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Abstract. The behavior of a dynamical system, in Willems’s point of view, is 

the set of all trajectories of the system. Fuhrmann defines a behavior as a linear, 

shift invariant, and complete subspace of 
1 1

[[ ]]
m

z z
  , the vector space 

consisting of power series in 
1

z


 with coefficients in signal space =
m  . In 

this paper we show that the behavior of a finite dimensional, time invariant 

discrete linear system in Willems’s setting is also a behavior according to 

Fuhrmann’s. 

Keywords: behavior; complete; linear system; shift invariant; trajectories. 

1 Introduction 

Behavioral theory is a mathematical idea to study dynamical systems through 

the set of trajectories of the systems. The basic concept of the behavioral 

framework deals with a mathematical model of a system for what a model ought 

to be [1], highlighting some physical properties and practical questions of the 

system. Willems [1,2] defines a dynamical system as a triple, = ( , , )   B , 

where    is the time axis,   is called the signal space, 
  is the set of 

all transformations from   to  , and 
B  is called behavior. The 

elements of B  are called the trajectories of the system. This definition is very 

general and can be loosely described.  

In general, the behavior of a linear system, in Willems’s point of view [2] 

represents the set of all the trajectories of the system. Meanwhile, Fuhrmann [3] 

adopts Willems’s [2] concept of a behavior for a discrete linear system by 

restricting   to the set of natural numbers, denoted by 


 , and   to 
m , the 

m  dimensional vector space over a field  . However, Fuhrmann does not 

define the behavior of a time invariant discrete linear system as the set of all the 

system trajectories. Fuhrmann defines a behavior as a linear, shift invariant, and 

complete subspace of the set 
1 1

[[ ]]
m

z z
  . The set 

1 1
[[ ]]

m
z z
   is a vector 
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space consisting of power series in 
1

z


 with coefficients in signal space 

=
m  . These fenomena lead us to some questions: are both behaviors, 

according Willems [2] and Fuhrmann [3], equivalent? What is the relationship 

between these two concepts of behavior? This paper addresses part of these 

questions. Particularly, we show that for the case of a finite dimensional, time 

invariant, linear discrete system, behavior according to Willems is also behavior 

according to Fuhrmann. 

2 Preliminaries 

From now on, let   be an arbitrary field and 
m  be the space of all m -tuples 

with components in  . Notation 
1

(( ))z
  stands for the set of all formal series 

of the form 
=

i

ii n
f

f z


  where 
i

f   and 
f

n  , that is, it can be written as  

 

1

=

(( )) = | , .
i

i i f

i n
f

z f z f n



 

  
 
  
  

 

If 
=

( ) =
i

ii n
f

f z f z


  and 
=

( ) =
i

ii n
g

g z g z


 are both elements in 
1

(( ))z
 , then 

the operations of addition and multiplication are defined by  

 
 = ,

( )( ) = ( ) ,
i

i i

i maks n n
f g

f g z f g z


 
 

and  

 
=

( )( ) = ,
k

k

k n n
f g

fg z h z





 

where 
=

=
k i k ii

h f g


 . Note that 
k

h  is well-defined, since it contains only a 

finite number of non-zero terms. The set 
1

(( ))z
  forms a field and is called the 

field of truncated Laurent series [4]. 

The set of all polynomials of the form 
=0

n if

ii
f z  where 

i
f   and 

f
n  is a non-

negative integer, is denoted by [ ]z . It can also be witten as  
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=0

[ ] = | , {0} .

n
f

i

i i f

i

z f z f n  
  
 
  
    

The set [ ]z  can be expressed as a subset of 
1

(( ))z
  as follows:  

 
0

=

[ ] = | , .
i

i i f

i nf

z f z f n


  
 
 
 
     

The set [ ]z , coupled with the standard component-wise addition and 

multiplication, forms an Euclidean domain [4]. 

The set of all formal series having indeterminate 
1

z


 and coefficients in the field 

 , is denoted by 
1

[[ ]]z
 . This set can be expressed as follows:  

 

1

=0

[[ ]] = | , = 0, 1, 2, .
i

i i

i

z f z f i



  

 
 
 
  

 

Similar to the above polynomial ring, the set 
1

[[ ]]z
 , coupled with standard 

addition and multiplication, forms an Euclidean Domain.  

The field of truncated Laurent series can be decomposed by the polynomial 

domain part and formal series domain part as follows [4]: 

 
1 1 1

(( )) = [ ] [[ ]]z z z z
  

  
 

where  

 

1 1

= 1

[[ ]] = | , = 1, 2, .
i

i i

i

z z f z f i


  



  
 
 
 
  

 

It is clear that the above definitions and notations, which are defined in terms of 

elements in the field  , can be directly generalized in terms of elements in the 

vector space 
m  and obtain the corresponding sets 

1
(( ))

m
z
 , [ ]

m
z , and 

1
[[ ]]

m
z
 . All of these sets can be formed as vector spaces over the field   and 

satisfy the following decomposition equation  

 
1 1 1

(( )) = [ ] [[ ]].
m m m

z z z z
  

    (1) 

Further, the set [ ]
m

z  can also be identified by [ ]
m

z , the set of m -tuples of 

elements in [ ]z  
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1

2

( )

( )

( ( )) = .

( )

i

m

p z

p z

p z

p z

 
 
 
 
 
 
 
 



 

Hence, the set [ ]
m

z  can be considered as a module over the ring [ ]z . Similar 

identifications also work for 
1

[[ ]]
m

z
  and 

1
(( ))

m
z
 .  

The set [ ]
m n

z
  is defined as follows:  

 
[ ] = {( ( )) | [ ],1 ,1 }.

m n

ij ij
z a z a z i m j n


     

 

Similar to the vector case, elements in [ ]
m n

z
  can be identified as elements in 

the set [ ]
m n

z
 , that is  

 
=0

[ ] = | , {0} .

n
f

m n i m n

i i f

i

z f z f n
 

  
  
 
  
  

 

The set [ ]
m n

z
  is a module over the ring [ ]z . 

We close this section by introducing the term shift invariant subspace which 

will be one property of a behavior. First, following the decomposition (1), we 

have the projection operator on the space of formal series 
1 1

[[ ]]
m

z z
   along 

the polynomial space [ ]
m

z :  

 

1 1 1

1

= =

: (( )) [[ ]]

.

m m

n
f

i i

i i

i i

z z z

f z f z


  





 



 

 

 

The shift operator   is, then, defined by  

 

1 1 1 1

=1 =1

: [[ ]] [[ ]]

( ),

m m

i i

i i

i i

z z z z

h z z h z





   

 
 





 

 
 (2) 
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Definition 1. Let   be the shift operator defined in (2), and B  be a subspace 

of 
1 1

[[ ]]
m

z z
  . The subspace B  is called shift invariant if ( ) B B . 

Note that having defined the two notions above, we can introduce an action 

from the domain [ ]z  to the space 
1 1

[[ ]]
m

z z
   which makes it become [ ]z -

module. Particularly, the space 
1 1

[[ ]]
m

z z
   is an [ ]z -module with operation 

of multiplication defined as follows: 

 =z h zh


  

for all [ ]z z  and 
1 1

[[ ]]
m

h z z
 

  . 

3 Behavior 

This section contains the main issue of this paper, that is the relevancy between 

the two ways of defining a behavior. The first subsection discusses the behavior 

by Willems’s and Fuhrmann’s point of view. The definition of the dynamic 

system will be discussed at the beginning of this section.  

3.1 Willems’s Version of a Behavior 

This paper concentrates on finite dimensional, time invariant, discrete linear 

systems. Willems [2] defines a dynamic system as a triple, = ( , , )   B , 

where    as time axis,   is called signal space, 
  is the set of all 

transformations from   to  , and 
B  is called the behavior. The 

behavior of a linear system with discrete time is defined by Willems [2] as the 

set of all trajectories of the dynamical system. 

Consider a finite dimensional, time invariant, discrete linear system that 

satisfies the following difference equation:  

 1
= ,

k k k
x Ax Bu


  (3) 

 where 
n

k
x  , 

m

k
u  , = 0,1,k , for some A , an n n  matrix and B , an 

n m  matrix with entries in the field  . Let 
0

n
x   and a sequence of inputs 

0 1
, ,u u   be given, we obtain the corresponding state sequence 

1 2
, ,x x   which 

satisfies Eq. (3). Let represent the state sequence in the form of a formal series  
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1 1 2

1 2

=1

( ) = = .
i

i

i

x z x z x z x z


   
    

Then, the behavior in Willems’s [2] context can be identified by  

 
0

=1

= { | satisfy (3), for some and , = 0,1, 2, }.
i n m

i i i

i

x z x x u i



  B  

 

Before discussing the definition of a behavior in Fuhrmann’s point of view, we 

will first discuss the definition of a complete subspace of 
1 1

[[ ]]
m

z z
  .  

For each n


 , let 
n

P  be the projection on 
1 1

[[ ]]
m

z z
   defined as  

 

1 1 1 1

=1 =1

: [[ ]] [[ ]]

.

m m

n

n
i i

i i

i i

P z z z z

h z h z

   


 



 

 
 (4) 

We say that a subset 
1 1

[[ ]]
m

z z
 

 B  is complete if the following statement is 

satisfied: 

if for any 
1 1

=1
= [[ ]]

i m

ii
w w z z z

   
  , ( ) ( )

N N
P w P B  for all N , then wB . 

3.2 Fuhrmann’s Version of a Behavior 

In the previous subsection we already discussed Willems’s [2] definition of a 

dynamical system as triple, = ( , , )   B , where    is the times axis, 

  is called a signal space, 
  is the set of all transformations from  to , 

and 
B  is called the behavior. Fuhrmann adopted this concept for discrete 

linear systems by restricting the time set   with the set of all natural numbers, 

denoted by 


 , and restricting   with 
m , the colomn vector space over the 

field  . However, Fuhrmann defines a behavior as a linear, shift invariant, and 

complete subspace of 
1 1

[[ ]]
m

z z
  [3]. 

Even though Willems and Fuhrmann have a different point of view in defining a 

behavior, there is a linkage between both definitions of a behavior. That linkage 

is described in Theorem 3. 
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Theorem 3. Let B be the behavior according to Willems for time invariant, 

discrete linear system satisfying difference Eq. (3), that is,  

 
0

=1

= | satisfy (3), for some and , = 0,1, 2, .
i n m

i i i

i

x z x x u i



 

 
 
 
 B    

Then the set B  is a shift invariant and complete subspace of 
1 1

[[ ]]
m

z z
  . In 

other words,B  is a behavior in Fuhrmann’s [3] point of view. 

 

Proof. Let  

 
0

=1

= | satisfy (3), for  some and , = 0,1, 2,
i n m

i i i

i

x z x x u i



 

 
 
 
 B    

be a behavior for time invariant, discrete linear system. First of all, we will 

show that B  is a subspace of 
1 1

[[ ]]
m

z z
  . That is, it should be pointed out that 

B  is a nonempty subset of 
1 1

[[ ]]
m

z z
   that is closed under operation of 

addition and scalar multiplication.  

1. We will show that B  is non-empty, and that is so because  

 
1 2

0 = 0. 0. 0. .
n

z z z
  
     

B
B

 

2. It is clear by definition that B  is a subset of 
1 1

[[ ]].
m

z z
   

3. We will show that B  is closed under addition. Let 
1 1

( ), ( )x z y z
 

B , 

where 
1 1

=1
( ) =

ii
x z x z

 

  and 
1 1

=1
( ) =  

ii
y z y z

 

 , ,i ix y  satisfying (3), for 

some 
0 0
,

n
x y  , and ,

m

i i
u v  , = 0,1,i . We obtain  

 
1 1 1 1 1

=1 =1 =1

( ) ( ) = = ( ) .
i i i i

i i i

x z y z x z y z x y z
  

    
      

 By assumption, 
i

x  and 
i

y  satisfy (3), that is  

 
1 1 1 1

= and = .
i i i i i i

x Ax Bu y Ay Bv
   
   
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Hence, 
1 1 1 1

= ( ) ( )
i i i i i i

x y A x y B u v
   

     for some 
0 0

n
x y  , and 

m

i i
u v  . Consequently, 

1 1
( ) ( )x z y z

 
 B . Thus, it is proved that B  

is closed under addition.  

4. We shall show that B  is closed under scalar multiplication. Let    and 

1
( )x z


B , where 

1 1

=1
( ) =

ii
x z x z

 

 , 
i

x  satisfy (3), for some 
0

n
x  , and 

m

i
u  , where = 0,1,2,i  . We have  

 
1 1 1

=1 =1

. ( ) = ( ) = ( ) .
i i

i i

x z x z x z  
 

  

   

By assumption, 
i

x  satisfy (3), that is 
1 1

=
i i i

x Ax Bu
 
 . Consequently  

 
1 1

= ( ) ( )
i i i

x A x B u  
 

  

for some 
0

n
x  , and 

m

i
u  . So, 

1
( )x z


B .  

Therefore, since B  is a subset of 
1 1

[[ ]]
m

z z
   that is non-empty and closed 

under addition and scalar multiplication, we can conclude that B  is a subspace. 

 

Now, we shall show that B  is shift invariant. In other words, we have to show 

that ( ) B B , where   is the shift operator defined according to (2). Let 

( )g  B . There exists  

 
1

=1

( ) =
i

i

i

x z x z


 
 B  

where 
i

x  satisfy (3), for some 
0

n
x  , and 

m

i
u  , so 

1 1
= ( ( )) = ( )g x z zx z 

 


. We have 

1
( )zx z




 

=1

= ( )
i

i

i

z x z




   

 
1 1

=1

= ( ( ) )
i

i i

i

z Ax Bu z




  
  
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 1

1 1

=1

= ( )
i

i i

i

Ax Bu z


 

  
  

 1

1 1

=2

= ( ) .
i

i i

i

Ax Bu z


 

 
  

Thus 
1

( )zx z



B  implies ( ) B B . Hence B  is shift invariant. 

Finally, we will show that B  is complete. From (3) we have: 

1
x    0

0 0

0

= =
x

Ax Bu A B
u


 
 
 

 

2
x   

0

2 2

1 1 0 0 1 0

1

= = =

x

Ax Bu A x ABu Bu A AB B u

u

  

 
 
 
 
 

 

   

kx  
1

1

1 1 0

=0

= =
k

k k i

k k i

i

Ax Bu A x A Bu


 

 
   

  

0

0

11 2

2

1

= .
k k k

k

x

u

u
A A B A B AB B

u

u

 



 
 
 
 
 
 
 
 
 





 

Let 
1 1

=1
= [[ ]]

i m

ii
f f z z z

   
   and for any {1,2, }n   we have  

 
=1

( ) = ( ).
n

i

n i n

i

P f f z P

 B  

We obtain f B  if we can show that there exists 
0

m
y   and for all 

{1,2, }n  , we can determine 
1

p

n
v


  such that 
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  

0

0

11 2

2

1

=
i i i

i

i

y

v

v
f A A B A B AB B

v

v

 



 
 
 
 
 
 
 
 
 





,  for =1,2, ,i n . 

This last expected fact will be shown using mathematical induction on the 

natural numbers n . For = 1n , we have 
1

1 1 1
= ( ) ( )f z P f P


 B . That means there 

exists 
1

w B  such that 
1 1

1 1
= ( )f z P w


. Write 

1 1

=1
=

i

ii
w w z

 
 B . This means 

that there exists 
1

0

m
x   and 

1 1

0 1
, ,

p
u u    such that 

  

1

0

1

0

1

1 1 2 1

1

2

1

1

=
i i i

i

i

x

u

u
w A A B A B AB B

u

u

 



 
 
 
 
 
 
 
  
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, for all = 1,2,i  

Particularly  
1

1 0

1 1 1

0

= =
x

f w A B
u

 
 
 

. Write 
1

0 0
=y x , 

1

0 0
=v u . Therefore, there 

exists 
1

0 0
=

m
y x   and for = 1n  there exists 

1

0 0
=

p
v u   such that  

  
1

1 0

1 1 1

0

= = .
x

f w A B
u

 
 
 

 

Thus, the expected fact is true for =1n . 

Assume that the expected fact is true for 1 n k  . That is, we assume we 

already obtained  

 
0 1 2 1

and , , ,
m p

k
y F v v v


    

such that  
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
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 (5) 

for =1,2, , .i k  

We will determine 
k

v  such that the expected fact holds for = 1n k  . Consider 

that  

 
1

1 1

=1

= ( ) ( ).
k

i

i k k

i

f z P f P




 
 B  
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1k

w

B  such that 

1 1

1 1=1
= ( ) = ( )

k i k

i k ki
f z P f P w

  

  . Let  

 
1 1 1

0 0 1
, , ,

k m k k p
x u u

  
    

such that 
1 1

=1
=

k k j

jj
w w z

  

  where 
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for all = 1,2,j . Thus, we have  

 
1 1 1 1

1 1 2 2 1 1
= ; = ; ; = ; = .

k k k k

k k k k
f w f w f w f w

   

 
  

That is, for any =1,2, ,i k  we have 
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if   
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Meanwhile we have  
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Af Bu
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Hence, substituting the Eq. (5), we obtain  
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So, by defining 
1

=
k

k k
v u


, we have 

 

0

0

1 1

1 1
=

k k k

k
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f A A B A B AB B v

v

 
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That is, we obtain 
1

=
k

k k
v u


 such that the expected fact holds for = 1n k  . 

Consequently, f B . Thus B  is complete. 

As a conclusion, we have proved that B  is a shift invariant and complete 

subspace of 
1 1

[[ ]]
m

z z
  . In other words, B  is a behavior in Fuhrmann’s point 

of view. 
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4 Conclusion 

Willems [1,2] defined a dynamical system as triple, = ( , , )   B , where 

   is the time axis,   is signal space, and 
B  is the behavior and 

  is the set of all transformations from   to  . The behavior of a linear 

system, based on Willems’s [2] point of view, is defined as the set of all 

trajectories of the dynamical system. Meanwhile, Fuhrmann [3] defined the 

behavior of a discrete time, linear systems as a shift invariant and complete 

subspace of the corresponding formal series module 
1 1

[[ ]]
m

z z
  . In this article 

we have shown that the behavior of a system in Willems’s point of view [2], for 

the case of a finite dimensional, time invariant, discrete linear system, is also 

behavior according to Fuhrmann [3]. The converse of this result is expected to 

be true and is still an open question under investigation.  
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