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Abstract. In this paper we will determine Auslander Reiten quiver of Nakayama 

algebra with quiver type Dynkin graph An for all natural number n ≥ 2. The AR-

quiver is a visualization of module category of finite dimensional algebras. From 

the AR-quiver of an algebra A we may know all the isomorphism classes of 

indecomposable modules in mod A and the homomorphism between them. Once 

we get the general shape of the AR-quiver of this algebra, we will use it to 

compute a tilting module of this algebra. 
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1 Introduction 

Representation theory of finite dimensional algebras provides a way to describe 

an algebra and a module over an algebra using directed graph or quiver. Not 

only for the algebra and module, the module category of an algebra can also be 

represented by quiver. The way to do this is by using the theory of almost split 

sequences and irreducible morphisms. These were introduced by Auslander 

[1,2] and Auslander and Reiten [3]. Quiver representation of this module 

category called Auslander-Reiten quiver or simply AR-quiver. In this paper we 

will determine the AR-quiver of Nakayama algebra with quiver of type An for 

any natural number n ≥ 2.  The method for this construction has been explained 

in [3]. In this paper we provide an explicit technique which uses almost split 

sequences of Nakayama algebra given in [4], [3], and also uses the relationship 

between Nakayama algebra of type An-1 with type An to give the construction by 

induction. 

Tilting theory is one of essential tools in the representation theory of algebra. 

Tilting theory firstly appeared in the study of reflection functors ([5-7]). Tilting 

theory is a method for constructing a new algebra B from original algebra A 

such that the module categories are “close” to each other. The method is to 

construct an A-module T, called a tilting module and set a new algebra B = End 

TA. In this paper, as an application of the main theorem, we will construct a 
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tilting module of Nakayama algebra with quiver type Dynkin graph An for all 

natural number n ≥ 2.  

2 Auslander Reiten Quiver 

Throughout this paper, algebras are basic and connected finite dimensional 

algebras over a fixed algebraically closed field K. For an algebra A, we denote 

by mod A the category of finitely generated right A-modules. An algebra A is 

said to be representation finite if the number of the isomorphism classes of 

indecomposable right A-module is finite. A K-algebra A is called representation-

infinite if A is not representation-finite. An A-homomorphism module is a 

section (or a retraction) whenever it admits a left inverse (or a right inverse, 

respectively). 

To construct the AR-quiver of an algebra we need some tools. These tools are 

the notion of almost split sequences and irreducible morphisms. Before we 

introduce this theory we give some definitions and theorems from [4] and [2]. 

Definition 1. Let L, M  be modules in mod A. An A-module homomorphism  

f : L → M is called left minimal almost split if  

(a)  every hEnd M such that hf = f  is an automorphism,  

(b) f  is not section,  

(c) for every A-homomorphism u: L → U that is not section there exists         

u’: L → U such that u’f = u. 

A right minimal almost split homomorphism is defined dually. 

Definition 2. A homomorphism f : X → Y in mod A is said to be irreducible if  

(a)  f  is neither a section  nor  a retraction and  

(b)  if f=f1f2, either f1 is a retraction or f2 is a section.  

We may think an irreducible morphism as a component of a right (left) minimal 

almost split by the following theorem.  

Theorem 1. (a) Let f :L → M be left minimal almost split in mod A. Then f  is 

irreducible. Moreover, a homomorphism f':L→M'of A-modules is irreducible if 

and only if M' ≠ 0 and there exists a direct sum decomposition M M'M'' and 

a homomorphism f'': L→M'' such that 
'

''

f

f

 
  

: L → M'M'' is left minimal 

almost split. (b) Let g: M → N be right minimal almost split. Then g is 

irreducible. Moreover, a homomorphism g': M'→ N of A-modules is irreducible 
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if and only if M'≠0 and there exists decomposition M  M'M'' and a 

homomorphism g'': M''→ N such that [g'g'']: M'M''→ N is right minimal 

almost split. 

Proof. See [2, section IV.1]. 

Theorem 2. (a) Let S be a simple projective noninjective module in mod A. If   

f: S → M, then M is projective. (b) Let S be a simple injective nonprojective 

module in mod A. If g: M → S is irreducible, then M is injective.  

Proof. See [2, section IV.3]. 

Let X and Y  be modules in mod A, define rad A(X, Y) = {hHom(X, Y) :1X - gh 

is invertible for any gHom(Y, X)}.  

We define rad
2

A
(X, Y) to consist of all A-module homomorphism of the form gf, 

where f radA(X, Z) and gradA(Z, Y).  

Definition 3. A short exact sequence in mod A 

 0 → 𝐿
𝑓
→ 𝑀

𝑔
→ 𝑁 → 0 (1) 

is called an almost split sequence if f  is left minimal almost split.  

We have several equivalent characterization of almost split sequences.  

Theorem 3. Let  0 → 𝐿
𝑓
→ 𝑀

𝑔
→ 𝑁 → 0 be a short exact sequence in mod A. The 

following assertions are equivalent:  

(a)  The given sequence is almost split.  

(b)  f is left minimal almost split.  

(c)  g is right minimal almost split  

(d)  L and N are indecomposable, and f and g are irreducible.  

 
Proof. See [2, section IV.1].                                                                                                                                                                                                                                        

The following propositions are used to get the right (left) minimal almost split 

ending (or starting) at an indecomposable projective (or injective, respectively) 

module.  

Proposition 1.  (a) Let P be an indecomposable projective module in mod A. 

An A-module homomorphism g: M → P is right minimal almost split if and 

only if g is a monomorphism with image equal to rad P. (b) Let I be an 
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indecomposable injective module in mod A. An A-module homomorphism f :I 

→ M is left minimal almost split if and only if f is an epimorphism with kernel 

equal to soc I.  

Proof. See [2, section IV.3]. 

Let M and N be indecomposable modules in mod A, then radA(M, N) is the K-

vector space of all noninvertible homomorphism from M to N. Denote Irr(M, N) 

= radA(M,N) / rad
2

A
(M, N), that is the quotient of the K-vector spaces radA(M, N) 

and rad
2

A
(M, N).  

Definition 4. Let A be a basic and connected finite dimensional K-algebra. The 

Auslander Reiten-quiver Γ(mod A) of mod A is defined as follows:  

(a)  The points of Γ(mod A) are the isomorphism classes [X] of indecomposable 

modules X in mod A.  

(b)  Let [M], [N] be the points in Γ(mod A) corresponding to the 

indecomposable modules M, N in mod A. The arrows [M] → [N] are in 

bijective correspondence with the vectors of a basis of the K-vector space 

Irr (M, N).  

 

One of properties of the AR-quiver of representation finite algebra is given by 

the following proposition.  

Proposition 2. Let A be a representation-finite algebra. Then Γ(mod A) has no 

multiple arrows. 

Proof. See [2, section IV.4]. 

Now we recall a module which can be thought of as being close to the Morita 

progenerator. 
 

Definition 5. A module T in mod A is called a tilting module if the following 

three conditions are satisfied: 

(T1) the projective dimension of T is at most one, 

(T2)  Ext
1

A (T,T) = 0, 

(T3)  there exists a short exact sequence 0 → AA→ T'A → T''A → 0 with  T', T''

add T. 

Note that any Morita progenerator is a tilting module and any projective A-

module always satisfy both (T1) and (T2). It is easy to see that every tilting 

module is faithful.   
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3 The Construction of Nakayama algebra type Dynkin Graph 

An 

Now we will describe the AR-quiver of a Nakayama algebra A with a quiver of 

type An. An algebra A is called Nakayama algebra if it is both right serial and 

left serial. For a basic and connected algebra there are only two types of 

Nakayama algebra.  

Theorem 4. A basic and connected algebra A is a Nakayama algebra if and only 

if its quiver representation QA is one of the following two quivers:  

(a)  

(b)  

 

 

 

 
 
 
 
  
(with n ≥ 1 points). 

 
Proof. See [2, section V.3]. 

The first Nakayama algebra will be called the Nakayama algebra type Dynkin 

graph An. The following theorem and corollary are some properties of 

Nakayama algebras. 

Theorem 5. Let A be a basic and connected Nakayama algebra, and let M be an 

indecomposable A-module. There exists an indecomposable projective A-

module P and an integer t with 1 ≤ t ≤ℓℓ(P) where ℓℓ(P) is the Loewy length of 

P, such that M P/rad
t
P. In particular, A is representation finite.  

Proof. See [2, section V.3]. 

Corollary 1. A basic and connected algebra A is a Nakayama algebra if and 

only if every indecomposable A-module is uniserial.  
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Proof. See [2, section V.3].                                                                                         

Before constructing the AR-quiver, we will need the following result. Let Q be 

the quiver  

 
and Q' be the quiver  

 
 
Write Q0={1,2,...,n}, Q'={1,2,..., n+1}, Q1={αi: i + 1 → i | iQ0\{n}} and 

Q'1=Q1 {αn: n + 1 → n}. Set A = KQ and A’ = KQ’. 

Lemma 1. Let 𝑀 = (𝑀𝑖 , 𝜑𝛼)𝑖∈𝑄0 ,𝛼∈𝑄1
 be a module in mod A. Define 𝑀 =

(𝑀′𝑗 , 𝜑′𝛼)𝑗∈𝑄′0 ,𝛼∈𝑄′1
where M'j= Mj if jQ0, M'n+1 = 0, φ'α=φα if 𝛼 ∈ 𝑄1 and 

0 = 𝜑𝛼𝑛
′ :𝑀𝑛+1

′ → 𝑀𝑛
′ . The A-module M is indecomposable if and only if the 

A’-module M’ is indecomposable.  

Proof. (⇒) Assume that M is indecomposable. Suppose that M' is 

decomposable, then 𝑀′ = 𝑈′ ⊕ 𝑉 ′ =  𝑈′
𝑗 ⊕ 𝑉 ′

𝑗 ,  
𝜙′

𝛼 0

0 𝜏′
𝛼
  

𝑗∈𝑄′0 ,𝛼∈𝑄′1

. If  

𝑈′ =  𝑈′
𝑗 , 𝜙′

𝛼 𝑗∈𝑄′
0 ,𝛼∈𝑄′

1

 and 𝑉′ =  𝑉 ′
𝑗 , 𝜙′

𝛼 𝑗∈𝑄′
0 ,𝛼∈𝑄′

1

 then U'n+1=0=V'n+1. 

Set 𝑈 =  𝑈𝑖 , 𝜙𝛼 𝑖∈𝑄0 ,𝛼∈𝑄1
  and 𝑉 =  𝑉𝑖 , 𝜏𝛼 𝑖∈𝑄0 ,𝛼∈𝑄1

where Ui=U'i, Vi=V'i and 

𝜙𝛼 = 𝜙′𝛼 , τα = τ'α. By definition, we have M = K L. This contradiction shows 

that M' is indecomposable.  

(⇐) Assume that M' is indecomposable. Suppose that M is decomposable.We 

have 𝑀 = 𝑈 ⊕ 𝑉 =  𝑈𝑖 ⊕ 𝑉𝑖 ,  
𝜙𝛼 0
0 𝜏𝛼

  
𝑖∈𝑄0 ,𝛼∈𝑄1

 with U and V are nonzero 

submodules of M. By definition, M' = U' V' where 𝑈′ =  𝑈′𝑗 , 𝜙′𝛼 𝑗∈𝑄′0 ,𝛼∈𝑄′1
  

and 𝑉′ =  𝑉′𝑗 , 𝜏′𝛼 
𝑗∈𝑄′0 ,𝛼∈𝑄′1

 with Uj=U'j, Vj=V'j if jQ0, U'n+1 = 0 = V'n+1 and 

𝜙′𝛼 = 𝜙𝛼 , τ'α= τα if αQ1, 𝜙′𝛼𝑛
= 0, 𝜏′𝛼𝑛

= 0. This contradict that M' is 

indecomposable.    

Lemma 2. Let M and M' be the modules in Lemma 1. The A-module M is 

simple if and only if the A'-module M' is simple. 
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Proof.  Note that any simple both A-module and A'-module are 1-dimensional. 

It follows from the total dimension of K-vector space in linear representation of 

M and M', we have dimK(M) =1 if and only if dimK(M') =1.          

Both Lemma 1 and Lemma 2 above say that there exists an inclusion between 

the collection of isomorphism classes of indecomposable (or simple) A-module 

and the collection of isomorphism classes of indecomposable (or simple) A'-

module.  

Lemma 3. Let 𝑀 = (𝑀𝑖 , 𝜑𝛼)𝑖∈𝑄0 ,𝛼∈𝑄1
, 𝑁 = (𝑁𝑖 , 𝜏𝛼)𝑖∈𝑄0 ,𝛼∈𝑄1

 be modules in  

mod A and let M', N' be modules defined in the same way like in Lemma 1. Let 

𝑓 =  𝑓𝑖 𝑖∈𝑄0
: 𝑀 →  𝑁 and 𝑓′ =  𝑓 ′

𝑗 𝑗∈𝑄′
0

: 𝑀′ →  𝑁′ where f 'j = fj if jQ0 

and f 'n+1 = 0: M'n+1 → N'n+1. If f is an irreducible morphism then so is f '.  

Proof. It is clear that 𝑓′ =  𝑓 ′
𝑗 𝑗∈𝑄′

0

 is a morphism: indeed 𝑓𝑘
′𝜑𝛼𝑘

′ = 𝜏𝛼𝑘
′ 𝑓𝑘+1

′   

for every kQ0. We claim that f has no both right inverse and left inverse. 

Suppose that f ' has a right inverse 𝑔′ =  𝑔𝑖 𝑖∈𝑄0
′ . It means that 𝑓𝑖

′𝑔𝑖 = 1𝑁𝑖
′  for 

every i{1, 2,…,n + 1}. Consequently, if iQ0 then 𝑓𝑖𝑔𝑖 = 𝑓𝑖
′𝑔𝑖 = 1𝑁𝑖

′ = 1𝑁𝑖
. 

Define 𝑔 =  𝑔𝑖 𝑖∈𝑄0
, then g is a morphism in mod A, moreover fg= 1N, contrary 

to our assumption. So f has no right inverse. In a similar way, we conclude that f 

has no left inverse also, claim proved.  

Now, let f '=h' g' and assume that h' is not a retraction. If h'= (h1, h2,…,hn, hn+1) 

and g'= ( g1, g2,…,gn, gn+1) then hn+1 = 0 and gn+1=0. We get f = hg where h= (h1, 

h2,…, hn) and g’ = ( g1, g2,…,gn). Because h' is not a retraction, then h is not a 

retraction. This means that g is a section because f is irreducible. Hence, g' is a 

section. This proves that f  is irreducible. 

Now let 2 ≤  𝑛 ∈ ℕ and A be a Nakayama algebra of type An. To start to build 

the AR-quiver of A we first list all isomorphism classes of indecomposable 

projective A-module, indecomposable injective and simple. Each of modules 

will be considered as linear representation and the vertices were replaced by the 

dimension of its vector space. All indecomposable projective modules of A are:   

𝑃 1 = 100 … 00       
𝑛

 

P(2) = 110 …00 

P(3) = 111 …00 
⋮ 
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𝑃 𝑖 = 11 … 1   
𝑖

0 … 00 

⋮ 
P(n - 1) = 111 …10 

P(n) = 111 … 11 

All indecomposable injective modules of A are:  

𝐼 1 = 111 … 11       
𝑛

 

I(2) = 011 …11 

I(3) = 001 …11 
⋮ 

𝐼 𝑖 = 00 … 0   
𝑖−1

1 … 11 

⋮ 
I(n - 1) = 000 …011 

I(n)=000 …01 

and all simple modules are:  

𝑆 1 = 100 … 00       
𝑛

 

S(2) = 010 …00 

S(3)=001 …00 
⋮ 

𝑆 𝑖 = 000 … 0 1 
𝑖−𝑡𝑕 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  

0 … 00 

⋮ 
S(n – 1) = 000 …10 

S(n) = 000 …01 
 

We have P(1) = S(1), P(n) = I(1), I(n) = S(n). Further, 𝐼 𝑘 =
𝑃(𝑛)

𝑃(𝑘−1)
  for every 

k{1,2,..., n} with P(0) = 0. It easy to check that rad P(k) = P(k-1) for every k
{1,2,..., n}. In other words rad

t
P(n) = P(n - t), with t ≤ n. By Proposition 1, 

the inclusion  ij: P(j - 1) = rad P(j) → P(j) is a right minimal almost split for 

every j{2,3,...,n} and the canonical homomorphism 𝑝𝑘 : 𝐼 𝑘 →  𝐼 𝑘 + 1 =
𝐼(𝑘)

soc  𝐼(𝑘)
 is a left minimal almost split for every k{1, 2,…, n - 1}.  

Lemma 4.  (a) The sequence 0 →  𝑃 (1)
𝑖
→  𝑃 (2)  

𝑝
→ 𝑆(2)  →  0 is almost split, 

where i is the inclusion and p is the canonical homomorphism with kernel equal 



 AR-Quiver of Nakayama Algebra type Dynkin Graph An 9 
 

to P(1).(b) The sequence 0 →  𝑆(𝑛 −  1)  
𝑖′
→ 𝐼(𝑛 −  1)  

𝑝′
→ 𝑆(𝑛)  →  0 is almost 

split, where i' is the inclusion and p' is the canonical homomorphism with kernel 

equal to S(n - 1).  

Proof. (a) It is clear that the sequence in (a) is exact. Because P(2) = rad P(1), 

then i : P(1) → P(2) is a right minimal almost split (by Proposition 1(a)). We 

know that P(1) is indecomposable, using Theorem 1(b), the inclusion i is the 

only irreducible morphism ending with P(2). Let h :P(1) → M be a left minimal 

almost split. Because P(1) is a simple projective noninjective module in mod A, 

then by Theorem 2, M is a projective module. Without loss of generality, by 

Proposition 2 we may assume that 𝑀 =

𝑡
⊕

𝑗 = 1
𝑃 (𝑗) with the P(j) indecomposa-

ble projective and pairwise nonisomorphic. This means that hj:P(1) → P(j) is 

irreducible and consequently j = 1 and M = P(j). We have a right minimal 

almost split g: rad P(j) → P(j). This means that P(1) is a direct summand of rad 

P(j). But rad P(j) = P(j-1) is indecomposable, it follows that M = P(2). Thus, h 

= i:P(1) → P(2) is a left minimal almost split. By Theorem 3(b), the given 

sequence is almost split, we have proved part (a). 

(b) It is clear that the sequence in (b) is exact. We know that the canonical 

homomorphism s: I(n-1) → S(n) = I(n) is left minimal almost split. Since S(n) is 

indecomposable, using Theorem 1(a), the inclusion i’ is the only irreducible 

morphism starting with I( n - 1). Let f: M → I(n) be right minimal almost split. 

Since S(n) = I(n) is a simple injective nonprojective, by Theorem 2, M is 

injective. Without loss of generality, by Proposition 2 we may assume that 

𝑀 =

𝑡
⊕

𝑗 = 1
𝐼 (𝑗) with the I(j) indecomposable injective and pairwise 

nonisomorphic. Thus, fj: I(j) → I(n) is irreducible and implies t ≤ n - 1. We have 

a left minimal almost split 𝐼(𝑗)  →  𝐼(𝑗 +  1)  =
𝐼(𝑗 )

soc  𝐼(𝑗 )
  This means that I(n) is 

direct summand of I(j+1). Since I(j+1) is indecomposable, then M = I(n). 

Hence, f = p: I(n-1) → I(n) is a right minimal almost split. It follows from 

Theorem 3(c) this sequence is almost split.  

Lemma 5. Let 2 ≤  𝑛 ∈ ℕ and A=KQ where Q is a quiver of Dynkin type An. 

Then for every j{1,2,…,n-1}, the sequence 0 →  𝑆 𝑗 
𝑖
→ 𝑉𝑗 ,𝑗+1

𝑝
→  𝑆(𝑗 +

1)  →  0 is almost split where 𝑉𝑗 ,𝑗+1 =  00 . . . 0 11 
𝑗 ,𝑗+1

 0 . . . 00.   
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Proof. We proceed by induction on n. Let n = 2, 3, it follows from Lemma 4 

that this sequence is almost split. Now assume that n > 4, if j = 1 and j = n-1 

then the proof follows from Lemma 4. If j{2,…,n - 2}, it is clear the sequence 

0 →  𝑆 𝑗 
𝑖
→ 𝑉𝑗 ,𝑗+1

𝑝
→  𝑆(𝑗 + 1)  →  0 is exact. By hypothesis the sequence 

0 →  𝑆 𝑗 
𝑖
→ 𝑉𝑗 ,𝑗+1

𝑝
→  𝑆(𝑗 + 1) →  0 in mod B = KQ' with Q' is quiver type An-1 

is almost split. In other words, i and p are irreducible morphism in mod B. Now 

consider the exact sequence 0 →  𝑆′ 𝑗 
𝑖′
→ 𝑉 ′

𝑗 ,𝑗+1

𝑝′
→  𝑆′(𝑗 + 1)  →  0  in mod A. 

By Lemma 3, i' and p' are irreducible morphisms in mod A. It follows from 

Theorem 3 (d) that the sequence 0 →  𝑆′ 𝑗 
𝑖′
→ 𝑉 ′

𝑗 ,𝑗+1

𝑝′
→  𝑆′(𝑗 + 1)  →  0 is 

almost split, the lemma is proved.  

Proposition 3. Let P be a nonsimple indecomposable projective-injective 

module, S = soc P and R = rad P. Then the sequence 

 0 →  𝑅
 
𝑞
𝑖
 

  
𝑅

𝑆
⊕ 𝑃

 −𝑗 𝑝 
      𝑃/𝑆 → 0 (2)                 

is almost split, where i, j are the inclusion and p, q the projections. 

Proof. See [2, section IV.3]. 

Corollary 2. The sequence  

 0 →  𝑃(𝑛 − 1)
 
𝑞
𝑖
 

  
𝑃 𝑛−1 

𝑃 1 
⊕ 𝑃(𝑛)

 −𝑗 𝑝 
      𝑃(𝑛)/𝑃(1) → 0 (3) 

is almost split in mod A. 

 

Proof. Apply Proposition 3.   

 

Lemma 6. The sequence 

 0 →  
𝑃(𝑛−1)

𝑃(𝑘)

 
𝑞
𝑖
 

  
𝑃 𝑛−1 

𝑃 𝑘+1 
⊕ 

𝑃 𝑛 

𝑃 𝑘 

 −𝑗 𝑝 
      𝑃(𝑛)/𝑃(𝑘 + 1) → 0 (4) 

is almost split in mod A, where k{1,2,..., n - 3}. 

Proof. It is clear that the above sequence is exact. Because  
𝑃(𝑛−1)

𝑃(𝑘)
,
𝑃 𝑛−1 

𝑃 𝑘+1 
,
𝑃 𝑛 

𝑃 𝑘 
, 

P(n)/P(k+1) are indecomposable and pairwise nonisomorphic, this sequence is 

not split. Using Theorem 3, it suffices to show that the homomorphism g = [-jp] 

is right almost split. Clearly g is not a retraction. Let V be an indecomposable A-

module, 𝑀 =
𝑃(𝑛)

𝑃(𝑘+1)
 and v : V → M is not an isomorphism. We have two cases. 
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If v is not surjective, then Im(v) is contained in the unique maximal submodule 

(because M is uniserial) rad M of M. We compute rad M by its linear 

representation, then we have rad 𝑀 =
𝑃(𝑛−1)

𝑃(𝑘+1)
 . Hence, we get a homomorphism 

 
−𝑣
0

 : 𝑉 →
𝑃(𝑛−1)

𝑃(𝑘+1)
⊕

𝑃(𝑛)

𝑃(𝑘)
 that satisfies 𝑔  

−𝑣
0

 =  𝑣. If v is surjective, then 

𝑉

Ker  𝑉
≅ 𝑀 =

𝑃(𝑛)

𝑃(𝑘+1)
. Since 

𝑉

Ker  𝑉
 is uniserial and v is not an isomorphism, Ker v 

= rad
s
V with s ≥ 1 and and dimK(V) >n - (k + 1). Since V is indecomposable, by 

Theorem 5 we get 𝑉 ≅ 𝑀 =
𝑃(𝑚)

ra d𝑟𝑃(𝑚)
=

𝑃(𝑚)

𝑃(𝑚−𝑟)
 with 1 ≤ m ≤ n and  1 ≤ r ≤ m, 

thus r= dimK(V) >n - (k + 1). We have rads𝑉 = rads  
𝑃(𝑚)

𝑃(𝑚−𝑟)
 =

ra d𝑠𝑃(𝑚)

𝑃(𝑚−𝑟)
=

𝑃(𝑚−𝑠)

𝑃(𝑚−𝑟)
. Consequently, 

𝑉

Ker  𝑉
=

𝑃(𝑚)/𝑃(𝑚−𝑟)

𝑃(𝑚−𝑠)/𝑃(𝑚−𝑟)
. Using its linear representation we 

get m =n: indeed  
𝑉

Ker  𝑉
 is indecomposable injective. Hence, 𝑉 =

𝑃(𝑛)

𝑃(𝑛−𝑟)
 with n - 

r<k + 1. Thus, there exists an epimorphism 𝑣 ′ : 𝑉 →
𝑃(𝑛)

𝑃(𝑟)
 such that v = pv’. 

Define a homomorphism  
0
𝑣′

 : 𝑉 →
𝑃(𝑛−1)

𝑃(𝑘+1)
⊕

𝑃(𝑛)

𝑃(𝑘)
, then 𝑔.  

0
𝑣′

 = 𝑣. Assume 

now that  f: N → M is not a retraction and let N =  
𝑡
⊕

𝑘 = 1
𝑁(𝑘), then for every k, 

𝑁𝑘 ≇ 𝑀. As we have seen before there exists 𝑕𝑘 ∶ 𝑁𝑘 →
𝑃(𝑛−1)

𝑃(𝑘+1)
⊕

𝑃(𝑛)

𝑃(𝑘)
 such that 

g[h1h2 … ht]=[f1f2 … ft]  where fi: Ni → M is a component of f. We conclude that 

g is right almost split and thus the given sequence is almost split.    

In the process of proving the main result we need one fact about the AR-quiver 

with connected components.  

Theorem 6. Assume that A is a basic and connected finite dimensional K-

algebra. If Γ(mod A) admits a connected component C whose modules are of 

bounded length, then C is finite and C=Γ(mod A). In particular, A is 

representation finite. 

Proof.  See [2, section IV.5]. 

Now we give the main results in this paper  

Theorem 7. Let Q be a quiver of type An with 𝑛 ∈  ℕ and n ≥ 2. Let A = KQ, 

then Γ(mod A) is the quiver  
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Proof. We proceed by induction on n. For n=2, 3 it is easy to check that its AR-

quiver satisfy the given picture. Before we continue our induction process, we 

need the following useful fact: every subquiver of Γ(mod A) of the form 

smallest diamond with 4 arrows, its vertices form an almost split sequence. 

Precisely, if we take a subquiver of Γ(mod A) of the form 

 
with f: M → X, g: M → Y, k: X→ N,  l: Y → N are irreducible morphism then 

the sequence   

 0 →  𝑀
𝑠= 

𝑓
𝑔
 

    𝑋 ⊕ 𝑌
𝑡= −𝑘 𝑙 
       𝑁 → 0 (5) 

is almost split. It can be checked that f, l are projection and g, k are inclusion. 

Note that this fact holds for n = 2, 3. Now assume that the statement is true for 

n-1 and denote A'=KQ' with Q' quiver of Nakayama algebra type An-1. It follows 

that its AR-quiver is 
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and for every smallest diamond form an almost split sequence as we say before. 

By Lemma 1 we get some isomorphism classes of indecomposable A-module 

such that the number of its is the same as the number of vertices of Γ(mod A’). 

By the induction hypothesis and Lemma 3, we get a subquiver of Γ(mod A): 

 

We claim that for every subquiver of the form smallest diamond in this quiver 

form an almost split sequence. We have the sequence 

 0 →  𝑀
𝑠= 

𝑓
𝑔
 

    𝑋 ⊕ 𝑌
𝑡= −𝑘 𝑙 
       𝑁 → 0       (6) 

by taking the smallest diamond subquiver Γ(mod A'). Let M', N', X', Y' be A-

modules defined as same as modules in Lemma 1. Thus, we have an exact 

sequence  
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 0 →  𝑀′

𝑠′ = 
𝑓 ′

𝑔′  

     𝑋′ ⊕ 𝑌′
𝑡 ′ = −𝑘 ′ 𝑙 ′  
         𝑁′ → 0 (7) 

where f', l' are projection and g', k' are inclusion. Because s, t are irreducible 

morphisms, then by Lemma 3 we have that s', t' are irreducible morphisms in 

mod A. It follows from Theorem 3 the latter exact sequence is almost split, and 

our claim proved. By Corollary 2, Lemma 5 and Lemma 6 we get a connected 

component of Γ(mod A) :  

 
 

It follows from Theorem 5 the connected component is same as with the Γ(mod 

A). This completes the proof. 

Corollary 3. Let A be a Nakayama algebra with quiver type An. The number of 

the isomorphism classes of indecomposable A-module is  
1

2
𝑛(𝑛 + 1). 

Proof. We proceed by induction on n. For n=2, 3 we can directly compute from 

its quiver and we get both the number of the isomorphism classes of 

indecomposable modules are 3 and 6 respectively. Now assume that for quiver 

type An-1 the number of the isomorphism classes of indecomposable modules is 
1

2
(𝑛 − 1)𝑛. We have seen that in the proof of our main theorem, Γ(mod A) has 

a subquiver which isomorphic to AR-quiver of Nakayama algebra type An-1. 

Further, all indecomposable modules in this subquiver are noninjective. This 

means, the number of the isomorphism classes indecomposable noninjective of 

A-module is 
1

2
(𝑛 − 1)𝑛. But, we know that A has n isomorphism classes of 

indecomposable injective A-modules. Hence, the number of the isomorphism 

classes of indecomposable A-modules is 
1

2
 𝑛 − 1 𝑛 + 𝑛 =  

1

2
 𝑛 − 1 + 1 𝑛 =
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1

2
𝑛(𝑛 + 1).               

 

AR-quiver has an important role in studying the category of modules. It stores 

the information of indecomposable modules, homomorfisms between indecom-

posable modules and almost split sequences. Now by using AR-quiver 

constructed above we may give a tilting module of algebra A=KQ with Q is 

quiver of type An. Let T=I(1) P(1) I(3) I(4)… I(n), we claim that T is 

a tilting module. Because A is hereditary we have gl. dim A = 1. So projective 

dimension of T is at most 1. Since T is not projective the projective dimension is 

equal 1. Let M = I(3)  ...  I(n). Because I(1) P(1) is projective, whereas 

I(1) I(3)  ...  I(n) is injective, we have 

Ext
1

A
(T, T)  Ext

1

A
(M, P(1)) DHomA(P(1), τ(M)) 

        DHomA(P(1), τ(I(3)) ...  τ(I(n))) 

                      ≅ 𝐷HomA  P 1 ,
P n − 1 

P 1 
⊕ …⊕

P n − 1 

P n − 2 
  

       ≅ 𝐷HomA  P 1 ,
P n−1 

P 1 
 ⊕ …⊕ 𝐷HomA  P 1 ,

P n−1 

P n−2 
 = 0.  (8) 

Note that, we have τ I j  =
𝑃 𝑛−1 

𝑗−2
, by looking its AR-quiver. Indeed, in [1] 

we know that for any indecomposable nonprojective A-module M, there exists 

an almost split sequence 0 → τ(M) → E → M → 0. This almost split sequence 

appears in AR-quiver in the form of a smallest diamond. To show T satisfy (T3) 

it suffices to prove that for any indecomposable projective A-module P, there 

exists a short exact sequence 

 0 → PA → T'A → T''A → 0. (9) 

with T', T''add T. Because P(1), P(n)= I(1)add T we have short exact 

sequences 

 0→P(1) → P(1) P(n) → P(n) → 0,     (10) 

 0→P(n) → P(1) P(n) → P(1) → 0. (11) 

with P(1)P(n) add T. On the other hand, for every i with 2 ≤ i ≤ n - 1 there 

exists a short exact sequence 

 0 → 𝑃 𝑖 
𝑓𝑖
→ 𝑃(𝑛)

𝑔𝑖
→ 𝐼(𝑖 + 1) → 0, (12) 

where fi is the inclusion and gi is the projection for all i. We conclude that T is a 

tilting module of A. By the above reason we get the following result. 
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Proposition 4. Let A be the KQ algebra with Q is quiver of type An. Then 

T=I(1)P(1) I(3) I(4)… I(n) is a tilting module. 

4 Conclusion 

Our main result is a generalization of AR-quiver of the first kind Nakayama 

algebra. This AR-quiver have a nice structure and the isomorphism classes of its 

indecomposable module is easy to understand. In this AR-quiver the position of 

all simple modules is on the top of the AR-quiver. On the left side we have all 

indecomposable projective and on the right side we have all indecomposable 

injective. Since A is a Nakayama algebra, all indecomposable module which not 

injective is only a quotient of indecomposable projective module. The AR-

quiver of any finite representation algebra has a role in finding all 

homomorphisms between indecomposable modules. By using this information, 

we get a tilting module of Nakayama algebra of type Dynkin graph An. We have 

that, if T = I(1)P(1) I(3) I(4)… I(n) then T is a tilting module. 
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