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Abstract. Problems that arise out of an industrial context normally have clear cut 

objectives, and the results are usually important in context but of limited general 

interest. Sometimes, however, the investigations lead to results that are both 

unexpected and of much broader interest. Two such investigations are described 

here. In the first problem an investigation of the propagation of light rays across 

the ocean leads to new results concerning optical distortion. In the second 

problem a surface tension investigation leads to an entirely new technique for 

solving partial differential equations. 
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1 Introduction 

The   problems  described  here  have both arisen out of an industrial context. 

For such problems  the objective is normally clear cut. Typically a process is 

failing and the objective is understand the issues so that a fix can be achieved. 

Very often the results are important in the specific context but of limited general 

interest. However it is sometimes the case that the investigation leads to entirely 

different outcomes than expected, and, if the outcomes are of fundamental and 

general interest, that is a real bonus. The problems described here are especially 

rewarding in this regard, and the mathematics required is elementary. The 

descriptions will be necessarily brief; complete accounts can be accessed in the 

referred papers. 

2 Light Ray Propagation over the Earth 

The original question posed was: “Can we accurately determine the path of a 

light ray propagating over the ocean?”. Evidently this is of importance if one 

wishes to determine the exact location of a ship on the horizon, and is also of 

importance for short wave communication systems. Although not explicitly 

expressed in the question the real challenge is to determine the refractive index 
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profile; we are really dealing with an inverse problem which we well know can 

be difficult. In this case the inverse problem is known to be almost impossible 

to solve numerically. The difficulty can be appreciated by observing the very 

pretty, but complicated, pattern of rays shown in Figure 1, generated by rays 

projected into a variable refractive index region of very simple form. 

 

Figure 1 Rays projected from 0x   at a fixed angle into a variable refractive 

index medium. The index profile consists of three patched quadratics. 

Refractive index variations arise because the speed of ray propagation is 

(weakly) dependent on the temperature, pressure and humidity of the 

atmosphere through which the ray is propagating. Significant changes in such 

climatic conditions occur especially as one moves away from the Earth's 

surface. The refractive index variations are relatively small 6(10 ),O   so that the 

deviations of rays from a straight line path are small, however such small 

variations lead to deflections of the order of 10-20 meters over propagation 

distances (20-30 km) of interest, and can even be severe enough to cause 

spectacular effects such as mirages and looming.  Over the distances of interest 

Earth curvature effects also cannot be ignored. A determination of the viewing 

horizon is often high on the list of priorities. 

Given the smallness of variations in refractive index n  it is conventional and 

convenient to describe such variations in terms of the refractivity 'n  defined by 

 1n n    where 610    (1) 
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variations in 'n  of unit order are to be expected in the atmosphere.  We will 

restrict our attention to situations in which the refractivity varies with distance 

from the Earth's surface. 

In a real sense Willebrord Snell knew the solution to the forward problem back 

in 1621;   Snell's Law (when modified for spherical geometry) says 

 ( )cos ( )rn r r c   

along a ray, where r  is the radial distance within the atmosphere from the 

Earth's center,  n r  is the refractive index, ( )r  is the  angle of the ray with 

respect to the local horizontal, and c is a constant for the ray. Using this the 

complete path can be determined by patching together local solutions 

numerically, see for example [1,2], or by integrating Snell's Law to give an 

implicit description ( )R   for the ray path. Explicitly if the ray is projected from 

0r R  at 0   at a launch angle whose tangent is 
0  then 
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see Figure 2, where the sign has to be chosen so that at 00,  .     For more 

details see [3] 

 

Figure 2 Ray propagation around the Earth:  Left: Unscaled geometry. The ray 

is projected at a height H  to a target a distance L  around the Earth. Right: The 

scaled problem. 

An explicit evaluation of the integral in (2) is not possible except in the constant 

refractive index 1n   case, which yields the expected straight line solution 
1( )R   given by 

 1

0 0/ cos( ).q R      (3) 

Whilst exact, the above ray path description (2) is not suitable for evaluation 

because of large and small variables and parameters sprinkled throughout the 

expression. We need to scale the problem, even if only to reduce computational 
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errors. In fact we'll see that the simple act of scaling leads to a much better 

result than one would anticipate. 

2.1 Scaling 

Typically we are interested in waves propagating over distances 10km,L   at 

heights 0 10meH R a   , over the Earth, a sphere of radius 36 10 kmea   , 

within an atmosphere with refractive index variations of the order 610 . With 

this in mind, we introduce scaled coordinates  ', 'x z : where 'x  is the  distance 

from the source location measured around the surface of the Earth and scaled so 

that ' 1x   is the location of the target, and where z'  is the height above the 

surface, scaled so that (0,1)  is the  location of the source, see Figure 2. To do 

this we write  

   1  ' ,eR a hl z    'l x  ,  1 ( ),n n z    0 0h    (4) 

 where 
e

L
l

a


3 3(10 ),h (10 ),
H

O O
L

  and 610   (5) 

After changing to scaled variables, and expanding out in terms of the small 

parameters ( , , )h l  , the ray path Eq. (2) reduces to 

 
1

1
O( , )

( ( ))
 

z

x du hl
n u






  
    where (6) 

 2

0[2 ( ( ) (1)) 2 ( 1) ( ) ]n z n z               (7) 

can be interpreted to be  the  tangent of the angle the ray path makes with the 

horizontal at any location  ' 'z x . Here 

 
2 2

2
, ,

e

L L

H a H


    (8) 

are the dimensionless groups of the problem, a refractivity variation parameter 

 , and an Earth's  curvature parameter  ; 0   corresponds to a flat Earth 

approximation. This may appear to be a purely superficial rearrangement of the 

earlier description, however from a numerical point of view the improvement is 

substantial. Both parameters   and   in the above integral are of unit order 

and the integral is to be evaluated over a distance of unit order, so that an 

accurate numerical evaluation is possible using standard packages. If in addition 

the order ,hl  terms are neglected (with relative error 610 ) a totally 

unexpected an extremely important simplification results; the integral in the 

path description can be evaluated exactly for (up to) quadratic refractive index 

profiles. In fact exact solutions for the ray path can also be obtained for up to 
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quartic refractive index profiles using the above path description (6), but for 

reasons that will become evident such evaluations are not useful. 

Explicitly if the profile is given by 

 2

2 1( ) (1) ( 1) ( 1),n z n a z a z          (9) 

 

Figure 3 Quadratic Index Profile Rays:  2 0a   case.  Left: displays the index 

profile ( 1 21.0,a 2.0a   ). In Right rays are launched from the 

position ' 1.0z   with a range of initial angles 0 2 2.( 1, 1).        

then the integral in (6) can be evaluated to give the explicit  path description 
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and 
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(1 ) [ ] cos 2 ,
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a x
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a


   





     


 (11) 

In the linear limit a2 = 0  the familiar parabolic profile 

 2

1 0

1
1 [( ) 2 ],

2
z a x x   
       (12) 

is recovered. 
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Figure 4 Quadratic Index Profile Rays:  2 0a   case. Left: displays the index 

profile ( 1 20.0,a 16.0a    ). In Right: rays are launched from the 

position ' 1.0z   with a range of initial angles 0 1 1.( 1, 1).        

 

Figure 5 Optical distortion: The figure shows the light ray paths passing 

through a telescopic lens from equally spaced markings on a lighthouse. 

2.2 General Profiles 

Evidently the above result enables one to exactly
1
 determine image points 

which is a significant advantage for image inversion, however, what is not so 

evident but of overriding importance, is that the image generated by rays 

propagating through a quadratic index profile is undistorted. Now we all know 

that images are `true' in a constant refractive index situation (where the rays are 

straight lines), and many would be aware of the somewhat surprising result that 

                                                 
1
 within 6(10 )O   
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images are also `true' in  the  linear refractive index profile flat Earth situation 

(where rays are parabolic). Remarkably, however, this is also the case for 

quadratic refractive index situations over a spherical Earth! Observing the 

converging and diverging behavior of propagating rays, see Figures 3, 4, this 

would seem to be impossible. To understand  this result consider rays passing 

from a target (a lighthouse with equally space markings say) through an 

observation system (a telescopic lens or the eye) to be viewed  in the focal plane 

of the lens (a photographic plate or the retina), see Figure 5.  Now if in fact the 

angular displacement 0   at the lens is the same for all the equally spaced 

markings (spacing z  say) from the top to the bottom of the lighthouse then a 

uniformly magnified or undistorted image will be seen in the focal plane; in fact 

0

0

(1, )z
M





 



 measures the local image magnification. More generally we can 

identify the offset O  and local magnification M by writing the path description 

in the form 

 0 0 0 0 0(1, ) (1, ) ( , , ) ( , , , ) ,z z O n M n        
         

where 0 0(1, )z    is the image corresponding to 0   in the absence of refraction 

(so  ' ' 1n n ), and 0( , )z n     is the actual image. One might hope that an 

experimental determination of  O  and M  would enable one to determine the 

profile  ' 'n z  and thus enable one to invert the image. In general we would 

expect the magnification M  to vary with the entry angle 
0   so that the image 

would be distorted, but for the quadratic case using (10,11) we get 

2 1
2 1 2 2

22

sin( 2 )
( ) , ( , ) cos( 2 ) 1 ,

2 22

a a
M a O a a a

aa

   




 
     
 

 

in the 2  0a   case, with similar result in the 2  0a   case. Thus the 

magnification is uniform in the quadratic index profile case. Note also that in 

this case a single observation of the offset and magnification is sufficient to   

determine the coefficients 1 2,  a a  associated with the index profile, see (9), thus 

enabling one to simply invert any image received through a quadratic index 

profile. For higher order profiles distortion occurs. 

For more complex profiles than quadratic the received image will be distorted. 

In such cases, given the above results, it makes sense to use patched quadratics. 

The ray path through any finite number of quadratic zones can be exactly 

determined by simply matching the location and slope across the quadratic 

zones, and thus complete (and effectively exact) images can be generated for 

any patched quadratic profile. A simple program that does just this has been 

written and the results are displayed in Figure 6. Of course there is no real need 

to determine the ray paths; required images can be generated directly using the 

offset and magnification results above. Note that although pattern of rays is 

complex it is a relatively simple matter to determine the refractive index 
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coefficients for each of the layers by measuring the offset and magnification. To 

determine the thicknesses of the zones one needs to determine/observe the 

critical rays separating distortionless zones. 

 

Figure 6 Propagation through three quadratic index layers. 

Whilst the evaluations are greatly simplified by the exact evaluation of the path 

defining integral the most interesting and unexpected aspect of the result is that 

even for complex profiles consisting of patched quadratics we basically see 

undistorted images patched together separated by thin distorted zones. I should 

also add that even mirages are piecewise undistorted, but that is another story. 

For further details about this and the above work see [4]. 

3 Boundary Tracing 

This is work done by a former student of mine Michael Anderson as part of his 

PhD, see [5]. The problem concerns the manufacture of capacitors. Capacitors 

are made by dip coating opposite ends of small (1 mm by 0.5 mm) rectangular 

silica slabs in molten metal. The results of a single dipping are shown in Figure 

7. Note that the contact line between the slab and the metal dips close to the 

corners of the slab, a condition referred to as mooning.  Such mooning is 

undesirable; the metal caps can break off and excessively mooned capacitors are 

discarded. The extent of mooning varies even within a particular run. The 

question was `how to reduce mooning'; for example by altering the properties of 

the molten metal, rounding the slab edges, or changing the dipping process. 

Evidently this is a surface tension problem and the determination of the shape of 

the equilibrium surface of the liquid close to a corner (with wedge angle 
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3

2


   in the capacitor case, see Figure 7 is the primary challenge, and 

challenge it was, and remains. More especially the contact curve between a 

liquid and the silica slab is of primary interest. 

The problem is easy enough to specify.  The surface height rise ( , )x y  of the 

liquid in a vessel is governed by the (scaled) Laplace Young equation 

 ( )
1




 


 

 
 (13) 

in the  projection D of the domain  occupied by the liquid, see Figure 8 (wedge 

case),  where the length scale adopted is the  capillary number / ,g   where   

,   are the density and surface tension of the liquid and g  is the gravitational 

constant (see [6]).  The contact condition 

 ( ) cos ,
1




 


  

 
n  (14) 

needs to be imposed around the boundary, where n  is the external normal to 

boundary region,  and   is the contact angle, see Figure 8 (infinite wedge case). 

The only known exact solution of the Laplace Young equation is the 1D 

Cartesian solutions discovered by Young. This solution ( )y  where y is the 

distance from the wall is implicitly given by 

 2 2arccosh(2 / ) arccosh(2 / ) [ 4 4 ],w wy h h        (15) 

 where 2(1 sin )h    (see [6]). (16)  

is the height rise at the wall, see Figure 9. The height rise in a 1D channel 

between parallel walls can also be determined using the 1D solution, see [6]. 

 

Figure 7 Left: A dip coated slab. Note the contact line between the metal and 

the slab dips near the corner. Right: The height rise of liquid in a vessel near a 

corner. 
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Figure 8 The Laplace Young problem. 

 

Figure 9 Young's L-Y equation solution. 

Obtaining (even) approximate solutions to the Laplace Young equation in other 

geometries presents real difficulties. Corners in particular present real problems 

as far as the equation is concerned. It is known that the height rise of a liquid in 

a wedge is infinite in the corner if the wedge angle  , see Figures (7, 8), is less 

than a critical angle given by / 2c    , and is finite and locally planar in a 

medium wedge angle range c    . What happens if the wedge angle is 

larger than  , as in the capacitor problem? No one knows complete answers; 

height discontinuities can even occur.  These results are real in the sense that 

indeed water will defy gravity and climb out of a container with a sharp interior 

corner. It is known experimentally that if the wedge is rounded sufficiently the 

water will stay within the container so one might hope to make progress in this 

case. Michael was set the task of determining the required rounding; he was a 

very good student! However first he was asked to examine the much simpler but 

related problem of determining the effect of corner rounding on the solution to 

Helmholtz equation in the corner plane 0, 0x y   (corresponding to a wedge 

angle of 
2


  ) with a contact condition imposed. Explicitly this involves 

solving  

 2 in 0, 0u u x y     
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 with 1around ,u C   n  (17) 

see Figure 10. 

 

Figure 10  The Helmholtz problem in a rounded quarter plane. The curve C  

rounds off the corner. 

The Helmholtz equation is the small amplitude approximation to the Laplace 

Young Equation; thus the connection, and of course linearity and the choice of 

wedge angle simplifies matters greatly. In fact in the absence of rounding the 

solution is simply given by 

 *  .x yu e e    (18) 

One might expect a simple perturbation procedure to determine the effect of 

rounding; it didn't.  Even numerical attempts failed! Then something totally 

unexpected happened that changed everything, and also explained the 

difficulties. We noticed that the solution 
*u  not only solved the contact problem 

in the quarter plane, but also was the exact solution in a specific rounded 

domain. To see that there has to be such a domain note that the directional 

derivative of 
*u  along a line from the origin O at   an angle of 

4


 (so 

( ) / 2 N i j ) varies  from the  value 2  (which is of course less than 1 ) 

when ( , ) (0,0)x y  , to zero as the distance from the origin tends to infinity.  

The implication is that there must be a location P along this line at which 
*( ) 1u P   N ; in fact P is (ln(2) / 2,ln(2) / 2) . This point can be used as a 

starting point for the determination of a complete curve along which the contact 

condition is satisfied; thus the rounded solution domain can be identified. One 

would expect the two ends of the resulting curve to asymptote to the two axes.  

Explicitly if ( , ) 0x y   represents a curve C  along which the contact 

condition (17) is satisfied, then the boundary condition requirement 

 
*( / | |) 1u       

determines the slope of the curve C ,  and this can be used to extend the curve 

away  from the point P.  Explicitly if ( )y x  describes C  then the ordinary 

differential equation 
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*

2

*
ln(2) ln(2)

1, with ( )
2 21

x yy u u
y

y

 
  


 

determines C  , with *( , )u x y  as in (18). Of course one needs to check to see if 

C  asymptotes correctly, but in essence the problem is solved. This is not the 

only possible curve that can be generated using u , although all other such 

curves have corners. Furthermore there are many other rounding that can be 

generated for our problem that can be obtained by superposing on *u  other   

solutions to the Helmholtz equation with homogeneous Neumann conditions in 

the quarter plane. For example any of the solutions 

0

** 2 2( )cos( ), with and 2 , x y

n n n nu e e A K r r x y n   


        

where nA  is arbitrary could be used. Here ( )cos( )n nK r    are radially 

symmetric source solutions of Helmholtz equation. In this way it is possible to 

accurately (perhaps even exactly) match a prescribed corner rounding curve C , 

and thus determine the associated solution. 

The above is moderately interesting in its own right but more importantly what 

we have here is a new procedure for producing exact solution to boundary 

problems; an entirely unexpected outcome! For obvious reasons we have called 

this procedure boundary tracing. Note especially that the procedure does not 

depend on linearity for its application. Given any known specific exact solution 

of a partial differential equation one can use the above procedure to generate a 

large number of associated domains with boundary conditions that share the 

same exact solution. Of course unless the domains generated in this way are 

practically interesting the technique is little more than a curiosity. However a 

large number of previously unknown and interesting solutions have already 

been obtained. 

Perhaps most notably he has obtained explicit exact solutions for traced 

boundaries corresponding to the two known exact solutions of the Laplace 

Young equation described earlier, see (15). The traced boundary corresponding 

to the plane wall solution is given by the parametric description 

2
1 1/2

1

2 cos 2 2sin 2sin
( ) [ sin (( )) ) |

4sin 1 sin1 sin
x C F

   


 

   
   

  
 

2
1 1/21 2sin 2 2sin 2sin

;sin (( )) ) | ]
1 sin 1 sin 4sin 1 sin

   

   

   
  

   
 

1 2 1/2 1( ) cosh (2 / ) (4 ) cosh ( 2) 2;y          

where ,F   are elliptic integrals; a very complex but nevertheless usefully  

exact result. Examples of these traced solutions are displayed in Figure 11. 
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Figure 11 Traced solutions corresponding to Young's solution of the Laplace 

Young equation. 

 

Figure 12 A variety of boundaries constructed using Young's half plane 

solution corresponding to the dotted boundary. 

Note that  solutions are reflected images and that the solutions   are invariant 

under translation in the x  direction ( 1C  is arbitrary). Solutions associated with 

the same plane boundary can be patched together   to construct a very large 

class of new domains all of which share Young's 1D solution.  Some of these 

domains are displayed in Figure 12. We believe these results are not only 

theoretically interesting (greatly increasing the number of know exact results 

and also providing exact results for corner solutions) but are of major practical 

importance. One of the major issues that has plagued experimental has been the 

determination of the effective contact condition for rough surfaces. It has been 

assumed that rough surfaces behave like plane surfaces but no description for 

the effect of roughness on the contact angle has been obtained. At least for the 

very broad range of rough boundaries described above the behavior is exactly 

the same as that of a plane surface, and  the required contact condition is 

explicitly quantified  in the results obtained. 

Domains associated with the exact channel solution can also be simply 

generated using tracing. Of course it is not necessary to have exact solutions to 

apply the method. For all practical purposes the radially symmetric solution of 

Laplace Young equation is `known'
2
. Using this result one can generate 

                                                 
2
 obtainable by integrating the associated ordinary differential equation 
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interesting circle like and ring like domains; thus one can determine the solution 

corresponding  to rough capillary tubes and rough annular tubes for either the 

Laplace Young or Helmholtz equation, see Figures 13, 14 and 15 (for 

Helmholtz equation). Additionally traced boundaries corresponding to the 

constant mean curvature equation and Poisson's equation have been obtained, 

see Figure 16. Many of these results have been published in a series of articles 

and also a preliminary theoretical analysis has been undertaken, see [7,8,9]. 

However much remains to be done, and it is hoped that this technique will 

provide a new way of handling nonlinear partial differential equation problems 

especially. 

4 Summary 

The two situations examined have produced entirely unexpected outcomes. In 

the light propagation problem fundamental results concerning the propagation 

of light rays in the atmosphere were obtained:  who would expect the image 

received in a quadratic refractive index profile to be undistorted and why hasn’t 

this been discovered earlier? In the second situation an entirely new procedure 

for producing exact solutions to partial differential equations arose out of an 

industrial surface tension context. 

 

Figure 13 Wedge solutions for Helmholtz equation. 

  

Figure 14 Left: A rough surface solution for Helmholtz equation. Right: 

Boundary tracing scheme. Grey lines are the individual curves used to generate 

the boundary. 
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Figure 15  Boundaries and solutions generated by cylindrical solutions 

(Helmholtz equation). 

    
 

Figure 16 Traced boundaries corresponding to Poisson's equation 
2( 1, with 1)     n  using the solutions 

2 / 2y   (left) and 

sin sinx y    (right). 
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