

g- Inverses of Interval Valued Fuzzy Matrices

Arunachalam R. Meenakshi & Muniasamy Kaliraja

Department of Mathematics, Karpagam University, Coimbatore-641 021, India Email: mkr.maths009@gmail.com

Abstract. In this paper, we have discussed the g-Inverses of Interval Valued Fuzzy Matrices (IVFM) as a generalization of g- inverses of regular fuzzy matrices. The existence and construction of g-inverses, {1, 2} inverses, {1, 3} inverses and {1, 4} inverses of Interval valued fuzzy matrix are determined in terms of the row and column spaces.

Keywords: g-Inverses of fuzzy matrix; g-inverses of Interval valued fuzzy matrix.

1 Introduction

A fuzzy matrix is a matrix over the max-min fuzzy algebra $\mathcal{F} = [0,1]$ with operations defined as $a+b = \max\{a,b\}$ and $a\cdot b = \min\{a,b\}$ for all $a,b \in \mathcal{F}$ and the standard order \geq of real numbers over \mathcal{F} . A matrix $A \in \mathcal{F}_{mn}$ is said to be regular if there exists $X \in \mathcal{F}_{mn}$ such that AXA = A. X is called a generalized inverse of A and is denoted by A^- . In [1], Thomason has studied the convergence of powers of a fuzzy matrix. In [2], Kim and Roush have developed a theory for fuzzy matrices analogous to that for Boolean matrices [3]. A finite fuzzy relational equation can be expressed in the form of a fuzzy matrix equation as x.A = b for some fuzzy coefficient matrix A. If A is regular, then x.A=b is consistent and bX. is a solution for some g-inverse X of A [4]. For more details on fuzzy matrices one may refer to [5, 6]. Recently, the concept of the interval valued fuzzy matrix (IVFM) as a generalization of fuzzy matrix has been introduced and developed by Shyamal and Pal [7]. In earlier work, we have studied the regularity of IVFM [8] and analogous to that for complex matrices [9].

In this paper, we discuss the g-inverses of interval valued fuzzy matrices (IVFM) as a generalization of the g-inverses of regular fuzzy matrices studied in [2, 6], and as an extension of the regularity of the IVFM discussed in [8]. In section 2, we present the basic definition, notation of the IVFM and required results of g-inverses of regular fuzzy matrices. In Section 3, the existence and construction of g-inverses, {1, 2} inverses, {1, 3} inverses and {1, 4} inverses of interval-valued fuzzy matrices are determined in terms of the row and column spaces of IVFM.

2 Preliminaries

In this section, some basic definitions and results needed are given. Let IVFM denote the set of all interval-valued fuzzy matrices, that is, fuzzy matrices whose entries are all subintervals of the interval [0, 1].

Definition 2.1. For a pair of fuzzy matrices $E = (e_{ij})$ and $F = (f_{ij})$ in \mathcal{F}_{mn} such that $E \leq F$, the interval valued fuzzy matrix $[E, F] = ([e_{ij}, f_{ij}])$, is the matrix, whose ij^{th} entry is the interval with lower limit e_{ij} and upper limit f_{ij} .

In particular for E = F, IVFM [E,E] reduces to the fuzzy matrix $E \in \mathcal{F}_{mn}$.

For $A=(a_{ij})=([a_{ijL}\,,\,a_{ijU}])\in (IVFM)_{mxn}$, let us define $A_L=(a_{ijL})$ and $A_U=(a_{ijU})$. Clearly, the fuzzy matrices A_L and A_U belong to $\boldsymbol{\mathcal{F}}_{mn}$ such that $A_L\leq A_U$. Therefore, by Definition (2.1), A can be written as

$$A = [A_L, A_U] \tag{1}$$

where A_L and A_U are called the lower and upper limits of A respectively.

Here we shall follow the basic operation on IVFM as given in [8].

For $A=(a_{ij})=([a_{ijL},a_{ijU}])$ and $B=(b_{ij})=([b_{ijL},b_{ijU}])$ of order mxn, their sum, denoted as A+B, is defined as

$$A+B = (a_{ij}+b_{ij}) = [(a_{ijL}+b_{ijL}), (a_{ijU}+b_{ijU})]$$
(2)

For $A = (a_{ij})_{mxn}$ and $B = (b_{ij})_{nxp}$ their product, denoted as AB, is defined as

$$\begin{array}{ll} AB = (C_{ij}) = [\ \sum_{k=1}^{n} a_{ik} \ b_{kj} \] & i = 1, 2, \ldots \ m \ and \ j = 1, 2, \ldots \ p \\ = [\ \sum_{k=1}^{n} (a_{ikL} \ . \ b_{kjL}), \ \sum_{k=1}^{n} (a_{ikU} \ . b_{kjU}) \] \end{array}$$

If $A = [A_L, A_U]$ and $B = [B_L, B_U]$ then $A+B = [A_L + B_L, A_U + B_U]$

$$AB = [A_L B_L, A_U B_U] \tag{3}$$

 $A \ge B$ if and only if $a_{ijL} \ge b_{ijL}$ and

$$a_{iiU} \ge b_{iiU}$$
 if and only if A+B =A (4)

In particular if $a_{ijL} = a_{ijU}$ and $b_{ijL} = b_{ijU}$ then by Eq. (3) reduces to the standard max. min. composition of fuzzy matrices [2, 6].

For $A \in (IVFM)_{mn}$, A^T , $\Re(A)$, $\mathcal{C}(A)$, A^T , $A\{1\}$ denotes the transpose, row space, column space, g-inverses and set of all g-inverses of A, respectively.

Lemma 2.2. (Lemma 2 [5]) For A, $B \in \mathcal{F}_{mn}$, if A is regular, then (i) $\Re(B) \subseteq \Re(A) \Leftrightarrow B = BA^-A$ for each $A^- \in A\{1\}$

(ii) $\mathcal{C}(B) \subseteq \mathcal{C}(A) \Leftrightarrow B = AA^{-}B$ for each $A^{-} \in A\{1\}$.

Lemma 2.3. If $A \in \mathcal{F}_{mn}$ with $\mathbb{R}(A) = \mathbb{R}(A^TA)$, then A^TA is regular fuzzy matrix if and only if A is a regular fuzzy matrix. If $A \in \mathcal{F}_{mn}$ with $\mathcal{C}(A) = \mathcal{C}(AA^T)$, then AA^T is a regular fuzzy matrix if and only if A is a regular fuzzy matrix.

In the following, we will make use of the following results proved in our earlier work [8]. For the sake of completeness we will provide the proof.

Lemma 2.4. (Theorem 3.3 [8])

Let $A = [A_L, A_U] \in (IVFM)_{mn}$

Then the following holds:

- (i) A is regular IVFM \Leftrightarrow A_L and $A_U \in \mathcal{F}_{mn}$ are regular
- (ii) $\Re(A) = [\Re(A_L), \Re(A_U)]$ and $\mathcal{C}(A) = [\mathcal{C}(A_L), \mathcal{C}(A_U)]$.

Proof.

(i) Since $A \in (IVFM)_{mn}$, any vector $x \in R(A)$ is of the form x = y.A for some $y \in (IVFM)_{1n}$, that is, x is an interval valued vector with n components.

Let us compute $x \in R(A)$ as follows:

$$x \text{ is a linear combination of the rows of } A \Rightarrow x = \sum_{i=1}^{m} \alpha_i. \ A_{i \, *}$$

where A_{i*} is the ith row of A. Equating the jth component on both sides yields

$$\begin{array}{ll} x_j = & \sum\limits_{i=1}^m \alpha_i. \ a_{ij}. \end{array}$$

Since, $a_{ij} = [a_{ijL}, a_{ijU}]$

$$\begin{split} x_j &= \sum_{i=1}^{m} \alpha_i. \; [a_{ijL}, \, a_{ijU}] \\ &= \sum_{i=1}^{m} [\alpha_i \, a_{ijL}, \, \alpha_i \, a_{ijU}] \\ &= \left(\sum_{i=1}^{m} \left(\alpha_i. \, a_{ijL} \right) \;, \; \sum_{i=1}^{m} \left(\alpha_i. \, a_{ijU} \right) \\ &= [x_{jL}, \, x_{jU}]. \end{split}$$

 x_{jL} is the j^{th} component of $x_L \in R(A_L)$ and x_{jU} is the j^{th} component of $x_U \in R(A_U)$. Hence $x = [x_L, x_U]$. Therefore, $R(A) = [R(A_L), R(A_U)]$

(ii) For $A = [A_L, A_U]$, the transpose of A is $A^T = [A_L^T, A_U^T]$. By using (i) we get, $C(A) = R(A^T) = [R(A_L^T), R(A_U^T)] = [C(A_L), C(A_U)]$.

Lemma 2.5. (Theorem 3.7 [8])

For A and $B \in (IVFM)_{mn}$

B = XA

- (i) $\Re(B) \subseteq \Re(A) \Leftrightarrow B = XA \text{ for some } X \in (IVFM)_m$
- (ii) $\mathcal{C}(B) \subset \mathcal{C}(A) \Leftrightarrow B = AY \text{ for some } Y \in (IVFM)_n$

Proof.

(i) Let $A = [A_L, A_U]$ and $B = [B_L, B_U]$. Since, B = XA, for some $X \in (IVFM)$, put $X = [X_L, X_U]$. Then, by Equation (3), $B_L = X_L \ A_L$ and $B_U = X_U \ A_U$. Hence, by (Lemma (2.2)), $\Re (B_L) \subseteq \Re (A_L)$ and $\Re (B_U) \subseteq \Re (A_U)$

By Lemma (2.4)(ii), \Re (B) = $[R(B_L), \Re$ (B_U)] \subseteq $[\Re$ (A_L), \Re (A_U)] = \Re (A). Thus \Re (B) \subseteq \Re (A). Conversely, \Re (B) \subseteq \Re (A).

$$\begin{array}{l} \Rightarrow \mathcal{R}\left(B_{L}\right) \subseteq \mathcal{R}\left(A_{L}\right) \text{ and } \mathcal{R}\left(B_{U}\right) \subseteq \mathcal{R}\left(A_{U}\right) & \text{ (By Lemma (2.4) (ii))} \\ \Rightarrow B_{L} = YA_{L} \text{ and } B_{U} = ZA_{U} & \text{ (By Lemma (2.2))} \end{array}$$

$$\text{Then } B = \begin{bmatrix} B_{L}, B_{U} \end{bmatrix} \\ = \begin{bmatrix} YA_{L}, ZA_{U} \end{bmatrix} \\ = \begin{bmatrix} Y, Z \end{bmatrix} \begin{bmatrix} A_{L}, A_{U} \end{bmatrix} & \text{ (By Eq. (3))} \\ = X[A_{L}, A_{U}], \text{ where } X = \begin{bmatrix} Y, Z \end{bmatrix} \in (IVFM)_{mn} \\ = XA \end{array}$$

(ii) This can be proved along the same lines as that of (i) and hence omitted.

3 g- Inverses of Interval Valued Fuzzy Matrices

In this section, we will discuss the g-inverses of an IVFM and their relations in terms of the row and column spaces of the matrix as a generalization of the results available in the literature on fuzzy matrices [2, 6] as a development of our earlier work [8] on regular IVFMs and analogous to that for complex matrices [9].

Definition 3.1. For $A \in (IVFM)_{mn}$ if there exists $X \in (IVFM)_{nm}$ such that

- $(1) \quad AXA = A$
- (2) XAX = X
- $(3) \quad (AX)^T = (AX)$
- (4) $(XA)^T = (XA)$, then X is called a g-inverse of A.

X is said to be a λ - inverse of A and $X \in A\{\lambda\}$ if X satisfies λ equation where λ is a subset of $\{1, 2, 3, 4\}$. A $\{\lambda\}$ denotes the set of all λ - inverses of A. In particular if $\lambda = \{1, 2, 3, 4\}$ then X unique and is called the Moore Penrose inverse of A, denoted as A^{\dagger} .

Remark 3.2. From Definition (3.1) of λ -inverses for $A \in (IVFM)$, by applying Eq. (3) for $A = [A_L, A_U]$ and $X = [X_L, X_U]$ it can be verified that the existence and construction of $\{\lambda\}$ -inverses of $A \in (IVFM)_{mn}$ reduces to that of the $\{\lambda\}$ -inverses of $A_L, A_U \in F_{mn}$.

Theorem 3.3. Let $A \in (IVFM)_{mn}$ and $X \in A\{1\}$, then $X \in A\{2\}$ if and only if $\Re(AX) = \Re(X)$

Proof.

Since
$$A = [A_L, A_U]$$
 and $X = [X_L, X_U]$

$$X \in A\{2\} \Rightarrow XAX = X, \text{ then by Eq. (3),}$$

$$\Rightarrow X_L A_L X_L = X_L \text{ and } X_U A_U X_U = X_U; X_L \in A_L\{2\} \text{ and } X_U \in A_U\{2\}$$

$$\Rightarrow A_L \in X_L\{1\} \text{ and } A_U \in X_U\{1\}$$

$$\Rightarrow R(X_L) = R(A_L X_L) \text{ and } R(X_U) = R(A_U X_U)$$

$$\Rightarrow R(AX) = R(X). \qquad (By Lemma (2.4))$$

Conversely,

Let
$$\Re$$
 (AX) = \Re (X), then by Lemma (2.4), \Re (X) \subseteq \Re (AX) implies X = YAX for some Y \in (IVFM)_{m.} X(AX) = (YAX)(AX)
$$XAX = Y(AXA)X$$
$$= YAX \qquad (By Definition (3.1))$$
$$= X$$

Thus $X \in A\{2\}$.

Remark 3.4. In the above Theorem (3.3), the condition $X \in A\{1\}$ is essential. This is illustrated in the following example.

Example 3.5.

Let A =
$$\begin{bmatrix} [0,1] & [1,1] \\ [1,1] & [0,0] \end{bmatrix}$$
, $X = \begin{bmatrix} [1,1] & [0,1] \\ [0,0] & [0,1] \end{bmatrix}$

Then by representation (1) we have, $A_L = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \ \ A_U = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right)$

$$X_L = \left(\begin{array}{ccc} 1 & & 0 \\ 0 & & 0 \end{array} \right) \quad \text{and} \quad X_U = \left(\begin{array}{ccc} 1 & & 1 \\ 0 & & 1 \end{array} \right),$$

 $A_L X_L A_L = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \neq A_L \text{ implies } X_L \notin A_L \{1\} \text{ and } A_U X_U A_{U=} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \neq A_U \text{ implies } X_U \notin A_U \{1\}$

$$A_L X_L = \left(\begin{array}{ccc} 0 & & 0 \\ & 1 & & 0 \end{array} \right) \quad \text{ and } \quad A_U X_{U=} \left(\begin{array}{ccc} 1 & & 1 \\ & 1 & & 1 \end{array} \right)$$

But
$$X_L A_L X_L = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \neq X_L$$
. and $X_U A_U X_U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \neq X_U$.

Hence $X_L \notin A_L\{2\}$ and $X_U \notin A_U\{2\}$. Then by Eq. (3) we have, $AXA \neq A$, therefore $X \notin A\{1\}$. Here $\mathbb{R}(X_L) = \mathbb{R}(A_LX_L)$ and $\mathbb{R}(X_U) = \mathbb{R}(A_UX_U)$. Therefore by Lemma (2.4), $\mathbb{R}(X) = \mathbb{R}(AX)$, but $XAX \neq X$. Hence $X \notin A\{2\}$.

Theorem 3.6. For $A \in (IVFM)_{mn}$, A has a {1, 3} inverse if and only if A^TA is a regular IVFM and $\Re(A^TA) = \Re(A)$.

Proof. Since A is regular, Lemma (2.4), A_L and A_U are regular. Let A has a $\{1, 3\}$ inverse X (say) then by Eq. (3), A_L has a $\{1, 3\}$ inverse X_L and A_U has a $\{1, 3\}$ inverse X_U .

Then
$$A_L X_L A_L = A_L$$
 and $(A_L X_L)^T = A_L X_L$

$$A_L^T (A_L X_L A_L) = A_L^T A_L$$

$$(A_L^T A_L X_L) A_L = A_L^T A_L$$

$$\Re (A_L^T A_L) \subset \Re (A_L) \qquad \text{(By Lemma (2.2))}$$

Similarly, $\Re (A_U^T A_U) \subseteq \Re (A_U)$

Therefore by Equation (3) we have, $\Re(A^TA) \subseteq \Re(A)$

Also
$$(A_L X_L)^T A_L = A_L X_L A_L$$

$$\Rightarrow X_L^T A_L^T A_L = A_L$$

$$\Rightarrow X_L^T (A_L^T A_L) = A_L$$

$$\Re (A_L) \subseteq \Re (A_L^T A_L)$$
(By Lemma (2.2))

Similarly, \Re (A_U) $\subseteq \Re$ ($A_U^T A_U$). By Equation (3) we have, \Re (A) $\subseteq \Re$ ($A^T A$). Thus, \Re (A) = \Re ($A^T A$). Since $X \in A\{1\}$, \Re (A) = \Re (A). Hence, \Re ($A^T A$) = \Re (A) = \Re (A). Since \Re ($A^T A$) $\supseteq \Re$ (A) (By Lemma (2.5)),

$$YA^{T}A = XA$$
 let $Y = [Y_{L}, Y_{U}]$ then, $A_{L}^{T}A_{L} (Y_{L}A_{L}^{T}A_{L}) = A_{L}^{T}A_{L} (X_{L}A_{L})$

$$(A_{L}^{T}A_{L})Y_{L} (A_{L}^{T}A_{L}) = A_{L}^{T} (A_{L}X_{L}A_{L})$$

$$= A_{L}^{T}A_{L}$$

Similarly, $A_U^T A_U (Y_U A_U^T A_U) = A_U^T A_U$. By (3) we have, $A^T A (Y A^T A) = A^T A$ Thus $A^T A$ is a regular interval valued fuzzy matrix. Conversely, let $A^T A$ be a regular interval-valued fuzzy matrix and $\Re (A) = \Re (A^T A)$. By Lemma (2.3), A is a regular IVFM. Let us take $Y = (A^T)^- A^T \in (IVFM)$. We claim that $Y \in A \{1, 3\}$.

 \mathbb{R} (A) = \mathbb{R} (A^TA) and A^TA is regular, by Lemma (2.3) A = A(A^TA)⁻A^TA) = AYA, Y \in A{1} and since \mathbb{R} (A) = \mathbb{R} (A^TA), A = XA^TA, by Lemma (2.4), A_L = X_LA_L^TA_L and A_U = X_UA_U^TA_U. Let Y = [Y_L, Y_U].

Then,
$$A_{L}Y_{L} = X_{L}A_{L}^{T}A_{L} (A_{L}^{T}A_{L})^{-}A_{L}^{T}$$

 $= X_{L}A_{L}^{T}A_{L} (A_{L}^{T}A_{L})^{-}A_{L}^{T}A_{L}X_{L}^{T}$
 $= X_{L} (A_{L}^{T}A_{L})(A_{L}^{T}A_{L})^{-} (A_{L}^{T}A_{L})X_{L}^{T}$
 $= X_{L} (A_{L}^{T}A_{L}X_{L}^{T})$
 $= X_{L} A_{L}^{T}$

Similarly, $A_U Y_U = X_U A_U^T$. Then by Eq. (3) we have, $AY = XA^T$

$$(A_L Y_L)^T = (X_L A_L^T)^T$$

$$= A_L X_L^T$$

$$= X_L A_L^T A_L X_L^T$$

$$= X_L A_L^T = A_L Y_L$$

Similarly, $(A_U Y_U)^T = X_U A_U^T = A_U Y_U$. Then by Equation (3) we have, $(AY)^T = AY$, $Y \in A\{3\}$. Since $\mathbb{R}(A) = \mathbb{R}(A^T A)$ by Lemma (2.4) and regularity of $A^T A$ we get

 $A = A(A^{T}A)^{-}(A^{T}A) = AYA, Y \in A\{1\}.$ Thus A has a $\{1, 3\}$ inverse.

Theorem 3.7. For $A \in (IVFM)_{mn}$, A has $\{1, 4\}$ inverse if and only if AA^{T} is regular and $\mathcal{C}(AA^{T}) = \mathcal{C}(A)$.

Proof. This can be proved in the same manner as that of Theorem (3.6).

Corollary 3.8. Let $A \in (IVFM)_{mn}$ be a regular IVFM with A^TA is a regular IVFM and $\Re(A^TA) = \Re(A)$, then $Y = (A^TA)^TA^T \in A\{1, 2, 3\}$.

Proof. $Y \in A\{1, 3\}$ follows from Theorem (3.6), it is enough verify $Y = [Y_L, Y_U] \in A\{2\}$ that is, $Y_L A_L Y_{L} = Y_L$ and $Y_U A_U Y_U = Y_U$.

$$Y_{L}A_{L}Y_{L} = Y_{L} (X_{L}^{T}A_{L}^{T}A_{L}) (A_{L}^{T}A_{L})^{-} A_{L}^{T}$$

$$\begin{split} &= Y_{L}X_{L}^{T} (A_{L}^{T}A_{L}) (A_{L}^{T}A_{L})^{-} (A_{L}^{T}A_{L}X_{L}) \\ &= Y_{L}X_{L}^{T} (A_{L}^{T}A_{L}) (A_{L}^{T}A_{L})^{-} (A_{L}^{T}A_{L})X_{L} \\ &= Y_{L}X_{L}^{T}A_{L}^{T}A_{L}X_{L} \\ &= Y_{L}A_{L}X_{L} \\ &= [(A_{L}^{T}A_{L})^{-}A_{L}^{T}]A_{L}X_{L} \\ &= (A_{L}^{T}A_{L})^{-} (A_{L}^{T}A_{L}X_{L}) \\ &= (A_{L}^{T}A_{L})^{-}A_{L}^{T} \\ &= Y_{L} \end{split}$$

Similarly, $Y_UA_UY_U=Y_U$. Then by Eq. (3), YAY=Y.

Thus $Y \in A\{1,2,3\}$.

Theorem 3.9. Let $A \in (IVFM)_{mn}$ be a regular IVFM with AA^T is a regular IVFM and $\Re(A^T) = \Re(AA^T)$ then $Z = A^T(AA^T)^- \in A\{1, 2, 4\}$.

Proof. Similar to the proof of Theorem (3.7) and Corollary (3.8) hence omitted.

4 Conclusion

The main results of the present paper are the generalization of the results on ginverses of regular fuzzy matrices found in [2, 6] and the extension of our earlier work on regular IVFMs [8].

References

- [1] Thomason, M.G., Convergence of Powers of Fuzzy Matrix, J. Math. Anal. Appl., **57**, pp. 476-480, 1977.
- [2] Kim, K.H. & Roush, F.W., Generalized Fuzzy Matrices, Fuzzy Sets and Systems, 4, pp. 293-315, 1980.
- [3] Kim, K.H., *Boolean Matrix Theory and Applications*, Marcel Dekker, Inc. New York, 1982.
- [4] Cho, H.H., Regular Fuzzy Matrices and Fuzzy Equations, Fuzzy Sets and Systems, **105**, pp. 445-451, 1999.
- [5] Meenakshi, AR., *On Regularity of Block Triangular Fuzzy Matrices*, J. Appl. Math. and Computing, **16**, pp. 207-220, 2004.
- [6] Meenakshi, AR., Fuzzy Matrix Theory and Applications, MJP. Publishers, Chennai, 2008.

- [7] Shyamal, A.K. & Pal, M., *Interval Valued Fuzzy Matrices*, Journal of Fuzzy Mathematics, **14**(3), pp. 582-592, 2006.
- [8] Meenakshi, AR. & Kaliraja, M., *Regular Interval Valued Fuzzy Matrices*, Advances in Fuzzy mathematics, **5**(1), pp. 7-15, 2010.
- [9] Ben Israel, A. & Greville, T.N.E, *Generalized Inverses*, Theory and Application, John Wiley, New York, 1976.