

Integral Operator Defined by k-th Hadamard Product

Maslina Darus & Rabha W. Ibrahim

School of Mathematical Sciences
Faculty of science and Technology, Universiti Kebangsaan Malaysia
Bangi 43600, Selangor Darul Ehsan, Malaysia
Email: maslina@ukm.my, rabhaibrahim@yahoo.com

Abstract. We introduce an integral operator on the class A of analytic functions in the unit disk involving k—th Hadamard product (convolution) corresponding to the differential operator defined recently by Al-Shaqsi and Darus. New classes containing this operator are studied. Characterization and other properties of these classes are studied. Moreover, subordination and superordination results involving this operator are obtained.

Keywords: *Hadamard product; integral operator; subordination; superordination.*

AMS Mathematics Subject Classification (2000): 30C45.

1 Introduction

Let H be the class of functions analytic in the unit disk U and H[a,n] be the subclass of H consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots$ Let A be the subclass of H consisting of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ z \in U.$$
(1)

The following differential operator is defined in [1] and studied in [2] $D_{\lambda,\delta}^k:A\to A$ by

$$\mathsf{D}_{\lambda,\delta}^{k} f(z) = z + \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^{k} C(\delta, n) a_{n} z^{n}, k \in \mathbb{N} \cup \{0\}, \lambda \ge 0, \delta \ge 0,$$
(2)

where

$$C(\delta,n) = {n+\delta-1 \choose \delta} = \frac{\Gamma(n+\delta)}{\Gamma(n)\Gamma(\delta+1)}.$$

Given two functions $f, g \in A$, $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ their convolution or Hadamard product f(z) * g(z) is defined by

$$f(z) * g(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, z \in U.$$

And for several functions $f_1(z),...,f_m(z) \in A$

$$f_1(z)*...*f_m(z) = z + \sum_{n=2}^{\infty} (a_{1n}...a_{mn})z^n, z \in U.$$

Analogous to $\mathsf{D}^k_{\lambda,\delta}f(z), z \in U$ we define an integral operator $\mathsf{J}^k_{\lambda,\delta}: \mathsf{A} \to \mathsf{A}$ as follows.

Let

$$\phi(z) := \frac{z}{1-z} + \frac{\lambda z}{(1-z)^2} - \frac{\lambda z}{1-z}, \lambda \ge 0.$$

$$F_{k}(z) = \underbrace{\phi(z) * \dots * \phi(z)}_{k-times} * \left[\frac{z}{(1-z)^{\delta+1}}\right]$$
$$= z + \sum_{n=2}^{\infty} [1 + (n-1)\lambda]^{k} C(\delta, n) z^{n}, k \in \mathbb{N}_{0}.$$

And let $F_k^{(-1)}$ be defined such that

$$F_k(z) * F_k^{(-1)} = \frac{z}{1-z}$$

= $z + \sum_{n=2}^{\infty} z^n$.

Then

$$\mathbf{J}_{\lambda,\delta}^{k} f(z) = F_{k}^{(-1)} * f(z)
= [\underbrace{\phi(z) * \dots * \phi(z)}_{k-times} * \frac{z}{(1-z)^{\delta+1}}]^{(-1)} * f(z)
= z + \sum_{n=2}^{\infty} \frac{a_{n}}{[1+(n-1)\lambda]^{k} C(\delta,n)} z^{n}, k \in \mathbb{N}_{0}, \lambda \geq 0, \delta \geq 0 \ z \in U.$$
(3)

Remark 1.2. When $\lambda = 1, \delta = 0$ we get the integral operator [3], also k = 0 gives Noor integral operator [7,8].

Some of relations for this integral operator are discussed in the next lemma.

Lemma 1.1. Let $f \in A$. Then

(i)
$$J_{\lambda,0}^{0} f(z) = f(z),$$

(ii) $J_{1,0}^{1} f(z) = \int_{0}^{z} \frac{f(t)}{t} dt.$

Proof.

(i)
$$J_{\lambda,0}^0 f(z) = z + \sum_{n=2}^{\infty} a_n z^n = f(z),$$

$$(ii) \int_0^z \frac{f(t)}{t} dt = \int_0^z [1 + \sum_{n=2}^\infty a_n t^{n-1}] dt$$
$$= z + \sum_{n=2}^\infty \frac{a_n}{n} z^n$$
$$= \int_{1}^1 f(z).$$

In the following definitions, we introduce new classes of analytic functions containing the integral operator (3):

Definition 1.1. Let $f(z) \in A$. Then $f(z) \in S_{\lambda,\delta}^k(\mu)$ if and only if

$$\Re\left\{\frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{\mathsf{J}_{\lambda,\delta}^k f(z)}\right\} > \mu, 0 \le \mu < 1, z \in U.$$

Definition 1.2. Let $f(z) \in A$. Then $f(z) \in C_{\lambda,\delta}^k(\mu)$ if and only if

$$\Re\{\frac{[z(\mathsf{J}_{\lambda,\delta}^k f(z))']'}{(\mathsf{J}_{\lambda,\delta}^k f(z))'}\} > \mu, 0 \le \mu < 1, z \in U.$$

Let F and G be analytic functions in the unit disk U. The function F is *subordinate* to G, written $F \prec G$, if G is univalent, F(0) = G(0) and $F(U) \subset G(U)$. In general, given two functions F(z) and G(z), which are analytic in U, the function F(z) is said to be subordination to G(z) in U if there exists a function h(z), analytic in U with

$$h(0) = 0$$
 and $|h(z)| < 1$ for all $z \in U$

such that

$$F(z) = G(h(z))$$
 for all $z \in U$.

Let $\phi: \mathbb{C}^2 \to \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the differential subordination $\phi(p(z)), zp'(z)) \prec h(z)$ then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, if $p \prec q$. If p and $\phi(p(z)), zp'(z)$ are univalent in U and satisfy the differential superordination $h(z) \prec \phi(p(z)), zp'(z)$ then p is called a solution of the differential superordination. An analytic function q is called subordinant of the solution of the differential superordination if $q \prec p$. Let Φ be an analytic function in a domain containing f(U), $\Phi(0) = 0$ and $\Phi'(0) > 0$.

The function $f \in A$ is called Φ – like if

$$\Re\{\frac{zf'(z)}{\Phi(f(z))}\} > 0, z \in U.$$

This concept was introduced by Brickman [9] and established that a function $f \in A$ is univalent if and only if f is Φ -like for some Φ .

Definition 1.3. Let Φ be analytic function in a domain containing $f(U), \Phi(0) = 0, \Phi'(0) = 1$ and $\Phi(\omega) \neq 0$ for $\omega \in f(U) - 0$. Let q(z) be a fixed analytic function in U, q(0) = 1. The function $f \in A$ is called Φ -like with respect to q if

$$\frac{zf'(z)}{\Phi(f(z))} \prec q(z), z \in U.$$

The paper is organized as follows: Section 2 discuses the characterization properties for functions belonging to the classes $S_k(\mu)$, $C_k(\mu)$ and Section 3, gives the subordination and superordination results involving the integral operator $J_{\lambda,\delta}^k f(z)$. For this purpose we need to the following lemmas in the sequel.

Definition 1.4. [10] Denote by Q the set of all functions f(z) that are analytic and injective on $\overline{U} - E(f)$ where $E(f) := \{ \zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty \}$ and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U - E(f)$.

Lemma 1.2. [11] Let q(z) be univalent in the unit disk U and θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) := zq'(z)\phi(q(z)), h(z) := \theta(q(z)) + Q(z)$. Suppose that

1. Q(z) is starlike univalent in U, and

2.
$$\Re \frac{zh'(z)}{Q(z)} > 0$$
 for $z \in U$.

If

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z))$$

then

$$p(z) \prec q(z)$$

and q(z) is the best dominant.

Lemma 1.3. [12] Let q(z) be convex univalent in the unit disk U and \mathcal{G} and φ be analytic in a domain D containing q(U). Suppose that

1. $zq'(z)\varphi(q(z))$ is starlike univalent in U, and

2.
$$\Re\left\{\frac{\mathcal{G}'(q(z))}{\varphi(q(z))}\right\} > 0 \text{ for } z \in U.$$

If $p(z) \in H[q(0),1] \cap Q$, with $p(U) \subseteq D$ and $\mathcal{G}(p(z)) + zp'(z)\varphi(z)$ is univalent in U and

$$\mathcal{G}(q(z)) + zq'(z)\varphi(q(z)) \prec \mathcal{G}(p(z)) + zp'(z)\varphi(p(z))$$

then $q(z) \prec p(z)$ and q(z) is the best subordinant.

2 General Properties of $J_{\lambda,\delta}^k$

In this section we study the characterization properties for the function $f(z) \in A$ to belong to the classes $S_{\lambda,\delta}^k(\mu)$ and $C_{\lambda,\delta}^k(\mu)$ by obtaining the coefficient bounds.

Theorem 2.1. Let $f(z) \in A$. If

$$\sum_{n=2}^{\infty} \frac{(n-\mu) |a_n|}{[1+(n-1)\lambda]^k C(\delta,n)} \le 1-\mu, \ 0 \le \mu < 1, \quad (4)$$

then $f(z) \in S_{\lambda}^{k}(\mu)$. The result (4) is sharp.

Proof. Suppose that (4) holds. Since

$$1-\mu \geq \sum_{n=2}^{\infty} \frac{|a_n || \mu - n|}{[1 + (n-1)\lambda]^k}$$

$$\geq \mu \sum_{n=2}^{\infty} \frac{|a_n|}{[1 + (n-1)\lambda]^k} - \sum_{n=2}^{\infty} \frac{n |a_n|}{[1 + (n-1)\lambda]^k}$$

then this implies that

$$\frac{1 + \sum_{n=2}^{\infty} \frac{n |a_n|}{[1 + (n-1)\lambda]^k}}{1 + \sum_{n=2}^{\infty} \frac{|a_n|}{[1 + (n-1)\lambda]^k}} > \mu,$$

hence

$$\Re\{\frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{\mathsf{J}_{\lambda,\delta}^k f(z)}\} > \mu.$$

We also note that the assertion (4) is sharp and the extremal function is given by

$$f(z) = z + \sum_{n=2}^{\infty} \frac{[1 + (n-1)\lambda]^k C(\delta, n)(1-\mu)}{(n-\mu)} z^n.$$

Corollary 2.1. Let the assumption of Theorem 2.1. Then

$$|a_n| \le \frac{[1+(n-1)\lambda]^k C(\delta,n)(1-\mu)}{(n-\mu)}, \forall n \ge 2.$$

Corollary 2.2. Let the assumption of Theorem 2.1. Then for $\mu = \delta = 0$ and $\lambda = 1$

$$|a_n| \le n^{k-1}, \forall n \ge 2, k \in \mathbb{N}_0.$$

In the same way we can verify the following results:

Theorem 2.2. Let $f(z) \in A$. If

$$\sum_{n=2}^{\infty} \frac{n |a_n| |\mu+1-n|}{C(\delta,n)[1+(n-1)\lambda]^k} \le 1-\mu, \ 0 \le \mu < 1, \ (5)$$

then $f(z) \in \mathbf{C}_{\lambda,\delta}^k(\mu)$. The result (5) is sharp.

Corollary 2.3. Let the assumption of Theorem 2.2. Then

$$|a_n| \le \frac{[1+(n-1)\lambda]^k C(\delta,n)(1-\mu)}{n |\mu-n+1|}, \forall n \ge 2.$$

Also we have the following inclusion results

Theorem 2.3. Let $0 \le \mu_1 \le \mu_2 < 1$. Then $S_{\lambda,\delta}^k(\mu_1) \supseteq S_{\lambda,\delta}^k(\mu_2)$.

Proof. By Theorem 2.1.

Theorem 2.4. Let $0 \le \mu_1 \le \mu_2 < 1$. Then $\mathbf{C}_{\lambda,\delta}^k(\mu_1) \supseteq \mathbf{C}_{\lambda,\delta}^k(\mu_2)$.

Proof. By Theorem 2.2.

Theorem 2.5. Let $0 \le \lambda_1 \le \lambda_2$. Then $S_{\lambda_1,\delta}^k(\mu) \supseteq S_{\lambda_2,\delta}^k(\mu)$.

Proof. By Theorem 2.1.

Theorem 2.6. Let $0 \le \lambda_1 \le \lambda_2$. Then $C_{\lambda_1,\delta}^k(\mu) \supseteq C_{\lambda_2,\delta}^k(\mu)$.

Proof. By Theorem 2.2.

Moreover, we introduce the following distortion theorems.

Theorem 2.7. Let $f \in A$ and satisfies (4). Then for $z \in U$ and $0 \le \mu < 1$

$$|\mathbf{J}_{\lambda,\delta}^k f(z)| \ge |z| - \frac{(1-\mu)}{(2-\mu)} |z|^2$$

and

$$|\mathbf{J}_{\lambda,\delta}^{k}f(z)| \le |z| + \frac{(1-\mu)}{(2-\mu)}|z|^{2}$$
.

Proof. By using Theorem 2.1, one can verify that

$$(2-\mu)\sum_{n=2}^{\infty} \frac{|a_n|}{[1+(n-1)\lambda]^k C(\delta,n)} \le \sum_{n=2}^{\infty} \frac{(n-\mu)|a_n|}{[1+(n-1)\lambda]^k C(\delta,n)} \le 1-\mu$$

then

$$\sum_{n=2}^{\infty} \frac{|a_n|}{[1+(n-1)\lambda]^k C(\delta,n)} \le \frac{1-\mu}{2-\mu}.$$

Thus we obtain

$$|\mathbf{J}_{\lambda,\delta}^{k} f(z)| = |z + \sum_{n=2}^{\infty} \frac{a_{n}}{[1 + (n-1)\lambda]^{k}} z^{n} |$$

$$\leq |z| + \sum_{n=2}^{\infty} \frac{|a_{n}|}{[1 + (n-1)\lambda]^{k}} |z|^{2}$$

$$\leq |z| + [\frac{1-\mu}{2-\mu}] |z|^{2}$$

The other assertion can be proved as follows

$$\begin{aligned} |\mathbf{J}_{\lambda,\delta}^{k}f(z)| &= |z + \sum_{n=2}^{\infty} \frac{a_{n}}{[1 + (n-1)\lambda]^{k}C(\delta, n)} z^{n} | \\ &\geq |z - \sum_{n=2}^{\infty} \frac{a_{n}}{[1 + (n-1)\lambda]^{k}C(\delta, n)} z^{n} | \\ &\geq |z| - \sum_{n=2}^{\infty} \frac{|a_{n}|}{[1 + (n-1)\lambda]^{k}C(\delta, n)} |z|^{2} \\ &\geq |z| - [\frac{1-\mu}{2-\mu}] |z|^{2} .\end{aligned}$$

This complete the proof.

In the same way we can get the following results.

Theorem 2.8. Let $f(z) \in A$ and satisfies (5). Then for $z \in U$ and $0 \le \mu < 1$

$$|\mathbf{J}_{\lambda,\delta}^{k}f(z)| \ge |z| - \frac{(1-\mu)}{2(2-\mu)} |z|^{2}$$

and

$$|\mathbf{J}_{\lambda,\delta}^k f(z)| \le |z| + \frac{(1-\mu)}{2(2-\mu)} |z|^2$$
.

Also, we have the following distortion results

Theorem 2.9. Let $f(z) \in A$ and and satisfies (4). Then for $m \ge [1+(n-1)\lambda]^k C(\delta,n), z \in U$ and $0 \le \mu < 1$

$$|f(z)| \ge |z| - \frac{m(1-\mu)}{(2-\mu)} |z|^2$$

and

$$|f(z)| \le |z| + \frac{m(1-\mu)}{(2-\mu)} |z|^2$$
.

Proof. By using Theorem 2.1, one can show that

$$(2-\mu)\sum_{n=2}^{\infty} |a_n| \le \sum_{n=2}^{\infty} (n-\mu) |a_n| \le m \sum_{n=2}^{\infty} \frac{(n-\mu) |a_n|}{[1+(n-1)\lambda]^k C(\delta,n)} \le m(1-\mu)$$

then

$$\sum_{n=2}^{\infty} |a_n| \leq \frac{m(1-\mu)}{2-\mu}.$$

Thus we obtain

$$|f(z)| = |z + \sum_{n=2}^{\infty} a_n z^n|$$

$$\leq |z| + \sum_{n=2}^{\infty} |a_n| |z|^2$$

$$\leq |z| + \frac{m(1-\mu)}{2-\mu} |z|^2$$

The other assertion can be proved as follows

$$| f(z) | \ge | z - \sum_{n=2}^{\infty} a_n z^n |$$

$$\ge | z | - \sum_{n=2}^{\infty} | a_n | | z |^2$$

$$\ge | z | - \frac{m(1-\mu)}{2-\mu} | z |^2.$$

This completes the proof.

In the same way we can get the following results.

Theorem 2.10. Let $f(z) \in A$ and and satisfies (5). Then for $z \in U$ and $0 \le \mu < 1$

$$|f(z)| \ge |z| - \frac{m(1-\mu)}{2(2-\mu)} |z|^2$$

and

$$|f(z)| \le |z| + \frac{m(1-\mu)}{2(2-\mu)} |z|^2$$
.

3 Sandwich Result.

By making use of lemmas 1.2 and 1.3, we prove the following subordination and superordination results involving the integral operator (3).

Theorem 3.1. Let $q \neq 0$ be univalent in U such that $\frac{zq'(z)}{q(z)}$ is starlike univalent in U and

$$\Re\{1+(\frac{\alpha}{\gamma}+z)\frac{q''(z)}{q'(z)}-(\frac{\alpha}{\gamma}+z)\frac{q'(z)}{q(z)}\}>0, \alpha, \gamma \in \mathbb{C}, \gamma \neq 0.$$

$$\tag{6}$$

If $f \in A$ satisfies the subordination

$$(\alpha + \gamma z) \left\{ \frac{1}{z} + \frac{\left[\mathbf{J}_{\lambda,\delta}^{k} f(z) \right]''}{\left[\mathbf{J}_{\lambda,\delta}^{k} f(z) \right]'} - \frac{\Phi'[\mathbf{J}_{\lambda,\delta}^{k} f(z)]}{\Phi[\mathbf{J}_{\lambda,\delta}^{k} f(z)]} \right\} \prec (\alpha + \gamma z) \frac{q'(z)}{q(z)},$$

then

$$\frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{\Phi[\mathsf{J}_{\lambda,\delta}^k f(z)]} \prec q(z) \tag{7}$$

and q is the best dominant.

Proof. Our aim is to apply Lemma 1.2. Setting

$$p(z) := \frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{\Phi[\mathsf{J}_{\lambda,\delta}^k f(z)]}.$$

By computation shows that

$$\frac{zp'(z)}{p(z)} = 1 + \frac{z[J_{\lambda}^{k}f(z)]''}{[J_{\lambda\delta}^{k}f(z)]'} - \frac{z\Phi'[J_{\lambda\delta}^{k}f(z)]}{\Phi[J_{\lambda\delta}^{k}f(z)]}$$

which yields the following subordination

$$(\alpha + \gamma z) \frac{p'(z)}{p(z)} \prec (\alpha + \gamma z) \frac{q'(z)}{q(z)}, \alpha, \gamma \in \mathbb{C}.$$

By setting

$$\theta(\omega) := \frac{\alpha \omega'}{\omega}$$
 and $\phi(\omega) := \frac{\gamma}{\omega}, \gamma \neq 0$,

it can be easily observed that $\theta(\omega), \phi(\omega)$ are analytic in $\mathbb{C}\setminus\{0\}$ and that $\phi(\omega) \neq 0$ when $\omega \in \mathbb{C}\setminus\{0\}$. Also, by letting

$$Q(z) = zq'(z)\phi(q(z)) = \gamma z \frac{q'(z)}{q(z)}$$

and

$$h(z) = \theta(q(z)) + Q(z) = \frac{\alpha q'(z)}{q(z)} + \gamma z \frac{q'(z)}{q(z)} = (\alpha + \gamma z) \frac{q'(z)}{q(z)},$$

we find that Q(z) is starlike univalent in U and that

$$\Re\{\frac{zh'(z)}{Q(z)}\} = \Re\{1 + (\frac{\alpha}{\gamma} + z)\frac{q''(z)}{q'(z)} - (\frac{\alpha}{\gamma} + z)\frac{q'(z)}{q(z)}\} > 0, \alpha, \gamma \in \mathbb{C}, \gamma \neq 0.$$

Then the relation (7) follows by an application of Lemma 1.2.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then the subordination

$$1 + \frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]''}{[\mathsf{J}_{\lambda,\delta}^k f(z)]'} - \frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{[\mathsf{J}_{\lambda,\delta}^k f(z)]} \prec \frac{zq'(z)}{q(z)},$$

implies

$$\frac{z[\mathbf{J}_{\lambda,\delta}^k f(z)]'}{[\mathbf{J}_{\lambda,\delta}^k f(z)]} \prec q(z) \tag{8}$$

and q is the best dominant.

Proof. By letting $\alpha = 0, \gamma = 1, \Phi(\omega) := \omega$.

Corollary 3.2. If $f \in A$ and assume that (7) holds then

$$1 + \frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]''}{[\mathsf{J}_{\lambda,\delta}^k f(z)]'} - \frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{[\mathsf{J}_{\lambda,\delta}^k f(z)]} \prec \frac{(A-B)z}{(1+Az)(1+Bz)}$$

implies

$$\frac{z[\mathbf{J}_{\lambda,\delta}^k f(z)]'}{[\mathbf{J}_{\lambda,\delta}^k f(z)]} \prec \frac{1+Az}{1+Bz}, -1 \leq B < A \leq 1$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Proof. By setting $\Phi(\omega) := \omega, \gamma = 1, \alpha = 0$ and $q(z) := \frac{1 + Az}{1 + Bz}$ where $-1 \le B < A \le 1$.

Corollary 3.3. If $f \in A$ and assume that (7) holds then

$$1 + \frac{z[\mathbf{J}_{\lambda,\delta}^{k} f(z)]''}{[\mathbf{J}_{\lambda,\delta}^{k} f(z)]'} - \frac{z[\mathbf{J}_{\lambda,\delta}^{k} f(z)]'}{[\mathbf{J}_{\lambda,\delta}^{k} f(z)]} \prec \frac{2z}{1 - z^{2}}$$

implies

$$\frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{\mathsf{J}_{\lambda,\delta}^k f(z)} \prec \frac{1+z}{1-z},$$

and $\frac{1+z}{1-z}$ is the best dominant.

Proof. By setting $\Phi(\omega) := \omega$, $\alpha = 0, \gamma = 1$, and $q(z) := \frac{1+z}{1-z}$.

Corollary 3.4. If $f \in A$ and assume that (7) holds then

$$1 + \frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]''}{[\mathsf{J}_{\lambda,\delta}^k f(z)]'} - \frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{[\mathsf{J}_{\lambda,\delta}^k f(z)]} \prec Az$$

implies

$$\frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{\mathsf{J}_{\lambda,\delta}^k f(z)} \prec e^{Az},$$

and e^{Az} is the best dominant.

Proof. By setting $\Phi(\omega) := \omega$, $\alpha = 0, \gamma = 1$, and $q(z) := e^{Az}$, $|A| < \pi$.

Theorem 3.2. Let $q(z) \neq 0$ be convex univalent in the unit disk U. Suppose that

$$\Re\{\frac{\alpha}{\gamma}q''(z) - \frac{\alpha}{\gamma}\frac{q'(z)}{q(z)}\} > 0, \alpha, \gamma \in \mathbb{C} \text{ for } z \in U$$
(9)

and $\frac{zq'(z)}{q(z)}$ is starlike univalent in U. If $\frac{z[\mathbf{J}_{\lambda,\delta}^k f(z)]'}{\Phi[\mathbf{J}_{\lambda,\delta}^k f(z)]} \in \mathbf{H}[q(0),1] \cap Q$ where $f \in \mathbf{A}$,

$$(\alpha + \gamma z) \left\{ \frac{1}{z} + \frac{\left[\mathsf{J}_{\lambda,\delta}^{k} f(z) \right]''}{\left[\mathsf{J}_{\lambda,\delta}^{k} f(z) \right]'} - \frac{\Phi'[\mathsf{J}_{\lambda,\delta}^{k} f(z)]}{\Phi[\mathsf{J}_{\lambda,\delta}^{k} f(z)]} \right\}$$

is univalent is U and the subordination

$$(\alpha + \gamma z) \frac{q'(z)}{q(z)} \prec (\alpha + \gamma z) \left\{ \frac{1}{z} + \frac{\left[\mathbf{J}_{\lambda,\delta}^{k} f(z) \right]''}{\left[\mathbf{J}_{\lambda,\delta}^{k} f(z) \right]'} - \frac{\Phi'[\mathbf{J}_{\lambda,\delta}^{k} f(z)]}{\Phi[\mathbf{J}_{\lambda,\delta}^{k} f(z)]} \right\},\,$$

holds, then

$$q(z) \prec \frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{\Phi[\mathsf{J}_{\lambda,\delta}^k f(z)]} \tag{10}$$

and q is the best subordinant.

Proof. Our aim is to apply Lemma 1.3. Setting

$$p(z) := \frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{\Phi[\mathsf{J}_{\lambda,\delta}^k f(z)]}.$$

By computation shows that

$$\frac{zp'(z)}{p(z)} = 1 + \frac{z[\mathbf{J}_{\lambda,\delta}^k f(z)]''}{[\mathbf{J}_{\lambda,\delta}^k f(z)]'} - \frac{z\Phi'[\mathbf{J}_{\lambda,\delta}^k f(z)]}{\Phi[\mathbf{J}_{\lambda,\delta}^k f(z)]}$$

which yields the following subordination

$$(\alpha + \gamma z) \frac{q'(z)}{q(z)} \prec (\alpha + \gamma z) \frac{p'(z)}{p(z)}, \alpha, \gamma \in \mathbb{C}.$$

By setting

$$\mathcal{G}(\omega) := \frac{\alpha \omega'}{\omega} \text{ and } \varphi(\omega) := \frac{\gamma}{\omega}, \gamma \neq 0,$$

it can be easily observed that $\mathcal{G}(\omega), \varphi(\omega)$ are analytic in $\mathbb{C}\setminus\{0\}$ and that $\varphi(\omega) \neq 0$ when $\omega \in \mathbb{C}\setminus\{0\}$. Also, we obtain

$$\Re\left\{\frac{\mathcal{G}'(q(z))}{\varphi(q(z))}\right\} = \Re\left\{\frac{\alpha}{\gamma}q''(z) - \frac{\alpha}{\gamma}\frac{q'(z)}{q(z)}\right\} > 0.$$

Then (10) follows by an application of Lemma 1.3.

Combining Theorems 3.1 and 3.2 in order to get the following Sandwich theorems

Theorem 3.3 Let $q_1(z) \neq 0, q_2(z) \neq 0$ be convex univalent in the unit disk U satisfy (9) and (6) respectively. Suppose that and $\frac{zq_i'(z)}{q_i(z)}, i=1,2$ is starlike univalent in U. If $f \in A$ and

$$\frac{z[\mathsf{J}_{\lambda,\delta}^k f(z)]'}{\Phi[\mathsf{J}_{\lambda,\delta}^k f(z)]} \in \mathsf{H}[q_1(0),1] \cap Q$$

$$(\alpha + \gamma z) \left\{ \frac{1}{z} + \frac{\left[\mathbf{J}_{\lambda,\delta}^{k} f(z) \right]''}{\left[\mathbf{J}_{\lambda,\delta}^{k} f(z) \right]'} - \frac{\Phi'[\mathbf{J}_{\lambda,\delta}^{k} f(z)]}{\Phi[\mathbf{J}_{\lambda,\delta}^{k} f(z)]} \right\}$$

is univalent in U and the subordination

$$(\alpha + \gamma z) \frac{q_1'(z)}{q_1(z)} \prec (\alpha + \gamma z) \left\{ \frac{1}{z} + \frac{\left[J_{\lambda,\delta}^k f(z) \right]''}{\left[J_{\lambda,\delta}^k f(z) \right]'} - \frac{\Phi' \left[J_{\lambda,\delta}^k f(z) \right]}{\Phi \left[J_{\lambda,\delta}^k f(z) \right]} \right\} \prec (\alpha + \gamma z) \frac{q_2'(z)}{q_2(z)}$$

holds, then

$$q_1(z) \prec \frac{z[\mathbf{J}_{\lambda,\delta}^k f(z)]'}{\Phi[\mathbf{J}_{\lambda,\delta}^k f(z)]} \prec q_2(z)$$

and $q_1(z)$ is the best subordinant and $q_2(z)$ is the best dominant.

Acknowledgement

The work here was supported by UKM-ST-06-FRGS0107-2009, MOHE Malaysia. The authors also would like to thank the anonymous referee for the informative and creative comments given to the article.

References

- [1] Al-Shaqsi, K. & Darus, M., Differential subordination with generalized derivative operator. (to appear in AJMMS)
- [2] Darus, M. & Ibrahim, R., *Generalization of differential operator*, Journal of Mathematics and Statistics **4**(3), pp. 138-144, 2008.
- [3] Sā lā gean, G.S., Subclasses of univalent functions, Lecture Notes in Math., 1013, Springer-Verlag, Berlin, pp. 362-372, 1983.
- [4] Ruscheweyh, S., *New criteria for univalent functions*, Proc. Amer. Math. Soc., **49**, 109-115, 1975.
- [5] Al-Oboudi, F.M., On univalent functions defined by a generalized Să lă gean operator, I.J.M.M.S, 27, pp. 1429-1436, 2004.
- [6] Al-Shaqsi, Darus, M., An operator defined by convolusion involving polylogarthms functions, Journal of Mathematics and Statistics, **4**(1), pp. 46-50, 2008.

- [7] Noor, K.I., *On new classes of integral operators*, J.Nat.Geomet. **16**, pp. 71-80, 1999.
- [8] Noor, K.I. & Noor, M.A., *On integral operators*, J. of Math. Analy. and Appl. **238**, pp. 341-352, 1999.
- [9] Brickman, L., Φ *like analytic functions*, I.Bull. Amer. Math. Soc. **79**, pp. 555-558, 1973.
- [10] Bulboaca, T., Classes of first-order differential superordinations, Demonstr.Math. **35**(2), pp. 287-292, 2002.
- [11] Miller, S.S. & Mocanu, P.T., Subordinants of differential superordinations, Complex Variables, **48**(10), pp.815-826, 2003.
- [12] Miller, S.S. & Mocanu, P.T., *Differential Subordinantions: Theory and Applications*. Pure and Applied Mathematics, **225**, Dekker, New York, 2000.