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Abstract. Problems that arise out of an industrial context normally have clear cut
objectives, and the results are usually important in context but of limited general
interest. Sometimes, however, the investigations lead to results that are both
unexpected and of much broader interest. Two such investigations are described
here. In the first problem an investigation of the propagation of light rays across
the ocean leads to new results concerning optical distortion. In the second
problem a surface tension investigation leads to an entirely new technique for
solving partial differential equations.

Keywords: boundary tracing; exact solutions; optical refraction; partial differential
equations.

1 Introduction

The problems described here have both arisen out of an industrial context.
For such problems the objective is normally clear cut. Typically a process is
failing and the objective is understand the issues so that a fix can be achieved.
Very often the results are important in the specific context but of limited general
interest. However it is sometimes the case that the investigation leads to entirely
different outcomes than expected, and, if the outcomes are of fundamental and
general interest, that is a real bonus. The problems described here are especially
rewarding in this regard, and the mathematics required is elementary. The
descriptions will be necessarily brief; complete accounts can be accessed in the
referred papers.

2 Light Ray Propagation over the Earth

The original question posed was: “Can we accurately determine the path of a
light ray propagating over the ocean?”. Evidently this is of importance if one
wishes to determine the exact location of a ship on the horizon, and is also of
importance for short wave communication systems. Although not explicitly
expressed in the question the real challenge is to determine the refractive index
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profile; we are really dealing with an inverse problem which we well know can
be difficult. In this case the inverse problem is known to be almost impossible
to solve numerically. The difficulty can be appreciated by observing the very
pretty, but complicated, pattern of rays shown in Figure 1, generated by rays
projected into a variable refractive index region of very simple form.
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Figure 1 Rays projected from X =0 at a fixed angle into a variable refractive
index medium. The index profile consists of three patched quadratics.

Refractive index variations arise because the speed of ray propagation is
(weakly) dependent on the temperature, pressure and humidity of the
atmosphere through which the ray is propagating. Significant changes in such
climatic conditions occur especially as one moves away from the Earth's
surface. The refractive index variations are relatively small O(107°), so that the

deviations of rays from a straight line path are small, however such small
variations lead to deflections of the order of 10-20 meters over propagation
distances (20-30 km) of interest, and can even be severe enough to cause
spectacular effects such as mirages and looming. Over the distances of interest
Earth curvature effects also cannot be ignored. A determination of the viewing
horizon is often high on the list of priorities.

Given the smallness of variations in refractive index » it is conventional and
convenient to describe such variations in terms of the refractivity n' defined by

n=1+06n" where §=10"° (1)
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variations in n' of unit order are to be expected in the atmosphere. We will
restrict our attention to situations in which the refractivity varies with distance
from the Earth's surface.

In a real sense Willebrord Snell knew the solution to the forward problem back
in 1621; Snell's Law (when modified for spherical geometry) says

ra(r)cosy(r)=c

along a ray, where r is the radial distance within the atmosphere from the
Earth's center, n(r) is the refractive index, y(») is the angle of the ray with
respect to the local horizontal, and cis a constant for the ray. Using this the
complete path can be determined by patching together local solutions

numerically, see for example [1,2], or by integrating Snell's Law to give an
implicit description R(6) for the ray path. Explicitly if the ray is projected from

r=R, at =0 at a launch angle whose tangent is y, then

=+6, with g, = R,(1+6n')cos 7, )

J'R q,dR’

SR (R) ~gq; | R®)
see Figure 2, where the sign has to be chosen so that at =0, y =y,. For more
details see [3]
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Figure 2 Ray propagation around the Earth: Left: Unscaled geometry. The ray

is projected at a height H to a target a distance L around the Earth. Right: The
scaled problem.

An explicit evaluation of the integral in (2) is not possible except in the constant
refractive index n=1 case, which yields the expected straight line solution

R'(0) given by
g,/ R' =cos(y, £ 0). (3)

Whilst exact, the above ray path description (2) is not suitable for evaluation
because of large and small variables and parameters sprinkled throughout the
expression. We need to scale the problem, even if only to reduce computational
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errors. In fact we'll see that the simple act of scaling leads to a much better
result than one would anticipate.

2.1 Scaling

Typically we are interested in waves propagating over distances L ~10km, at
heights H =R, —a, ~10m, over the Earth, a sphere of radius a, ~6x10°km,
within an atmosphere with refractive index variations of the order 107°. With
this in mind, we introduce scaled coordinates (x',z'): where x' is the distance

from the source location measured around the surface of the Earth and scaled so
that x'=1 is the location of the target, and where z' is the height above the
surface, scaled so that (0,1) is the location of the source, see Figure 2. To do

this we write
R=a,(1+ (hl)z'), 0 =1x', n=1+3n'(2), y, =hy, 4)

where /=L 0(107),h= %0(103), and 5=10"° (5)
a

e

After changing to scaled variables, and expanding out in terms of the small
parameters (4,/,0) , the ray path Eq. (2) reduces to

r_ z l 4
X' = L —y,(n,(u,))du + O(S,hl) where (6)
y'= i\/[2f7(n'(2') —n' (D) +2x(2" =)+ (75)’] (7)

can be interpreted to be the tangent of the angle the ray path makes with the
horizontal at any location z'(x'). Here
s

H ~ aH

n= ®)

are the dimensionless groups of the problem, a refractivity variation parameter
n, and an Earth's curvature parameter x; k=0 corresponds to a flat Earth
approximation. This may appear to be a purely superficial rearrangement of the
earlier description, however from a numerical point of view the improvement is
substantial. Both parameters 1 and x in the above integral are of unit order
and the integral is to be evaluated over a distance of unit order, so that an
accurate numerical evaluation is possible using standard packages. If in addition
the order &,hl terms are neglected (with relative error 107°) a totally
unexpected an extremely important simplification results; the integral in the

path description can be evaluated exactly for (up to) quadratic refractive index
profiles. In fact exact solutions for the ray path can also be obtained for up to
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quartic refractive index profiles using the above path description (6), but for
reasons that will become evident such evaluations are not useful.

Explicitly if the profile is given by

n'(Z)-n')=a,(z' 1)’ +a,(z' - 1), 9)
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Figure 3 Quadratic Index Profile Rays: a, <0 case. Left: displays the index
profile (@, =1.0,a,=2.0). In Right rays are launched from the
position z'=1.0 with a range of initial angles y, =-2--- ,n=10).

then the integral in (6) can be evaluated to give the explicit path description

2-(1- ) = (20T "__22:;’2"')]70' + ¢ cos [ Tax, (10)

Ny

and

21— = (N2 Y) *’_;i’;wm + ¢ cos [ 2ax (an

e

In the linear limit a, = 0 the familiar parabolic profile
1
z'—1 =§[(1<+77a1)x'2 +2y,x'], (12)

is recovered.
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Figure 4 Quadratic Index Profile Rays: a, <0 case. Left: displays the index
profile (a, =0.0,a, =—16.0). In Right: rays are launched from the

position z'=1.0 with a range of initial angles y, =—1--- ,n=1).
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Figure S Optical distortion: The figure shows the light ray paths passing
through a telescopic lens from equally spaced markings on a lighthouse.

2.2 General Profiles

Evidently the above result enables one to exactly' determine image points
which is a significant advantage for image inversion, however, what is not so
evident but of overriding importance, is that the image generated by rays
propagating through a quadratic index profile is undistorted. Now we all know
that images are “true' in a constant refractive index situation (where the rays are
straight lines), and many would be aware of the somewhat surprising result that

" within O(10°°)
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images are also ‘true' in the linear refractive index profile flat Earth situation
(where rays are parabolic). Remarkably, however, this is also the case for
quadratic refractive index situations over a spherical Earth! Observing the
converging and diverging behavior of propagating rays, see Figures 3, 4, this
would seem to be impossible. To understand this result consider rays passing
from a target (a lighthouse with equally space markings say) through an
observation system (a telescopic lens or the eye) to be viewed in the focal plane
of the lens (a photographic plate or the retina), see Figure 5. Now if in fact the
angular displacement Oy, at the lens is the same for all the equally spaced

markings (spacing 6z'say) from the top to the bottom of the lighthouse then a
uniformly magnified or undistorted image will be seen in the focal plane; in fact

oz'(Lyy)

0%
identify the offset O and local magnification M by writing the path description
in the form

M= measures the local image magnification. More generally we can

(L) = zo(Lyg) =0’ m, 1) + M(n', 7,10, 5) 7y,
where z,(l,y;) is the image corresponding to y, in the absence of refraction
(so n'=n'(1)), and z'(n’,yy) is the actual image. One might hope that an

experimental determination of O and M would enable one to determine the
profile n’(z') and thus enable one to invert the image. In general we would

expect the magnification M to vary with the entry angle y, so that the image
would be distorted, but for the quadratic case using (10,11) we get

sin(\/—2na, ) _77 L+ =
Mla) == Fomm, Olapa) = [cos«/ 27a;)~1] -7

in the a,< 0 case, with similar result in the a,< 0 case. Thus the

magnification is uniform in the quadratic index profile case. Note also that in
this case a single observation of the offset and magnification is sufficient to
determine the coefficients a,, a, associated with the index profile, see (9), thus

enabling one to simply invert any image received through a quadratic index
profile. For higher order profiles distortion occurs.

For more complex profiles than quadratic the received image will be distorted.
In such cases, given the above results, it makes sense to use patched quadratics.
The ray path through any finite number of quadratic zones can be exactly
determined by simply matching the location and slope across the quadratic
zones, and thus complete (and effectively exact) images can be generated for
any patched quadratic profile. A simple program that does just this has been
written and the results are displayed in Figure 6. Of course there is no real need
to determine the ray paths; required images can be generated directly using the
offset and magnification results above. Note that although pattern of rays is
complex it is a relatively simple matter to determine the refractive index
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coefficients for each of the layers by measuring the offset and magnification. To
determine the thicknesses of the zones one needs to determine/observe the
critical rays separating distortionless zones.

height versus scaled distance

height z

0 I 1 I I 1 I 1 I 1
0 0.2 04 0.6 08 1 12 14 16 1.8 2

scaled distance x

Figure 6 Propagation through three quadratic index layers.

Whilst the evaluations are greatly simplified by the exact evaluation of the path
defining integral the most interesting and unexpected aspect of the result is that
even for complex profiles consisting of patched quadratics we basically see
undistorted images patched together separated by thin distorted zones. I should
also add that even mirages are piecewise undistorted, but that is another story.
For further details about this and the above work see [4].

3 Boundary Tracing

This is work done by a former student of mine Michael Anderson as part of his
PhD, see [5]. The problem concerns the manufacture of capacitors. Capacitors
are made by dip coating opposite ends of small (1 mm by 0.5 mm) rectangular
silica slabs in molten metal. The results of a single dipping are shown in Figure
7. Note that the contact line between the slab and the metal dips close to the
corners of the slab, a condition referred to as mooning. Such mooning is
undesirable; the metal caps can break off and excessively mooned capacitors are
discarded. The extent of mooning varies even within a particular run. The
question was ‘how to reduce mooning'; for example by altering the properties of
the molten metal, rounding the slab edges, or changing the dipping process.
Evidently this is a surface tension problem and the determination of the shape of
the equilibrium surface of the liquid close to a corner (with wedge angle
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az%r in the capacitor case, see Figure 7 is the primary challenge, and

challenge it was, and remains. More especially the contact curve between a
liquid and the silica slab is of primary interest.

The problem is easy enough to specify. The surface height rise 77(x,y) of the
liquid in a vessel is governed by the (scaled) Laplace Young equation
i

(«/1+V77-V77)=77

in the projection D of the domain occupied by the liquid, see Figure 8 (wedge
case), where the length scale adopted is the capillary number .QO'/ pg, where

V. (13)

p,o are the density and surface tension of the liquid and g is the gravitational
constant (see [6]). The contact condition

(-1
J1+Vn-Vnp

needs to be imposed around the boundary, where n is the external normal to
boundary region, and y is the contact angle, see Figure 8 (infinite wedge case).

)-n=-cosy, (14)

The only known exact solution of the Laplace Young equation is the 1D
Cartesian solutions discovered by Young. This solution 7(y) where y is the

distance from the wall is implicitly given by

y=arccosh(2/n,)—arccosh(2/ h) + [N4-h - \/4 -n21, (15)

where h=4/2(1-siny) (see [6]). (16)

is the height rise at the wall, see Figure 9. The height rise in a 1D channel
between parallel walls can also be determined using the 1D solution, see [6].

i N

4 \ﬁ liquid

Figure 7 Left: A dip coated slab. Note the contact line between the metal and
the slab dips near the corner. Right: The height rise of liquid in a vessel near a
corner.
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Figure 8 The Laplace Young problem.
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Figure 9 Young's L-Y equation solution.

Obtaining (even) approximate solutions to the Laplace Young equation in other
geometries presents real difficulties. Corners in particular present real problems
as far as the equation is concerned. It is known that the height rise of a liquid in
a wedge is infinite in the corner if the wedge angle « , see Figures (7, 8), is less
than a critical angle given by «, <7 /2—y, and is finite and locally planar in a

medium wedge angle range «, <a <z . What happens if the wedge angle is

larger than 7, as in the capacitor problem? No one knows complete answers;
height discontinuities can even occur. These results are real in the sense that
indeed water will defy gravity and climb out of a container with a sharp interior
corner. It is known experimentally that if the wedge is rounded sufficiently the
water will stay within the container so one might hope to make progress in this
case. Michael was set the task of determining the required rounding; he was a
very good student! However first he was asked to examine the much simpler but
related problem of determining the effect of corner rounding on the solution to
Helmbholtz equation in the corner plane x>0,y >0 (corresponding to a wedge

angle of azg) with a contact condition imposed. Explicitly this involves

solving

Vu=uin x>0,y>0
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with Vu-n=-1around C, (17)

see Figure 10.

»
>
X

Figure 10 The Helmholtz problem in a rounded quarter plane. The curve C
rounds off the corner.

The Helmholtz equation is the small amplitude approximation to the Laplace
Young Equation; thus the connection, and of course linearity and the choice of
wedge angle simplifies matters greatly. In fact in the absence of rounding the
solution is simply given by

u =e +e”’. (18)

One might expect a simple perturbation procedure to determine the effect of
rounding; it didn't. Even numerical attempts failed! Then something totally
unexpected happened that changed everything, and also explained the

difficulties. We noticed that the solution %" not only solved the contact problem
in the quarter plane, but also was the exact solution in a specific rounded
domain. To see that there has to be such a domain note that the directional

derivative of u  along a line from the origin O at an angle of % (so

N=(>G+j)/ 2 ) varies from the value —/2 (which is of course less than —1)
when (x,y)=(0,0), to zero as the distance from the origin tends to infinity.
The implication is that there must be a location P along this line at which
Vu'(P)-N=-1; in fact P is (In(2)/2,In(2)/2). This point can be used as a
starting point for the determination of a complete curve along which the contact
condition is satisfied; thus the rounded solution domain can be identified. One
would expect the two ends of the resulting curve to asymptote to the two axes.
Explicitly if £(x,y)=0 represents a curve C along which the contact

condition (17) is satisfied, then the boundary condition requirement
(V&I VED-Vu =-1

determines the slope of the curve C, and this can be used to extend the curve
away from the point P. Explicitly if y(x) describes C then the ordinary

differential equation
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— *+
Vi ruy (ln(2)) In(2)
afl + y'2 2

determines C , with u (x,y) as in (18). Of course one needs to check to see if
C asymptotes correctly, but in essence the problem is solved. This is not the

only possible curve that can be generated using u*, although all other such
curves have corners. Furthermore there are many other rounding that can be

generated for our problem that can be obtained by superposing on u" other
solutions to the Helmholtz equation with homogeneous Neumann conditions in
the quarter plane. For example any of the solutions

u'=e*+e”’ +Y 4K, (r)cos(B,0), with r = afxz +y* and B, =2nn,
0

where 4, is arbitrary could be used. Here K (r)cos(fS,0) are radially

symmetric source solutions of Helmholtz equation. In this way it is possible to
accurately (perhaps even exactly) match a prescribed corner rounding curve C,
and thus determine the associated solution.

The above is moderately interesting in its own right but more importantly what
we have here is a new procedure for producing exact solution to boundary
problems; an entirely unexpected outcome! For obvious reasons we have called
this procedure boundary tracing. Note especially that the procedure does not
depend on linearity for its application. Given any known specific exact solution
of a partial differential equation one can use the above procedure to generate a
large number of associated domains with boundary conditions that share the
same exact solution. Of course unless the domains generated in this way are
practically interesting the technique is little more than a curiosity. However a
large number of previously unknown and interesting solutions have already
been obtained.

Perhaps most notably he has obtained explicit exact solutions for traced
boundaries corresponding to the two known exact solutions of the Laplace
Young equation described earlier, see (15). The traced boundary corresponding
to the plane wall solution is given by the parametric description

()= €+ V207 fcosy { _1((2+251n7 n ))1/2)|—2sin7J

«} —siny l—-siny

3 1' o 2s1T1)/ ;sin"l((2+281,n7/_77 NEY 2s1n7
I+siny \l-siny 4siny 1- sm;/

y(7)=cosh™ (2/ ) —(4—n*)"* —cosh™ (N2) +/2;

where F,I1 are elliptic integrals; a very complex but nevertheless usefully
exact result. Examples of these traced solutions are displayed in Figure 11.
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Figure 11 Traced solutions corresponding to Young's solution of the Laplace
Young equation.

Figure 12 A variety of boundaries constructed using Young's half plane
solution corresponding to the dotted boundary.

Note that + solutions are reflected images and that the solutions are invariant
under translation in the x direction (C, is arbitrary). Solutions associated with

the same plane boundary can be patched together to construct a very large
class of new domains all of which share Young's 1D solution. Some of these
domains are displayed in Figure 12. We believe these results are not only
theoretically interesting (greatly increasing the number of know exact results
and also providing exact results for corner solutions) but are of major practical
importance. One of the major issues that has plagued experimental has been the
determination of the effective contact condition for rough surfaces. It has been
assumed that rough surfaces behave like plane surfaces but no description for
the effect of roughness on the contact angle has been obtained. At least for the
very broad range of rough boundaries described above the behavior is exactly
the same as that of a plane surface, and the required contact condition is
explicitly quantified in the results obtained.

Domains associated with the exact channel solution can also be simply
generated using tracing. Of course it is not necessary to have exact solutions to
apply the method. For all practical purposes the radially symmetric solution of
Laplace Young equation is ‘known”. Using this result one can generate

? obtainable by integrating the associated ordinary differential equation
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interesting circle like and ring like domains; thus one can determine the solution
corresponding to rough capillary tubes and rough annular tubes for either the
Laplace Young or Helmholtz equation, see Figures 13, 14 and 15 (for
Helmholtz equation). Additionally traced boundaries corresponding to the
constant mean curvature equation and Poisson's equation have been obtained,
see Figure 16. Many of these results have been published in a series of articles
and also a preliminary theoretical analysis has been undertaken, see [7,8,9].
However much remains to be done, and it is hoped that this technique will
provide a new way of handling nonlinear partial differential equation problems
especially.

4 Summary

The two situations examined have produced entirely unexpected outcomes. In
the light propagation problem fundamental results concerning the propagation
of light rays in the atmosphere were obtained: who would expect the image
received in a quadratic refractive index profile to be undistorted and why hasn’t
this been discovered earlier? In the second situation an entirely new procedure
for producing exact solutions to partial differential equations arose out of an
industrial surface tension context.

Figure 13 Wedge solutions for Helmholtz equation.

\ N/ /,/7

Figure 14 Left: A rough surface solution for Helmholtz equation. Right:
Boundary tracing scheme. Grey lines are the individual curves used to generate
the boundary.
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RUp
4

Figure 15 Boundaries and solutions generated by cylindrical solutions

(Helmholtz equation).

f

Figure 16 Traced boundaries corresponding to Poisson's equation
(V’n=1, withVnp-n=1) using the solutions 7=1"/2 (left) and
1 =sin pxsin py (right).
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