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Abstract. We introduce an integral operator on the class A  of analytic 

functions in the unit disk involving k th Hadamard product (convolution) 

corresponding to the differential operator defined recently by Al-Shaqsi and 

Darus. New classes containing this operator are studied. Characterization and 

other properties of these classes are studied. Moreover, subordination and 

superordination results involving this operator are obtained. 
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1 Introduction 

Let H  be the class of functions analytic in the unit disk U  and ],[ naH  be the 

subclass of H  consisting of functions of the form 
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The following differential operator is defined in [1] and studied in [2] 
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Remark 1.1. When 0=1,=   we get S a


l a


gean differential operator [3], 

0=k  gives Ruscheweyh operator [4], 0=  implies Al-Oboudi differential 

operator of order (k) [5] and when 1=  operator (2) reduces to Al-shaqsi and 

Darus differential operator of order (k) [6]. 
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Analogous to Uzzfk ),(,D  we define an integral operator AAJ :,

k

  as 

follows. 
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Remark 1.2. When 0=1,=   we get the integral operator [3], also 0=k  

gives Noor integral operator [7,8]. 

Some of relations for this integral operator are discussed in the next lemma. 
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In the following definitions, we introduce new classes of analytic functions 

containing the integral operator (3): 

Definition 1.1. Let .)( Azf  Then )()( , 
kzf S  if and only if  
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Let F  and G  be analytic functions in the unit disk .U  The function F  is 

esubordinat  to ,G  written ,GF   if G  is univalent, (0)=(0) GF  and 

).()( UGUF   In general, given two functions )(zF  and ),(zG  which are 

analytic in ,U  the function )(zF  is said to be subordination to )(zG  in U  if 

there exists a function ),(zh  analytic in U  with  

 Uzallforzhandh 1|<)(|0=(0)  

such that  
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Let CC 2:  and let h  be univalent in .U  If p  is analytic in U  and 

satisfies the differential subordination )())()),(( zhzpzzp   then p  is 

called a solution of the differential subordination. The univalent function q  is 

called a dominant of the solutions of the differential subordination, if .qp   If 

p  and ))()),(( zpzzp   are univalent in U  and satisfy the differential 

superordination ))()),(()( zpzzpzh   then p  is called a solution of the 

differential superordination. An analytic function q  is called subordinant of the 

solution of the differential superordination if .pq   Let   be an analytic 

function in a domain containing ),(Uf  0=(0)  and 0.>(0)  

 The function Af  is called  like if  



 Integral Operator Defined by k−th Hadamard Product 139 
 

 .0,>}
))((

)(
{ Uz

zf

zfz





  

This concept was introduced by Brickman [9] and established that a function 

Af  is univalent if and only if f  is  like for some .  

Definition 1.3. Let   be analytic function in a domain containing 

1=(0)0,=(0)),( Uf  and 0)(    for 0.)(  Uf  Let )(zq  be a 

fixed analytic function in ,U  1.=(0)q  The function Af  is called  like 

with respect to q  if  
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The paper is organized as follows: Section 2 discuses the characterization 

properties for functions belonging to the classes )(),(  kk CS  and Section 3, 

gives the subordination and superordination results involving the integral 

operator ).(, zfk

J  For this purpose we need to the following lemmas in the 

sequel. 
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then  

 )()( zqzp   

and )(zq  is the best dominant. 

Lemma 1.3. [12] Let )(zq  be convex univalent in the unit disk U  and   and 

  be analytic in a domain D  containing ).(Uq  Suppose that 
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 In this section we study the characterization properties for the function 

A)(zf  to belong to the classes )(, 
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kzf S  The result (4) is sharp. 

Proof. Suppose that (4) holds. Since  
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We also note that the assertion (4) is sharp and the extremal function is given by  
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Corollary 2.1. Let the assumption of Theorem 2.1. Then  
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In the same way we can verify the following results: 

Theorem 2.2. Let .)( Azf  If  
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Also we have the following inclusion results 
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The other assertion can be proved as follows  
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This complete the proof. 

In the same way we can get the following results. 
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Theorem 2.8. Let A)(zf  and satisfies (5). Then for Uz  and 1<0    
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Thus we obtain  
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This completes the proof. 

In the same way we can get the following results. 

Theorem 2.10. Let A)(zf  and and satisfies (5). Then for Uz  and 
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3 Sandwich Result.  

 By making use of lemmas 1.2 and 1.3, we prove the following subordination 

and superordination results involving the integral operator (3). 
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Theorem 3.1. Let 0q  be univalent in U  such that 
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and q  is the best dominant. 
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 .,,
)(

)(
)(

)(

)(
)( C





 

zq

zq
z

zp

zp
z   

By setting  

 0,,:=)(:=)( 











 and  
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it can be easily observed that )(),(   are analytic in {0}\C  and that 

0)(   when {0}.\C  Also, by letting  

 
)(

)(
=))(()(=)(

zq

zq
zzqzqzzQ


   

and  

 ,
)(

)(
)(=

)(

)(

)(

)(
=)())((=)(

zq

zq
z

zq

zq
z

zq

zq
zQzqzh








 


  

we find that )(zQ  is starlike univalent in U  and that  

 

0.,,0,>}
)(

)(
)(

)(

)(
)({1=}

)(

)(
{ 










 








C

zq

zq
z

zq

zq
z

zQ

zhz
 

Then the relation (7) follows by an application of Lemma 1.2. 

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then the 

subordination  

 ,
)(

)(

)]([

])([

])([

])([
1

,

,

,

,

zq

zqz

zf

zfz

zf

zfz
k

k

k

k






 









J

J

J

J
 

implies  

 

)(
)]([

])([

,

,
zq

zf

zfz
k

k






J

J 

 (8) 

and q  is the best dominant. 

Proof. By letting .:=)(1,=0,=    

Corollary 3.2. If Af  and assume that (7) holds then  
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,

,
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k

k

k

k
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
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J

J
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implies  
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1
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k

k


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J

J
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Bz

Az





1

1
 is the best dominant. 

Proof. By setting 0=1,=,:=)(   and 
Bz

Az
zq





1

1
:=)(  where 

1.<1  AB  

Corollary 3.3. If Af  and assume that (7) holds then  
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J
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implies  
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1

1

)(

])([

,

,

z

z

zf

zfz
k

k










J

J
 

and 
z

z





1

1
 is the best dominant. 

Proof. By setting 1,=0,=,:=)(   and .
1

1
:=)(

z

z
zq




 

Corollary 3.4. If Af  and assume that (7) holds then  

 Az
zf

zfz

zf

zfz
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k
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)]([
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implies  
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)(

])([

,

, Az

k

k

e
zf

zfz






J

J 
 

and 
Aze  is the best dominant. 

Proof. By setting 1,=0,=,:=)(   and .|<|,:=)( Aezq Az
 

Theorem 3.2. Let 0)( zq  be convex univalent in the unit disk .U  Suppose 

that  

 

Uzfor
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
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 (9) 

 and 
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J

J


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
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is univalent is U  and the subordination  
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holds, then  
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,

zf

zfz
zq

k

k





J

J






 (10) 

and q  is the best subordinant. 

Proof. Our aim is to apply Lemma 1.3. Setting  
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By computation shows that  
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which yields the following subordination  
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



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zp
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By setting  

 0,,:=)(:=)( 
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



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


 and  

it can be easily observed that )(),(   are analytic in {0}\C  and that 

0)(   when {0}.\C  Also, we obtain  
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{
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Then (10) follows by an application of Lemma 1.3. 

Combining Theorems 3.1 and 3.2 in order to get the following Sandwich 

theorems 

Theorem 3.3 Let 0)(0,)( 21  zqzq  be convex univalent in the unit disk U  

satisfy (9) and (6) respectively. Suppose that and 1,2=,
)(

)('
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zzq

i

i  is starlike 

univalent in .U  If Af  and  
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is univalent in U  and the subordination  
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holds, then  
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and )(1 zq  is the best subordinant and )(2 zq  is the best dominant. 
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