
1 7 7 8 8 50 50

(2) (2) (2)
2 7 7 8 8 50 50

( ) ( ) ( )
50 7 7 8 8 50 50

, , , ,..., ,

, , , ,..., ,

, , , ,..., ,n n n

w t t t

w t t t

w t t t







x x x

x x x

x x x

  (18) 

where 𝑡 is an integer within the range ሾ𝑚 െ 10, 50ሿ. The choice of this range is 
based on our observation that some good iterates can be found in it. Also, based 
on Figure 1, the entries of the iterates in that range are increasing or decreasing 
monotonically. 

The next step is to interpolate each 𝑤௜ in Eq. (18) using PCHIP to get functions 
𝑓௜. We use these functions to extrapolate and generate points that are outside the 
range. In this case, we choose 𝑡∗ ∈ ሾ17,50ሿ. The interpolation and extrapolation 
results are captured in Figure 2. As can be seen, PCHIP interpolates the data 
accurately and smoothly (see the blue curves). However, the extrapolation 
results in some points are of poor quality. In Figure 2(a), for instance, the blue 
curve, which represents the PCHIP data, goes up after the ሼ50ሽ௧௛ iteration. The 
PCHIP curve, on the other hand, seems monotone after the ሼ50ሽ௧௛ iteration in 
Figures 2(b), (2c), and (2d). 

Among the iterates generated by Orthdir, some entries behave as in Figure 2(a). 
This means their trend goes up or down after 𝑘 iterations. However, there are 
many other entries that behave monotonically. Since we put all entries in one 
vector, overall, the effect of the fluctuating entries is smaller, which means that 
a good approximate solution may be generated. 
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After calculating functions 𝑓௜ over 𝑡∗, we now have the approximate solutions 
as in Eq. (16). We compute the residual norms accordingly. The behavior of 
EIEM Orthodir and Orthodir for this case, is represented in Figure 3. As can be 
seen, generally, the residual norms of the iterates generated by EIEM Orthodir 
(the blue curve) are found below those generated by Orthodir (the red curve) 
from iteration 17 to 50. In fact, at iteration 31, the residual norm hits the value 
of 0.003. However, it goes up after iteration 71. 

 
(a) w15 (b) w25 

 
(c) w28 (d) w30 

Figure 2 The interpolation and extrapolation results of sequences 𝑤௜, for 
𝑖 ൌ 7,8, … 50 as in Eq. (18). The red curve represents all of the entries of the 𝑖௧௛  
sequence, while the blue curve represents their interpolation and extrapolation 
results using PCHIP. 

We can safely say that some iterates generated by EIEM Orthodir have smaller 
residual norms than all previous iterates generated by the Orthodir. On its own, 
it does not find solutions with such low residual norms, even with a high 
number of iterations. 
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Figure 3 Behavior of EIEM Orthodir and Orthodir algorithms on SLEs in 50 
dimensions. The blue line, corresponding to EIEM Orthodir, has some very good 
points and grows much slower than that corresponding to Orthodir. 

Algorithm 1. The EIEMLA method 

1. Initialization. Choose 𝐱଴ and 𝐲, Set 𝐫଴ ൌ 𝐛 െ 𝐴𝐱଴, 𝒚଴ ൌ 𝒚, and 𝐳଴ ൌ
𝐫଴. 

2. Fix the number of iterations to, say, 𝑘, and the tolerance, 𝜖, to E-13 and 
run the Lanczos-type algorithm. 

3. IF ሼ‖𝐫௠‖ ൏∈ሽ 
4. The solution is obtained 
5. Stop 
6. ELSE 
7. Collect all k vector solutions as in Eq. (7). 
8. Choose some 𝑗 such that 𝑚 െ 𝑗 ൏ 𝑘. 
9. Set 𝑤௜ as in Eq. (18), for 𝑖 ൌ 1,2, … , 𝑛. 
10. Interpolate 𝑤௜ using PCHIP to get 𝑓௜. 
11. Choose 𝑡∗ ∈ ሾ𝑚, 𝑠ሿ ⊂ 𝑅, where 𝑠 ൑ 𝑚 ൑ 𝑘 is an integer, and calculate 

𝑓௜ሺ𝑡∗ሻ  
12. FOR ሼ𝑞 ൌ 1, 2, … , 𝑙ሽ DO 
13. Arrange vectors 

14. 

( ) *
1

( ) *
( ) 2
*

( ) *

( )

( )

( )

q

q
q

q
n

f t

f t

f t

 
 
   
 
  

x


  (16) 
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15. Where 𝑙 ൌ 𝑙𝑒𝑛𝑔𝑡ℎሺሾ𝑚, 𝑠ሿሻ. 
16. Calculate the residual norms of Eq. (16) as follows 

17. ቛ𝐫∗
ሺ௤ሻቛ ൌ 𝐛 െ 𝐴𝐱∗

ሺ௤ሻ (17) 

18. ENDFOR 
19. ENDIF 

20. The solutions of the systems are ቄ𝑥∗
ሺଵሻ, 𝑥∗

ሺଶሻ, … , 𝑥∗
ሺ௟ሻቅ 

21. Stop. 

4.3 Formal Basis of EIEMLA 

As mentioned in the previous section, the sequences generated by Lanczos-type 
algorithms have the property of monotonicity. Since we consider PCHIP, which 
preserves monotonicity [25], to interpolate the sequences, we can assume that 
points returned by the function are also monotonic. This leads to the theorem 
below, which guarantees the monotonicity of sequences generated by Lanczos-
type algorithms. The proofs of the theorems can be seen in the Appendix. 

Theorem 1. Given a sequence 𝒙௞ of 𝑘 iterates generated by a Lanczos-type 

algorithm, sequences of 𝒙௞
ሺ௜ሻ, 𝑖 ൌ 1, 2, 𝑛, and 𝑘 ൌ 1, ... namely the entries of 𝑘 

iterates, are monotonic. 

Lemma 1 [26]. Let 𝐴 ൌ 𝑉𝐴𝑉ିଵ be a nonsingular diagonalizable matrix, where 
𝑉 is a matrix that consists of the eigenvectors of 𝐴, 𝑆 is a diagonal matrix with 

0

0

B I

I B I

A

I B I

I B



 



 



 
 
 
 
 
 
  

 


    


 

𝑎௜௜ ∈ 𝜎ሺ𝐴ሻ being the diagonal entries, and  𝜎ሺ𝐴ሻ 

is the set of the eigenvalues of 𝐴. Then, ‖𝑃௞ሺ𝐴ሻ‖ ൑ 𝜅ଶሺ𝑉ሻ maxఒఢఙሺ஺ሻ|𝜆|where 
𝜅ଶሺ𝑉ሻ is the condition of matrix 𝑉. 

Theorem 2. Let  𝒙ଵ, 𝒙ଶ, … , 𝒙௞, 𝒙௞ାଵ be the iterates generated by the Orthodir 
algorithm. Let 𝑥௠௢ௗ௘௟ be a vector returned by EIEMLA as explained in the 
previous section. Then, for some ∈൐ 0, ‖𝒙௞ାଵ െ 𝒙௠௢ௗ௘௟‖ ൑∈, where ‖. ‖ is the 
Euclidean norm. 

Based on the above theorem, we finally show that the residual norm of an 
iterate generated by EIEMLA is always smaller or equal to that of an iterate 
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generated by the Lanczos-type algorithm considered. In other words, better 
solutions are generated through this process. 

Theorem 3. Let 𝒙ଵ, 𝒙ଶ, … , 𝒙௞ be the iterates generated by the Orthodir 
algorithm. Let 𝑟௠௢ௗ௘௟ be a residual vector that corresponds to the iterate 
generated by EIEMLA. Then, ‖𝑟௠௢ௗ௘௟‖൑ ሺ1 ൅ |𝜆|ሻ‖𝒓௞‖. 

5 Numerical Results and Discussion 

Our test problems used in this study arise in the 5-point discretization of the 

operator െ
డమ

డ௫మ െ
డమ

డ௬మ ൅ 𝛾
డ

డ௫
 on a rectangular region [27]. This yields System in 

Eq. (1) with 
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and 𝛼 ൌ െ1 ൅ 𝛿, 𝛽 ൌ െ1 െ 𝛿, 𝛿 takes values 0; 0.2; 0.5; 0.8; 5; 8. The 
parameter δ plays an important role in the singularity of matrix A. For instance, 
when 𝛿 ൌ 0, 𝐴 is a symmetric matrix. The condition number of matrix A for 
this particular value of 𝛿 is large enough, i.e. 119.9999. Any system built by this 
matrix tends to be ill-conditioned [28-30]. When 𝛿 is large enough, matrix A 
can become well-conditioned. We can also say here that the SLEs that involve 
matrix 𝐴 have a unique solution. 

Furthermore, we use iterations 𝑘 ൌ 100 ൑ 𝑛. The choice of k is based on the 
observation that Lanczos-type algorithms generally fail to find a good 
approximate solution after 100 iterations. In addition, the right-hand side 𝒃 is 
taken to be 𝒃 ൌ 𝐴𝒙, where 𝒙 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ் is the solution of the system, 
and 𝑥௜, 𝑖 ൌ 1, 2, … , 𝑛 is a random value between 0 and 1. We use formulas 
A13/B6 and A13/B13 in this experiment as representative of Lanczos-type 
algorithms. Note, that the first formula is a new type of Lanczos algorithm, 
investigated in Ullah, et al. [18], while the second one is found in Suharto, et al. 
[19]. 

5.1 Numerical Results 

The test problems were carried out under MATLAB 2015b on a computer with 
an Intel 2.40 GHz processor, Core i7, and 16 GB RAM. The aim of the 
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experiment was to examine the reduction in the residual norm of the iterates 
generated by EIEMLA compared with the original Lanczos-type algorithms. All 
of the results are recorded in Tables 1 and 2, and visualized graphically. 

Table 1 Comparison of residual norms of iterates generated by A13/B6 and 
generated by EIEM A13/B6 over 100 iterations. 

Dim A13B6 EIEM A13B6 Time (s) 
n ‖𝐫𝒌‖ ‖𝐫𝒎𝒐𝒅𝒆𝒍‖ 

1000 3.62E+02 10.6498 0.3232 
2000 6.42E+04 8.4998 0.3903 
3000 NaN 4.9849 0.6783 
4000 1.87E+09 12.3174 17.8791 
5000 1.87E+09 12.3174 0.6783 
6000 NaN 16.6164 0.7714 
7000 4.69E+03 12.7736 0.8029 
8000 5.03E+08 2.2334 1.0650 
9000 3.54E+03 1.1718 0.9489 

10000 9.56E+05 14.9270 1.0276 
20000 NaN 9.6835 1.6685 
30000 7.24E+10 152.9614 2.6506 
40000 1.15E+03 13.1240 3.3747 
50000 1.13E+10 53.2363 4.3543 
60000 1.67E+06 154.0032 5.1728 
70000 NaN 138.9045 5.8259 
80000 NaN 82.3836 6.6018 
90000 7.13E+03 23.2396 7.1726 
100000 1.53E+07 4.4710 8.0383 

Table 2 Comparison of residual norms of iterates generated by A13/B13 and 
generated by EIEM A13/B13 over 100 iterations. 

Dim A13B13 EIEM A13B13 Time (s) 
n ‖𝐫𝒌‖ ‖𝐫𝒎𝒐𝒅𝒆𝒍‖ 

1000 NaN 7.0391 0.3607 
2000 NaN 3.6217 0.4311 
3000 NaN 57.3744 0.7274 
4000 NaN 50.1365 1.0101 
5000 NaN 40.5467 1.5103 
6000 NaN 3.5261 2.0745 
7000 NaN 29.2577 2.6821 
8000 NaN 78.5510 2.9997 
9000 NaN 713.7055 4.2056 

10000 NaN 9.9809 4.9926 
20000 NaN 19.6627 20.0117 
30000 NaN 24.7834 54.4602 
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(a) Dim 1000 (b) Dim 3000 

 
(c) Dim 4000 (d) Dim 6000 

 
(e) Dim 9000 (f) Dim 40000 

 
(g) Dim 60000 (h) Dim 90000 

Figure 4 Performance of Lanczos A13/B6 and EIEM A13/B6 on a variety of 
SLEs. Blue and red curves illustrate the residual norms of respectively Lanczos 
A13/B6 and EIEM A13/B6. 
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(a) Dim 1000 (b) Dim 2000 

 
(c) Dim 4000 (d) Dim 7000 

 
(e) Dim 9000 (f) Dim 10000 

 
(g) Dim 20000 (h) Dim 30000 

Figure 5 Performance of Lanczos A13/B13 and EIEM A13/B13 on a variety of 
SLEs. Blue and red curves illustrate the residual norms of respectively Lanczos 
A13/B13 and EIEM A13/B13 . 
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5.2 Discussion 

Overall, the approximate solutions generated by the new algorithms, EIEM 
A13/B6 and EIEM A13/B13, were better than those from all of the previous 
iterates generated by the Lanczos-type algorithms alone. The residual norms of 
the iterates generated by both algorithms were smaller than all residual norms of 
the iterates generated by algorithms A13/B6 and A13/B13 individually. This is 
clearly visible in Tables 1 and 2. This was even worse for Lanczos A13/B13, 
where breakdown occurred in every SLE. There were, however, some cases 
where the new method seemed unsuccessful. It occurred, for instance, on the 
SLEs of dimensions 30000, 60000 and 70000 for algorithm EIEM A13/B6, and 
on the SLE of dimension 9000 for algorithm EIEM A13/B13. 

Our above observations are supported by Figures 5 and 6. As can be seen in 
both figures, the residual norms of the iterates generated by either A13/B6 or 
A13/B13 individually, became larger and larger so that convergence was never 
reached. In contrast, both EIEM A13/B6 and EIEM A13/B13 generated 
approximate solutions with small residual norms, even smaller than the smallest 
residual norm of the iterates generated by A13/B6 and A13/B13 alone. Note that 
the residual norms of the solutions generated by EIEM A13/B6 and A13/B13 are 
still larger than the ambitious tolerance of 1E-13 we have imposed. One way of 
improving accuracy is perhaps to restart the algorithms with the final iterates, 
which are rather good. A discussion of the restarting strategy can be found in 
[31]. 

6 Summary 

We have introduced a new approach to solving high-dimension SLEs by 
embedding an interpolation model in Lanczos-type algorithms, called EIEMLA. 
We implemented this approach for algorithms A13/B6 and A13/B13, which are 
new Lanczos-type algorithms. Experimentally, the idea enables us to find a 
good solution in terms of the residual norm, i.e. the solutions must have smaller 
residual norms than all of the previous iterates generated by algorithms A13/B6 
and A13/B13. This helps avoid breakdown in both algorithms since we 
interpolate over a low number of iterations. Further investigation is required to 
find a prediction strategy, such as a regression, that fits the data in such a way 
that the embedded model produces better iterates still. 
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