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Abstract. In this paper, we have discussed the g-Inverses of Interval Valued
Fuzzy Matrices (IVFM) as a generalization of g- inverses of regular fuzzy
matrices. The existence and construction of g-inverses, {1, 2} inverses, {1, 3}
inverses and {1, 4} inverses of Interval valued fuzzy matrix are determined in
terms of the row and column spaces.
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1 Introduction

A fuzzy matrix is a matrix over the max-min fuzzy algebra # =[0,1] with
operations defined as a+b = max{a,b} and a-b = min{a,b} for all a,be #and the
standard order > of real numbers over £. A matrix Ae F,, is said to be regular
if there exists X e f,, such that AXA = A. X is called a generalized inverse of
A and is denoted by A" . In [1], Thomason has studied the convergence of
powers of a fuzzy matrix. In [2], Kim and Roush have developed a theory for
fuzzy matrices analogous to that for Boolean matrices [3]. A finite fuzzy
relational equation can be expressed in the form of a fuzzy matrix equation as
X.A = b for some fuzzy coefficient matrix A. If A is regular, then x.A=b is
consistent and bX. is a solution for some g-inverse X of A [4]. For more details
on fuzzy matrices one may refer to [5, 6]. Recently, the concept of the interval
valued fuzzy matrix (IVFM) as a generalization of fuzzy matrix has been
introduced and developed by Shyamal and Pal [7]. In earlier work, we have
studied the regularity of IVFM [8] and analogous to that for complex matrices

[9].

In this paper, we discuss the g-inverses of interval valued fuzzy matrices
(IVFM) as a generalization of the g-inverses of regular fuzzy matrices studied in
[2, 6], and as an extension of the regularity of the IVFM discussed in [8]. In
section 2, we present the basic definition, notation of the IVFM and required
results of g-inverses of regular fuzzy matrices. In Section 3, the existence and
construction of g-inverses, {1, 2} inverses, {1, 3} inverses and {1, 4} inverses
of interval-valued fuzzy matrices are determined in terms of the row and
column spaces of IVFM.
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2 Preliminaries

In this section, some basic definitions and results needed are given. Let IVFM
denote the set of all interval-valued fuzzy matrices, that is, fuzzy matrices
whose entries are all subintervals of the interval [0, 1].

Definition 2.1. For a pair of fuzzy matrices E= (e;) and F= (fjj) in #r, such that
E <'F, the interval valued fuzzy matrix [E, F] = ([e;;, fj]), is the matrix, whose
ij™ entry is the interval with lower limit ej and upper limit f;.

In particular for E = F, IVFM [E,E] reduces to the fuzzy matrix E e 7.
For A = (a;) = ([aijL, aju]) €(IVFM)mn , let us define AL = (a;.) and Ay=(aju).

Clearly, the fuzzy matrices A_ and Ay belong to £, such that A_ < Ay.
Therefore, by Definition (2.1), A can be written as

A=[AL Ay 1)
where A and Ay are called the lower and upper limits of A respectively.

Here we shall follow the basic operation on IVFM as given in [8].

For A= (a;) = ([aij ,aiju]) and B=(b;) = ([bjj. ,bjju]) of order mxn, their sum,
denoted as A+B, is defined as

A+B = (aj+by) = [(a+bi), (@5u+biu)] (2)
For A = (aj))mxn and B = (bj))nx their product, denoted as AB, is defined as

AB = (Cij) = [ anzlaik bkj ] i :1,2, ....... m andj=1,2,. e D
= [ Z%1 (aik - DiL), 2=1(aiku biju) 1

IfA= [AL, Au] and B = [BL,Bu] then A+B = [AL + BLa AU + Bu]

AB = [ALBLa AuBu] (3)
A > B if and only if a;; > by and
aju=> bijU if and only if A+B =A @)

In particular if a;_ = a;y and by = bjy then by Eq. (3) reduces to the standard
max. min. composition of fuzzy matrices [2, 6].

For Ac(IVFM), , AT R(A), C(A), A", A{1} denotes the transpose, row space,
column space, g-inverses and set of all g-inverses of A, respectively.

Lemma 2.2. (Lemma 2 [5]) For A, Be i, if Ais regular, then
(i) R(B)cR(A) <~ B=BAAforeach A eA{l}
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(i) ¢ (B) cC (A) < B=AAB foreach A cA{1}.

Lemma 2.3. If Ae Fn,with R (A) =R (ATA), then ATA is regular fuzzy matrix
if and only if A is a regular fuzzy matrix. If Ae £, with C (A) = ¢ (AAT), then
AAT is a regular fuzzy matrix if and only if A is a regular fuzzy matrix.

In the following, we will make use of the following results proved in our earlier
work [8]. For the sake of completeness we will provide the proof.

Lemma 2.4. (Theorem 3.3 [8])

Let A=[A., Ay] € (IVFM),

Then the following holds:

(i) Alisregular IVFM <& A and Ay € Fn are regular
(i) R(A)=[R(AL), R (Ayland C (A) = [C (A , C (Au)].

Proof.
(i) Since A € (IVFM)n,, any vector x € R(A) is of the form x=y.A for some
y € (IVFM)y,, that is, X is an interval valued vector with n components.

Let us compute X € R(A) as follows:

m
x is a linear combination of the rows of A = x =3 a;. Aj«
i=1
where A is the i row of A. Equating the j* component on both sides yields

m
Xj = z Q. ajj.
i=1
Since, a; = [y, ajju]
m

X = Y ai [aijL, aijul
i=1

m
= Y [ &, o5 ajju)
1
m

m
=1 X (oiag) , X (o4 dju)

i=1 i=1

= [Xu, Xjul-
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Xj is the j™ component of x, € R(A.) and Xju is the j™ component of xy eR(Ay).
Hence x = [x., Xy]. Therefore, R(A) = [R(AL), R(Au)]

(i) For A=[AL, A], the transpose of Ais AT=[A_.", A,']. By using (i)
we get, C(A) = R(A") = [R(AL"), R(Au")] = [C(AL), C(Au)].
Lemma 2.5. (Theorem 3.7 [8])

For A and Be(IVFM),

(i) R(B)<cR(A) <= B=XAforsome X e (IVFM),
(i) ¢(B) < C(A) & B=AY forsome Y e (IVFM),
Proof.

(i) LetA=[A., Ayland B =[B, By]. Since, B = XA, for some X e (IVFM),
put X = [X, Xy]. Then, by Equation (3), BL = X_ AL and By = Xy A,
Hence, by( Lemma (2.2)), R (BL) = R (A,) and R (Bu) = R (Auv)

By Lemma (2.4)(ii), R (B) = [R(BL), R (Bu)] = [R (A, R (Au)] =R (A).Thus
R (B) =R (A). Conversely, R (B) = R (A).
= R (Bl =R (A) and R (Bu) = R (Auv) (By Lemma (2.4) (ii))
= BL=YA_and By = ZAy (By Lemma (2.2))
Then B =[B., By]
= [YAL ZAu]
=[Y.Z][AL A (By Eq. (3))
= X[AL, Ay], where X = [Y, Z]e(IVFM) i,
= XA
B =XA

(ii) This can be proved along the same lines as that of (i) and hence omitted.

3 g- Inverses of Interval Valued Fuzzy Matrices

In this section, we will discuss the g-inverses of an IVFM and their relations in
terms of the row and column spaces of the matrix as a generalization of the
results available in the literature on fuzzy matrices [2, 6] as a development of
our earlier work [8] on regular IVFMs and analogous to that for complex
matrices [9].
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Definition 3.1. For Ae(IVFM),, if there exists X e (IVFM),, such that

(1) AXA=A

(2) XAX=X

(3) (AX)=(AX)

(4) (XA)'= (XA), then X is called a g-inverse of A.

X is said to be a A- inverse of A and XeA{L} if X satisfies A equation where A
is a subset of {1, 2, 3, 4}. A {A} denotes the set of all A- inverses of A. In
particular if A = {1, 2, 3, 4} then X unique and is called the Moore Penrose
inverse of A, denoted as A",

Remark 3.2. From Definition (3.1) of A-inverses for Ae(IVFM), by applying
Eq. (3) for A=[AL Au] and X = [X,, X] it can be verified that the existence
and construction of {A}-inverses of Ae(IVFM),,, reduces to that of the {i}-
inverses of A, Aye Fmn.

Theorem 3.3. Let Ae(IVFM)y,, and XeA{1}, then XeA{2}if and only if R
(AX) =R (X)

Proof.
Since A =[A, Au] and X = [X, Xy]
XeA{2}= XAX = X, then by Eq. (3),
= X A X = X and XpAuXy = Xy ; X eA{2}and Xye Au{2}
= A eX {1} and AyeXy {1}
= R (X)) =R (AX) and R (Xu) =R (AuXu)
= R (AX) =R (X). (By Lemma (2.4))
Conversely,
Let R (AX) =R (X), then by Lemma (2.4), R (X) = R (AX) implies X = YAX
for some Y e(IVEM),. X(AX) = (YAX)(AX)
XAX = Y(AXA)X
=YAX (By Definition (3.1))
=X
Thus XeA{2}.
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Remark 3.4. In the above Theorem (3.3), the condition XeA{1} is essential.
This is illustrated in the following example.

Example 3.5.
[01] [1.1] [11] [0.1]
LetA = [1,1] [0,0] | , X=1 [0,0] [01]
Then by representation (1) we have, 0 1 1 1
A= 1 0 |, Avg=1| 1 0
1 0 1 1
Xe=10 0 and Xy = 0 1/,
0 0 1 1
ALXLAL = 0 1 z AL ImplIeS XLgAL{l}and AUXUAU - 11 1 iAU

implies  XyeAu{l}

0 0 1 1

AX = 1 0 and AuXy=| 1 1

But XLALXL ={ 0 0 ¢X|_. and XuAUxU =11 1 * XU.

0 1 1 1
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Hence X, ¢A {2} and Xy ¢Au{2}. Then by Eqg. (3) we have, AXA #A,
therefore Xg A{1}. Here R (X)) =R (AXL) and R (Xyu) = R (AuXy). Therefore
by Lemma (2.4), R (X) = R (AX), but XAX = X. Hence XgA{2}.

Theorem 3.6. For Ac(IVFM)mn, A has a {1, 3}inverse if and only if ATAis a
regular IVFM and R (ATA) = R (A).
Proof. Since A is regular, Lemma (2.4), A_ and Ay are regular. Let A has a
{1, 3} inverse X (say) then by Eq. (3), A_ has a {1, 3} inverse X, and Ay has a
{1, 3} inverse Xy.
Then AX AL = AL and (AX) "= AX,

AT (AXAD) = ATAL

(ALTAX) AL=AA

R(ALA) =R (A) (By Lemma (2.2))
Similarly, R (Au"Au) < R (Ay)
Therefore by Equation (3) we have, R (A'A) c R (A)
Also  (ALX) TAL= AX AL

= XATA = AL
=X (ATA) = AL
R(A) =R (ALA) (By Lemma (2.2))
Similarly, R (Ay) € R (Ay"Ay). By Equation (3) we have, R (A) ¢ R
(ATA).Thus, R (A) = R (ATA). Since XeA{1}, R (A) = R (XA). Hence, R
(ATA) =R (A) = R (XA). Since R (ATA) o R (XA) (By Lemma ( 2.5)),
YATA = XAlet Y = [Y,, Y] then, ALTAL (YLALCTAD) = ALTAL (XA
(ACADYL(ALTAD) = AT (ALXAD)
=AAL

Similarly, Ay"Ay (YuAuTAy) = Ay'Au. By (3) we have, ATA (YATA) = ATA

Thus ATA is a regular interval valued fuzzy matrix. Conversely, let ATA be a

regular interval-valued fuzzy matrix and R (A) = R (A'A). By Lemma (2.3),
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A is a regular IVFM. Let us take Y = (AT ATe(IVFM). We claim that Y €A
{1,3}.
R (A) = R (ATA) and A'A is regular, by Lemma (2.3) A = A(ATA)A'A) =
AYA, YeA{1} and since R (A) = R (A'A), A = XA'A, by Lemma (2.4),
AL = XA A and Ay = XgAy'Au. Let Y=Y, Yol
Then, ALY, = X\ ALUAL (ACTA) AT

=X AAL(ATA)ATAXT

=X (ALADALAD) (ALTADX T

=X (ALAX

= XA
Similarly, AgYy = XyAy'. Then by Eq. (3) we have, AY = XAT

(ALYD) "= (XANT

= AXT

= XATAXT

=XAT=ALY,
Similarly, (AyYu) "= XuAu" = AyYu. Then by Equation (3) we have, (AY) " =
AY, YeA{3}. Since R (A) = R (ATA) by Lemma (2.4) and regularity of ATA
we get
A=AA'A) ‘ATA) = AYA, YeA{1}. Thus A has a {1, 3} inverse.

Theorem 3.7. For Ac(IVFM) .., A has {1, 4} inverse if and only if AAT is
regular and € (AA") = C (A).

Proof. This can be proved in the same manner as that of Theorem (3.6).

Corollary 3.8. Let Ac(IVFM) , be a regular IVFM with A'A is a regular
IVFM and R (A"A) =R (A), then Y = (ATA) ATe A{1, 2, 3}.

Proof. YeA{1, 3} follows from Theorem (3.6), it is enough verify Y = [Y|,
Yu]EA{Z} that iS, YLALYL = Y|_ and YUAUYU:YU-

VALY =YL (XUTATA) (ACA) AT
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=YX (ALCTAD) (ALTAD) T (ALTALX))

=Y X (ALTAD (ACTAD) (ACTADXL

= Y XUTALTALXL

= Y AX,

= [(ALA) ALTTALX,

= (ALA) (ALTALX)

= (ALA)AT

=Y,
Similarly, YyAuYu=Yy. Then by Eqg. (3), YAY =Y.
Thus YeA{1,2, 3}.

Theorem 3.9. Let Ae(IVFM) ., be a regular IVFM with AAT is a regular
IVFM and R (A") = R (AA") then Z = AT (AAT)” eA{1, 2, 4}.

Proof. Similar to the proof of Theorem (3.7) and Corollary (3.8) hence omitted.

4 Conclusion

The main results of the present paper are the generalization of the results on g-
inverses of regular fuzzy matrices found in [2, 6] and the extension of our
earlier work on regular IVFMs [8].
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