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Abstract. A two-compartment mathematical model is proposed for the study of
individual plant growth dynamics with time lag due to the presence of toxic
metals in the soil. It is assumed in the model that nutrient uptake by the roots is
hindered by the presence of the toxic metals. It is further assumed that there is
less transfer of nutrients from the root compartment to the shoot compartment
due to the toxic metals. However, the nutrient concentration decreases in the root
compartment as well as in the shoot compartment, resulting in a decrease of the
structural dry weight of the roots and shoots respectively. This effect was studied
by considering time lag in the utilization coefficient of the nutrient concentration
in the roots in the presence of toxic metals. It is further assumed in the model
that the nutrient use efficiency is also affected by the presence of toxic metals,
resulting in a decrease of the structural dry weight of the shoots. The inclusion of
time lag results in the disturbance of the interior equilibrium stability and Hopf
bifurcation occurs for a critical value of the delay parameter. This entire
phenomenon was captured by numerical simulation.

Keywords: Concentration of nutrients; equilibrium; Hopf-bifurcation; structural dry
weight; time delay.

1 Introduction

The survival of the plant population is under great threat in places where
excessive quantities of toxic metals and contaminants are released into the
environment by industries, agriculture and acid rain. Industries produce heavy
metals and radioactive substances. Fertilizers, pesticides and insecticides used
in agricultural fields for production enhancement contain toxic metals, which
can cause harm to the plant population. Thornley [1] studied plant physiology
entirely using mathematical modeling but Lacointe [2] pointed out the narrow
scope of the models Thornley proposed. The failure to represent topological and
geometrical differences in Lacointe’s models was brought to light by Godin, et
al. [3]. A mathematical model consisting of the combined effects of toxic metals
and soil chemistry for the study of the adverse effect of toxic metals on the
biomass of trees was proposed by Leo, et al. [4]. The model developed by Leo
was further modified and applied to other plants by Guala, et al. [5,6]. A two-
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compartment mathematical model proposed by Misra and Kalra [7,8] was used
to study the adverse effect of toxicity on individual plant growth by showing the
overall decrease in uptake and concentration of nutrients and plant biomass in
the root and shoot compartments. The nature of the roots of transcendental and
exponential polynomials can be studied using Rouche’s theorem [9]. Ruan and
Wei [10,12] studied the nature and distribution of the roots of exponential
polynomials for the study of stability with time lag using Rouche’s theorem; the
phenomenon of population dynamics was represented using non-linear delay
differential equations. Population dynamics stability was studied by Kubiaczyk
and Saker [11]. The reduction of plant biomass under the effect of toxicants
with time lag was studied by Naresh, et al. [13]. Shukla, et al. [14] studied how
crop yield is adversely affected by environmentally degraded soil. The
dynamics of a multiteam prey-predator system under the effect of time lag was
studied by Sikarwar and Misra [15]. Naresh, et al. [16] studied how excessive
industrial waste results in toxic uptake by plants and how the intermediate toxic
products formed affect the intrinsic growth rate of plant biomass and carrying
capacity. The global stability of population growth with the help of non-linear
delay differential equations was studied by Huang, et al. [17]. Zhang, et al. [18]
developed a neural network model and discussed the nature of the roots of a 5"-
degree exponential polynomial.

Although a great deal of work has been done on plant growth under the effect of
toxicants, the use of delay differential equations is rare in this field. In the
presence of toxic metals in the soil, the nutrient uptake by plants and the
nutrient transfer from the root compartment to the shoot compartment gets
delayed. The nutrient use efficiency is adversely affected too, which leads to a
decrease in structural dry weight. Hence, this time delay due to toxic metals in
the soil is directly responsible for a decrease in the structural dry weight of the
plant, which is a measure of delayed and reduced plant growth. Considering the
above fact, a two-compartment mathematical model is proposed in this paper
for the study of individual plant growth. A delay parameter is introduced in the
term containing the utilization coefficient. Also, the complex behavior giving
rise to Hopf bifurcation was studied.

2 Mathematical Model

2.1 Assumptions of the Model

We made the following assumptions in the mathematical model:
1. Nutrient uptake by the roots is hindered by the presence of toxic metals.
2. There is less transfer of nutrients from the root compartment to the shoot
compartment due to the presence of toxic metals in the soil.
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3. The nutrient concentration decreases in the root compartment as well as in
the shoot compartment, resulting in a decrease of the structural dry weight
of the roots and shoots respectively.

4. Nutrient use efficiency is affected by the presence of toxic metals, resulting
in a decrease of the structural dry weight of the shoots.

2.2 Model Formulation

Let N; and W, represent the nutrient concentration and the structural dry weight
of the root compartment respectively. Let N, and W, represent the nutrient
concentration and the structural dry weight of the shoot compartment
respectively. Let Hg be the concentration of heavy metals in the soil. These
notations lead to the following model, a system of the following non-linear
delay differential equations:

dN. T

d_t1= (U, — aHy) _R_Nl — uWiN (t — 1) —di Ny (0
n

Ny = TH) N W, N, — dy N, )

dt Ry

aw

— =1 (Ny, HOW; — & W2y @)

aw

dtz = 1,(No, HOW, — A, W32, @

ddlis =1 —a,HsN, — AH; ©)

with initial conditions:

N;(0) > 0,N,(0) > 0, W, (0) > 0, W,(0) > 0,H,(0) >0 for all t>0 and
N;(t — 1) = €, constant for all t € [0, T].

Here, 1, (Ny, Hy) and 1, (N;, Hy) have the following forms:

_ _PN:s 011 (Nq,Hs) 011 (Nq,Hs)

ri(Ny, Hy) = o2 — Bu(Hy), =502 < 0, === > 0 for Ny > 0, Hg > 0
N o (No Hs) _ () 9ra(N3,Hs)

ra(No, Hy) = 1272 — By (Hy), =227 < 0, =272 > 0 for N, > 0, Hy > 0

T(H,) = %OHS' B1(Hg) = Bro + B11Hs, B2(Hs) = P + BorHs .

The system parameters are defined as follows:

1,(N,, Hg ) and r; (Ny, Hy) are the growth rates of the shoots and roots under the
effect of heavy metals H, respectively; they are dependent on the availability of
nutrients. T is the nutrient transfer rate from the root compartment to the shoot
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compartment. R,, is the resistance to the transportation of nutrients. T (Hy) is the
nutrient transfer rate from the root compartment to the shoot compartment,
which is hampered by the presence of heavy metals H;. R, is the aversion to
transportation of the nutrients. (U, — aH,) is the uptake rate by the plant, which
is inhibited due to the presence of heavy metals in the soil. i is the consumption
coefficient, or utilization coefficient. p is the effeciency of nutrient utilization.
B1o is the natural decay of Wj. B, is the natural decay of W,. d;is the natural
decay of N;. d, is the natural decay of N,. A, and A; are self-limiting growth
rates W, and W;, respectively. B;; and 8,; are the damage rates of W; and W,
due to Hg, respectively. [ is the input rate of the toxic metals. A is the first-order
decay rate of Hs. a; is the depletion rate of Hg due to the reaction between Hg
and N;. Ty is a stress parameter, which measures the increase in resistance to
nutrient transport from the root compartment to the shoot compartment due to
the presence of toxic metals in the soil. y; and y, are parameters measuring the
decrease in nutrient use efficiency due to the presence of toxic metals in the
plant. All parameters, a,l,p,A, 1, Uy, a1, To, V1, V2,41, A5, were taken to be
positive constants.

3 Analysis of Model

3.1 Boundedness
The boundedness of the solutions of the model given by Egs. (1)-(5) is given by
Lemma 3.1.

Lemma 3.1. The model has all its solutions in the region
D, = {(Nl,Nz,Wl,WZ,Hs) €R0 S Ny + Ny +5Wy +5W, <
%, Hy<H;<H Su}, as t—oo for all positive initial values

{N;(0), N,(0), W, (0), W,(0), H;(0), N, (t — 1) = ¢ Vt € [0,7]} E D, C R+5,
where ¢ = min(dy, dy, 10, B20)-

Proof. Consider the following function: F(t) = N;(t) + N,(t) + %Wl (t) +
2
P W, (1)

dF(t) _ d
L OER AGEISAGEERTAG]
Using Egs. (1)-(4) and ¢ = min(d4,d,, B1g,20) and assumption N,(t) =

Ny(t =) as > o0, =D < U, — gF(t).

. U
By usual comparison theorem, when — oo: F(t) < ?n
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Ny () + No(t) + %Wl(t) + %Wz(t) < %

Also, F(t) = 0. So, 0 < Ny (t) + N,(¢) + %Wl(t) + %Wz(t) < %

From Eq. (5): S8=1—aHNy —AH,, S5 <I—AH, then by usual

. I
comparison theorem, when t = co:Hy < 1= Hg,.

dH Un
=1 —aHi——
at = s,

S =1—aHN, — Al ie.

Again, from Eq. (5), we get 7

AH

dH U.
B > 1 - 9;H, where 9; = (“tp” +4).

I

By usual comparison theorem, when t — co: Hg > 5, = Hsto so Hy < H; <

Hg, . This completes the proof.

The boundedness lemma proves that since all quantities (the nutrient
concentrations in the roots and shoots, the toxic metals in the soil and the
structural dry weights of the roots and shoots) are real quantities, their
individual values as well as their interactional combinations can never be
negative and will be finite at all times.

3.2 Positivity of Solutions

For the positivity of the solutions we need to show that all solutions of the
system given by Egs. (1)-(5), where the initial conditions are N;(0) >
0,N,(0) > 0,W;(0) > 0,W,(0) > 0,H;(0) >0 forall t >0and N,(t — 1) =
e V,t €[0,7], the solution (N;(t), N,(t), W;(t), W,(t), Hs(t) ) of the model
stays positive V t > 0.

ANy _ T(Hs)

From Eq. (2): p” A

dN U .
N1 - #WZNZ - dzNz, d_tz 2 - (H?n + dz) Nz, 1.C.

—(‘uﬂ"'dz)t . . .

Ny, >cie Vo . Here, c¢; is an integration constant, hence N, > 0 as
t - oo,

The same argument holds for Ny, W;, W,, Hs.

Thus, all variables remain positive, which shows that the system persists.

33 Interior Equilibrium of the Model

The system of Egs. (1)-(5) has one feasible positive interior equilibrium
E1 (N*l' N*Z' W*ll W*z, H*S)’ where
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* 1 * *
W [ £ N1—(,310+511Hs)]>0,

T A L1y HY

provided pN*; > (1 + y1H 5) (B0 + P11H"s)

* 1 * *
W=, [ £ NZ—(520+321H5)]>0,

- AZ 1+VZH*S

provided pN*, > (1 + y,H*s)(Boo + B21H5)

I-AH* :
N*, = - — provided I > AH*,,
1 S
g2+ }g22—4g193
N,=— " 5y
29,
up u(B1o+P11H"s) T(I-AH")
where =— =(d SN2 LRI SELLAE ) I L 2
91 = Ny’ 92 1 A, 3 RnaiH*s(1+ToH"s)

the value of H* is given by the positive root of the equation

vo(@+ 838)H"s" = [y, (Uy — 8,0+851) — (@ + §30)H"* —
(U481 + 6,(A — Iy,) — 8,A21H* > — [(2A8, — 8;)H*s + 6,12 = 0

where §; =§(Rln+d1—#ﬁ1°),52 = _#_ 5 =TPu

Ay Aas2’ 37 Aay
the 4™-degree polynomial in H*; will have at most two positive roots, provided:
Yo (U, — 6,A+6831) > (a + §34),
(Unp+6831 + 5,A) > 5,1y, + 5,42,
ki > 2A6,

However, due to the positivity of N*; only one feasible positive root will exist,
provided I > AH*,.

Theorem 3.1. Let ¢; ¢; ... ¢, all be non-negative and {;/(j = 0,1,2,..m:i =
1,2,..n) be constants. As (¢1,63, ..., ¢yn) vary, the sum of the orders of the
zeros of exponential polynomial P(y, e %1, ....,e~*m) on the open right half
plane can change only if a zero appears on or crosses the imaginary axis, where

PO e, e Xm) =y 4 GO e+ Gy X G+
[t Gy A G | TES e [T
O

Ruan and Wei [10,12] proved this theorem using Rouche’s theorem.
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3.4 Stability Analysis of Interior Equilibrium Point and Local
Hopf Bifurcation

The exponential characteristic equation about equilibrium E; is given by

(A5 + A A% + A23 + 43242 + Ayd + Ag)

+(ByA* + ByA% + B3A? + ByA + Bg)e AT =0 (6)
Here,

Ay = —(Py + Py + Pi3 + Pyg + Pys),

Ay = (P;Py3 + Pi3Pys5 + PysP; + PsPyg + Py Pi3 + P1P; + Py Pi3 +
Py Pys + P;Pig + Py3P1g + P1oP;s5),

Az = _((P1+P19)(P7P13+P13P25+P25P7+P10P25)+
P1P19(P7+P13+P25)+P1P13(P7+P19+P25)+P7P13P25+P10P13P22),

Ay = (P1P19(P7P13+P13P25 + P,5P; + Py5Pyg)
+ (Py + P19)(P;Py3P;5 + P1gP13P;;)
+ Py P;3(P1g(P; + Py5) + PysPy —P10P22))

As = —(PyPyg(P;Py3Py5 + PygPy3Pp;) + Pi1Pi3Pio(PysPy —
P1oP;2)),

By = uWry,

By = — uW~1(Py + P13 + Py + Py5),

By = uW*;((Py + P1o)(Py3 + Py5) + PiPig + PiPy3 + Pi3Pys),

By = — uW?*; (PiP1g(Pi3 + Py5) + Pi3(Py + Pyg) + P Py3(Pro +

Ps)),
B3 = HW*l(P1P19P13P25 + P11P19P13P25)

where,

Pi=—uW*,+dy), P,= ﬁ P, = —uN*,, P,=0, Ps=
o Pe=0.P=—(+dy), Pa=0.Py=0,Pyy=—a,Py =
152;2*3’ P1 =0, P53 = % — (Ba0 + B21H™s5) — 20,W7,, P,=0,
Py = — (% + [321W*2), Pig = 15::;11*5’ P, =0, Pig=0, Pjg=
uf;’f—;)z — (B1o + B11H's) — 20, W7y, Pyo = — (% + B W),

Py =0, Py = —ayH", Py3 =0, Pyy = 0, Pys = —(ayN*; + A).
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Let A = iw be a root of Eq. (6), so:
(((w)® + A1 ((w)* + Ay (iw)? + A3(iw)? + Ay(iw) + As)
+(B; (iw)* + By(iw)® + B3(iw)? + B, (iw) + Bs)e~(@)T =0
(iw® + A w* — iA,w3 — Azw? + i 0 + As)
+(Byw* — iByw3® — Byw? + iB,w + Bg)(cos wt — isin wt) = 0
Separating real and imaginary parts:

(w® — A,w? + A w) + (Byw — B,w?) cos wt

—(Byw* — B;w? + Bs) sinwt = 0 (7)
(A 0* — A3w?+A5) + (Byw* — Bzw? + Bs) cos wt

3 5 3 5
+(Byw — Byw?) sinwt = 0 (8)

Squaring and adding Eq. (7) and Eq. (8), we get:
0+ aw® + bw® + cw* + dw? +r =0 )

where a = (4,% — B;* — 24,),b = (A,> — By® — 24, — 2A,A5 +
2BlB3),C = (A32 - B32 - 2A2A4 + ZBzB4 - ZBlBS)’ d = (A4_2 - B4_2 -
243As + 2B3Bs),r = (As” — Bs?)

Let w? = y, then Eq. (9) becomes:
yS+ay*+ by} +cy?+dy+r=0 (10)

Lemma 3.1. If r < 0, then Eq. (10) has at least one positive real root.
Proof. Let h(y) = y°> + ay* + by3 + cy? +dy + 1,

Here, h(0) =7 <0 , limy_q h(y) = o

s0, 3 o € (0, o) such that h(y,) = 0

Proof completed.

Also h'(y) = 5y* + 4ay® + 3by? + 2cy +d

Let h'(y) =0
5y* + 4ay® + 3by? + 2cy +d = 0 (11)
which becomes x* + px2 + qgx +s =0 (12)

a 3b  6a? 2c . 6ab . 8a® d 2ac . 3a’b 3a*
where =y + - = qg=+—+—s=-—-—"F—=—-—
y 5° p 5 25° q 5 25 125’ 5 25 125 625
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If g = 0, then the four roots of Eq. (12) are:

Thus, y; = x; — > ,i = 1,2,3,4 are the roots of Eq. (10) where D = p? —

Lemma 3.2. Suppose r = 0 and g = 0.

1. IfD <0, then Eq. (10) has no positive real roots.

2. IfD =0,p=0,s = 0, then Eq. (10) has no positive real roots.

3. If () and (II) are not satisfied, then Eq. (10) has positive real roots iff 3 at
least one y* € (y1,¥2,¥s,Va) such that y* > 0 and h(y*) < 0.

I.  If D <0, then Eq. (11) has no positive real roots. Since lim,,_,o, h(y) =
oo, we have h'(y) > 0 for y € R. Hence h(0) = r = 0 implies h(y)
has no zero in (0, ).

II.  Condition D >0,p=>0,s >0 implies that h'(y) has no zero in
(—00,0). This is similar to (I), i.e. h(y) has no zero in (0, o).

4. The sufficiency is obvious.

Hence, we only need to prove the necessity. If D > 0, we know that Eq. (12)
has only four roots x;, x5, x3 and x,, i.e. Eq. (11) has only four roots, y;, Vs, V3
and y,, and at least y; is a real root. Without loss of generality, we assume that
Y1,¥2, Y3 and y, are all real. This implies that h(y) has at most four stationary
points y;,¥,,y3; and y,. If this is not true, then we have that either y; < 0 or
y1 > 0 and min[h(y;):y; > 0,i = 1,2,3,4] > 0. If y; <0, then h'(y) has no
zero in (0, ), since h(0) =r = 0 is the strict minimum of h(y) for y > 0,
which implies h(y) >0 in (0,0). If y; >0 and min[h(y;):y; > 0,i =
1,2,3,4] > 0. Since h(y) is a derivable function and lim,_,, h(y) = o0, we
have min,oh(y) = min[h(y;):y; > 0,i =1,2,3,4] > 0. The necessity is
proved. This completes the proof.

Next, we assume that g # 0. Consider the resolvent of Eq. (12):
2
q? =4 -p)(5-s)=0 (13)

ie. vV3—pv?—4sr+4ps—q? =0
By Cardan formula, Eq. (13) has the following three roots:
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= () (2 )

37
3 3
v2=a(—%+./D1) +02(—%—,/D1) +§’
— 2 OF! D 1/3 q1 D 1/3 p
v =0t (=3+D1) T o (-5 - VD) 43
2 3 3 :
where p; = —%—45, q = —22%+83ﬁ—q2, D, =%+%, = 1+fl
Let v, = v; # p, then Eq. (12) becomes:
2 2
x* +vx? + v; - [(v* —p)x? —qx + v; - s] =0 (14)

For Eq. (14), Eq. (12) implies that the formula in square brackets is a perfect
square. If v, > p, then Eq. (14) becomes:

After factorization, we get:

2 q Vs 2 q Vs
X v, — pX — —~and x* — /v, — px — =
tyvop sz”z « =P 2m—p+2

So, the four roots of Eq. (12) are:

_ —\V«—p+./D; _ —\V«—p—+/D; _ —\/Vs—p+./D3 _ —\V«—p—+/D3
HNE——, T, X3 =T Xa =T
where D, = —v, —p + 1 and D3 = —v, —p — 1

2\v.=p 2\v.—p

Then y; = x; —%, i =1,2,3,4 are the roots of Eq. (10). Thus, we have the
following result:

Lemma 3.3. Suppose that r > 0,q; # 0 and v, > p.
1. IfD, < 0and D3 < 0, then Eq. (10) has no positive real roots.

2. If (D) is not satisfied, then Eq. (10) has positive real roots iff 3 at least one
V* € (V1,¥2, V3, ¥4) such that y* > 0 and h(y™*) <.

Proof. The proof is similar to Lemma 3.2 and we omit it. Finally, if v, < p,

2 2
R — __4a —

then Eq. (14) becomes (x + 2) (Jp VX zvﬁ) =0 (15)

Lety = — 2 Hence, we have the following result:

2(p—-vy) 5
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Lemma 3.4. Suppose that r > 0,q; # 0 and v, < p, then Eq. (10) has positive

. q° Ve _ — _
real roots 1ff4(p_v*)2 +- =0andy >0 and h() <0.
Proof. Assume Eq. (14) has a real root x, satisfying x, = ﬁ,xoz = —%,
2
which implies that " (pzv B + % = 0. Therefore, Eq. (14) has a real root xiff

q2

4(p-v.)?

+ % = (. The rest of the proof is similar to Lemma 3.2 and we omit it.

Suppose Eq. (10) possesses positive roots. In general, we suppose that it has 5
positive roots denoted by y*;,i = 1,2,3,4,5. Then Eq. (9) has 5 positive roots

w; =y, = 1,2,3,4,5.

A
We have: cos wt = 5

(Byw—Byw3)2+(Biw*—B3w2+Bs5)?’

. . _1 -1 Ag . .
which  gives 1= - [Cos ((B4w—32w3)2+(31w4—33w2+Bs)2) + 2]1-[], j=
0,1,2,3, ...
where Ag = — ((Blw4 — Byw? + Bs)(A;0* — Azw? + As) + (Byw —
B,w3)(w® — Ayw® + A4a)))

=21 -1 4e il =
Let 7 Wk [COS ((B4w—Bzw3)2+(Blw4—83w2+85)2) + ZJTT] ik

1,2,34,5.; =0,1,2,3, ...

Then Fiwy, is a pair of purely imaginary roots of Eq. (6), where T = 7,(), k =
1,2,3,4,5.;j = 1,2,3, ... we have lim;_,¢, 7, ) = 0,k = 1,2,3,4,5.

Thus, we can define:

To = Ti, U9 = minycpeq jo1 [T ], wo = Wiy Yo = Vi,” (16)

Lemma 3.5. Suppose that u; >0,(uuy —us) > 0,uz(uuy, —us) +
ug (us — uqguy) > 0, (upus + ugus) (Ugup — uz) + uguy (Uus — uguy) >

0, Us > 0.

Where uy = (A1 + B),u, = (A, + By),u3 = (A3 + B3),uy = (A4 +
By),us = (4s + Bs).

1. If any one of the following condition holds:
(1) r<o,

(ii) r=>20,gq=0,D>0and p<0 and s <0and there exists a
¥* € (V1,Y2,¥3,Ys) such that y* > 0 and h(y*) < 0,
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(ii1) r>0,q#0,v,>p,D,>200rD; >0 and there exists a
V" € (V1,¥2,V3,¥Y4) such that y* > 0 and h(y*) < 0

q* Ve o = _
ooy T2 =0y>0 and h(3) <0, then a

negative real part will exist in all roots of Eq. (6) when T € [0, 7).

2. r=20,q#0,v. <p,

3. If any one of the Conditions (i)-(iv) of (I) are not satisfied, then negative
real parts will exist in all roots of Eq. (6) for all T > 0.
Proof. When 7 = 0, Eq. (6) becomes:
2%+ (A 4+ B)A* + (A + By)23 + (A3 + B3)A% + (A4 + By)A
+(As +Bs) =0
A+t +up® +uzA2 +ud+us =0 (17)
All roots of Eq. (17) have negative real parts iff the supposition of Lemma 3.5

holds (Routh-Hurwitz’s criteria).

From Lemmas 3.1-3.4., we know that if Conditions (i)-(iv) of (I) are not
satisfied, then none of the roots of Eq. (6) will have zero real parts for all T > 0.

If one of the Conditions (i)-(iv) holds, when T # ‘L'k(j),k =1,234,5.;j =1,
then none of the roots of Eq. (6) will have zero real parts and 7 is the minimum
value of t for which the roots of Eq. (6) are purely imaginary. This lemma is
concluded by using Theorem 3.1.

Let

A(@) = P(0) + iw(T) (18)
be the roots of Eq. (6) satisfying: ¥(7y) = 0, w(ty) = wy. Then we have the
following lemma:

Lemma 3.6. Suppose h'(y,y) # 0. If T =1, then Fiw, is a pair of simple
purely imaginary roots of Eq. (6). Moreover, if the conditions of Lemma 3.5 (I)

are satisfied, then % (ReA(ty)) > 0.

Proof. Substituting A(t) into Eq. (6) and differentiating both sides with respect
to T we get:

(dl)‘l _ (52%+4A,123+34,A2 42431+ A, )e?"+(4B1 A3 +3B, A% +2B3A+B,) T
- (B1A*+B3A3+B3A2+B,A+B5) A

dt

By calculation, we have:

[(5A* + 44,23 + 34,42 + 2434+ ADe?] =

T=Tp
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A7 cos wyT + Ag sinwyT + i(—Ag cos wyT + A, sin wyT)

(4B 23 + 3By 2% + 2B3A + By)y—y, = By — 3Bowo? + iw,(2B5 —
4B wo?)

(BiA* + ByA® 4+ B3A* + Byd + Bs)r=q, =

wo*(Bawo® — Bs) + iwg(Bs — B3wy® + Bywo*)
where A; = (5wo* — 345002 + A,), Ag = (44,03 — 245w,)
Then we have:

d ReA(to)\ L _ Yoh! (o)
(Fo) =2n (4

where Ag = (1)02[(32(1)03 - B5w0)2 + (BS - B3(1)02 + Blw04)2]

Thus we have sign:

[d Re;i(ro)] = sign [(d Re/l(fo))_l] = sign [yof;;(yo)] (20)

dt 9
Notice that Ag, vy > 0.
Thus, applying the Lemmas 3.1-3.6, we have the following theorem:

Theorem 3.2. Let wg, Vo, Top and A(t) be defined by Egs. (16) to (18),
respectively. Assuming that the supposition of Lemma 3.5 holds,

1. If the Conditions (i)-(iv) of Lemma 3.5 are not satisfied, then all roots of
Eq. (6) have negative real parts for all T > 0.

2. If one of the Conditions (i)-(iv) of Lemma 3.5 is satisfied, then all roots
of Eq. (6) have negative real parts when T € [0, Ty); when T = T, and
h'(y,) # 0, then Fiw, is a pair of purely imaginary roots of Eq. (6) and

d ReA(typ)
— 0 and Eq.

(6) has at least one root with a positive real part when T € (ty, T;), where
1, is the first value of T > 1y such that Eq. (6) has purely imaginary
roots.

all other roots have negative real parts. In addition,

3.5 Numerical Method

A numerical method was used to find the solution of the system of delay
differential equations given by Egs. (1)-(5), considering the following parameter
values: U,=10, T=15R, =1,u=1.05d; =09,d, =09,p =
0.3,B10 = 0.2,B59 = 0.2,A;,=0.1,A,=0.1,] = 2,a; = 1.6,A= 0.1.
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For the given parametric values,

we have:
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E;:N*, = 1.6830,N*, =

1.1057, W*; = 3.0490,W*, = 1.3172, H*s = 0.7161.In fact, without toxic

effect, N*; = 1.7357,N*,

=1.1186,W*, = 3.2041,W*, = 1.3574.
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Figure 1 Graph of nutrient concentration of root N; and time t against toxicity

and without toxicity.
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Figure 2 Graph of nutrient concentration of shoot N, against time t with

toxicity and without toxicity.
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Figure 3 Graph of structural dry weight of root W, against time t with toxicity

and without toxicity.
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Figure 4 Graph of structural dry weight of shoot W, against time t with toxicity
and without toxicity.
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Figure 5 The interior equilibrium point E; (1.6830, 1.1057, 3.0490, 1.3172,
0.7161) of the system is stable when there is no delay, i.e. T = 0.
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Figure 6 The interior equilibrium point E; (1.6830, 1.1057, 3.0490, 1.3172,
0.7161) of the system is asymptotically stable with delay T < 0.89.
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Figure 7 The interior equilibrium point E; (1.6830, 1.1057, 3.0490, 1.3172,
0.7161) loses its stability and Hopf bifurcation occurred with delay T > 0.89.
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Figure 8 Increase in intake rate of toxic metal from I = 2 to I = 4 increases the
critical value of the delay parameter from T = 0.89 to 7 = 0.96.

4 Sensitivity Analysis of State Variables with respect to Model
Parameters

A sensitivity analysis helps to know the dependence of the system solution on
perturbation in the model parameters. It tells how changes in value of
parameters other than the key parameter time delay affect the stability behavior
of the state variables. Two model parameters, namely nutrient transfer rate from
the roots to shoot T and consumption coefficient u of delayed nutrients were
perturbed and the corresponding numerical solution of the state variables-
nutrient concentration, structural dry weights and concentration of toxic metals
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(Ny, Ny, Wy, W5, Hg) are presented graphically. The main observations are
discussed in detail in Section 5 (Discussion and Conclusion).

5 Discussion and Conclusion

In this paper, we found that the equilibrium levels of the nutrient concentration
in the root compartment (N*; = 1.7357) and the shoot compartment (N*, =
1.1186) are higher without toxic effect than the equilibrium levels of the
nutrient concentration in the root compartment (N*, = 1.6830) and the shoot

compartment (N*, = 1.1057) with toxic effect, as shown in Figures 1 and 2.
We also found that the equilibrium levels of the structural dry weight of the root
compartment (W*; = 3.2041) and the shoot compartment (W*, = 1.3574) are
higher without toxic effect than the equilibrium levels of the structural dry
weight of the root compartment (W™, = 3.0490) and the shoot compartment
(W™, = 1.3172) with toxic effect, as shown in Figures 3 and 4. This shows that
involvement of toxic metals decreases the nutrient concentration level and the
structural dry weight of the plant.

We also studied the stability and Hopf bifurcation about the interior equilibrium
of the system governed by Egs. (1)-(5). It was concluded that when there is no
time delay, interior equilibrium E; (1.6830,1.1057,3.0490,1.3172,0.7161) is
stable, as shown in Figure 5 and as proved by Lemma 3.5 using Routh-
Hurwitz’s criteria. But under the same set of parameter values, we found a
critical value of the parameter delay (r < 0.89) below which the system is
asymptotically stable, as shown in Figure 6, and unstable above that critical
value, as shown in Figure 7 and as proved by Lemmas 3.1-3.4. While passing
through the critical value T = 0.89, the system showed oscillations, hence Hopf
bifurcation occurred. Furthermore, with an increase in the intake rate of toxic
metal, there was more decrease in the nutrient concentration and the structural
dry weight of the root and shoot compartments. The same combined adverse
effect of increased intake rate of toxic metal and increased time delay is shown
in Figure 8.

The sensitivity of the model solutions was established by taking different values
of the parameters appearing in the system. This improves the understanding of
the role played by specific model parameters.

The sensitivity analysis revealed that with an increase in the transfer rate of
nutrient T from the roots to the shoots, the state variables-nutrient concentration
the in the root compartment and the shoot compartment, the structural dry
weights of the root compartment and the shoot compartment and the
concentration of toxic metals in the soil (N, N, W;,W,, Hy) tends towards
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stability for the same set of remaining parameters, including time delay
7=0.89. At T = 1.5, all the abovementioned state variables show unstable
behavior via Hopf bifurcation. But as the value of T is increased to T = 1.6, all
the state variables start showing asymptotic stability and finally for T = 1.7, all
the state variables start converging to a stable equilibrium point, as shown in
Figures 9 to13.
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Figure 9 Time series graph of partial changes in nutrient concentration Nj in
the root compartment against different values of nutrient transfer rate T.
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Figure 10 Time series graph of partial changes in nutrient concentration N, in
the shoot compartment against different values of nutrient transfer rate T.
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Figure 11 Time series graph of partial changes in structural dry weight W, of
the root compartment against different values of nutrient transfer rate T.

Structural dry weight W2 with Transfer T = 1.5
Structural dry weight W2 with Transfer T = 1.6
Structural dry weight W2 with Transfer T = 1.7
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Figure 12 Time series graph of partial changes in structural dry weight W, of
the shoot compartment against different values of nutrient transfer rate T.
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Figure 13 Time series graph of partial changes in the concentration of toxic
metal Hy in the soil against different values of nutrient transfer rate T.
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Figure 14 Time series graph of partial changes in nutrient concentration N; in
the root compartment against different values of consumption coefficient u of

delayed nutrients.
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Figure 15 Time series graph of partial changes in nutrient concentration N, in
the shoot compartment against different values of consumption coefficient y.
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Figure 16 Time series graph of partial changes in structural dry weight W, of
the root compartment against different values of consumption coefficient p.
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Structural dry weight W2 with Consumption coefficient = 1.05
Structural dry weight W2 with Consumption coefficient y = 1.00
Structural dry weight W2 with Consumption coefficient y = 0.95
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Figure 17 Time series graph of partial changes in structural dry weight W, of
shoot compartment against different values of consumption coefficient u.
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Figure 18 Time series graph of partial changes in the concentration of toxic
metals H in the soil against different values of consumption coefficient p.

Apart from converging to stability, the structural dry weight W, of the shoot
compartment also shows an increase when we increase the value of T from 1.5
to 1.7, as shown in Figure 12. Similarly, when we decrease the value of
consumption coefficient y from u = 1.05 to u = 0.95, all the abovementioned
state variables start converging to a stable equilibrium, as shown in Figures 14
to Figure 18. In addition to convergence to stability, the structural dry weights
W, and W, of the root and shoot compartments show an increase when we
decrease the value of consumption coefficient u of delayed nutrients, as shown
in Figures 16 and 17.
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Appendix

Dimension of Parameters
Parameters Description Dimensions
o growth rate of roots under the effect of KgKg1s™!
heavy metal Hy
T time delay due to presence of toxic metals ]
in the soil
7 growth rate of shoots under the effect of KgKgls!
heavy metal Hy
T nutrient transfer rate from root to shoot Kg molem™3s™1
compartment
R, resistance to transportation of nutrient Kg mole m™3
U consumption coefficient, or utilization Kgts™t
coefficient
P efficiency of nutrient utilization KgKg1ls™!
Y1 measuring the decrease in nutrient use KgKg~'s™!
efficiency due to presence of toxic metals
in the plant
Y2 measuring the decrease in nutrient use KgKgls!
efficiency due to presence of toxic metals
in the plant
Bio natural decay of W; KgKgls!
Bao natural decay of W, KgKg~ls!
d, natural decay of N; Kg mole(Kg mole)~ts™1

d, natural decay of N, Kg mole(Kg mole)~ts™1
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Parameters Description Dimensions
P11 damage rates of W, due to Hy KgKgls™!
Ba1 damage rates of W, due to H, KgKg~ls™!
I input rate of toxic metals Kg molem™3s™1
A first-order decay rate of H, KgKg~ls™!
a; depletion rate of H due to reaction KgKg~1s™!
between H and N,
Ty stress parameter that measures the increase KgKgls!
in resistance to nutrient transport from root
to shoot compartment due to the presence
of toxic metals in the soil
U, initial availability of nutrients in the soil Kg molem™3s™1
A self-limiting growth rate of W; KgKg's™!
A, self-limiting growth rate of W, KgKg~'s™?!
Dimensions of Variables
Variable Description Dimensions
Ny concentration of nutrients in the root compartment Kg molem™3
N, concentration of nutrients in the shoot compartment Kg molem™3
w; structural dry weight of the root compartment Kg
w, structural dry weight of the shoot compartment Kg
Hg concentration of heavy metals in the soil Kg molem™3

time variable

S




