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Abstract. In this paper, we have discussed the g-Inverses of Interval Valued 

Fuzzy Matrices (IVFM) as a generalization of g- inverses of regular fuzzy 

matrices. The existence and construction of g-inverses, {1, 2} inverses, {1, 3} 

inverses and {1, 4} inverses of Interval valued fuzzy matrix are determined in 

terms of the row and column spaces. 
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1 Introduction 

A fuzzy matrix is a matrix over the max-min fuzzy algebra F =[0,1] with 

operations defined as a+b = max{a,b} and ab = min{a,b} for all a,bF and the 

standard order ≥ of real numbers over F.  A matrix AFmn is said to be regular 

if there exists X Fmn such that AXA = A. X is called a generalized inverse of 

A and is denoted by A

. In [1], Thomason has studied the convergence of 

powers of a fuzzy matrix. In [2], Kim and Roush have developed a theory for 

fuzzy matrices analogous to that for Boolean matrices [3]. A finite fuzzy 

relational equation can be expressed in the form of a fuzzy matrix equation as 

x.A = b for some fuzzy coefficient matrix A. If A is regular, then x.A=b is 

consistent and bX. is a solution for some g-inverse X of A [4]. For more details 

on fuzzy matrices one may refer to [5, 6]. Recently, the concept of the interval 

valued fuzzy matrix (IVFM) as a generalization of fuzzy matrix has been 

introduced and developed by Shyamal and Pal [7]. In earlier work, we have 

studied the regularity of IVFM [8] and analogous to that for complex matrices 

[9]. 

In this paper, we discuss the g-inverses of interval valued fuzzy matrices 

(IVFM) as a generalization of the g-inverses of regular fuzzy matrices studied in 

[2, 6], and as an extension of the regularity of the IVFM discussed in [8]. In 

section 2, we present the basic definition, notation of the IVFM and required 

results of g-inverses of regular fuzzy matrices. In Section 3, the existence and 

construction of g-inverses, {1, 2} inverses, {1, 3} inverses and {1, 4} inverses 

of interval-valued fuzzy matrices are determined in terms of the row and 

column spaces of IVFM. 
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2 Preliminaries 

In this section, some basic definitions and results needed are given. Let IVFM 

denote the set of all interval-valued fuzzy matrices, that is, fuzzy matrices 

whose entries are all subintervals of the interval [0, 1].  

Definition 2.1. For a pair of fuzzy matrices E= (eij) and F= (fij) in Fmn such that 

E ≤ F, the interval valued fuzzy matrix [E, F] = ([eij , fij]), is the matrix, whose 

ij
th
 entry is the interval with lower limit eij  and upper limit fij . 

In particular for E = F, IVFM [E,E] reduces to the fuzzy matrix EFmn. 

For A = (aij) = ([aijL , aijU]) (IVFM)mxn , let us define AL = (aijL)  and AU=(aijU).  

Clearly, the fuzzy matrices AL and AU belong to Fmn such that AL ≤ AU. 

Therefore, by Definition (2.1), A can be written as      

 A = [AL, AU] (1) 

where AL and AU are called the lower and upper limits of A respectively.  

Here we shall follow the basic operation on IVFM as given in [8]. 

For A= (aij) = ([aijL ,aijU]) and B=(bij) = ([bijL ,bijU]) of order mxn, their sum, 

denoted as A+B, is defined as  

 A+B = (aij+bij) = [(aijL+bijL), (aijU+bijU)]   (2) 

For A = (aij)mxn  and B = (bij)nxp their product, denoted as AB, is defined as 

 

  AB = (Cij) = [ Σ
n
k=1aik bkj  ]         i =1,2,… ….m and j=1,2,…  …..p 

                             = [ Σ
n
k=1 (aikL . bkjL), Σ

n
k=1(aikU .bkjU) ] 

 

If A = [AL, AU] and B = [BL,BU] then A+B = [AL + BL, AU + BU]  

 AB = [ALBL, AUBU]                           (3) 

A ≥ B if and only if aijL ≥ bijL and  

 aijU ≥ bijU  if and only if A+B =A                              (4) 

In particular if aijL = aijU and bijL = bijU then by Eq. (3) reduces to the standard 

max. min. composition of fuzzy matrices [2, 6]. 

 

For A(IVFM)mn , A
T
 ,R(A), C(A), A

-
, A{1} denotes the transpose, row space, 

column space, g-inverses and set of all g-inverses of A, respectively. 

Lemma 2.2. (Lemma 2 [5]) For A, BFmn, if A is regular, then  

(i) R (B)  R (A)  B = BA

A for each A


A{1} 
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(ii) C (B)  C (A)  B = AA

B for each A


A{1}. 

 

Lemma 2.3. If A Fmn with R (A) = R (A
T
A), then A

T
A is regular fuzzy matrix 

if and only if A is a regular fuzzy matrix. If A Fmn with C (A) = C (AA
T
), then 

AA
T
 is a regular fuzzy matrix if and only if A is a regular fuzzy matrix. 

 

In the following, we will make use of the following results proved in our earlier 

work [8]. For the sake of completeness we will provide the proof. 

Lemma 2.4. (Theorem 3.3 [8]) 

Let A = [AL, AU]  (IVFM)mn   

Then the following holds: 

(i) A is regular IVFM  AL and AU Fmn  are  regular 

(ii) R (A) = [R (AL ), R (AU)] and C (A) = [C (AL) , C (AU)]. 

 

Proof.  

(i) Since A  (IVFM)mn, any vector x  R(A) is of the form x= y.A for some 

y  (IVFM)1n , that is, x is an interval valued vector with n components. 

Let us compute x  R(A) as follows: 

                                                                          m  

x is a linear combination of the rows of A  x = ∑ αi. Ai * 

                                                                             i=1 

where Ai* is the i
th
 row of A. Equating the j

th
 component on both sides yields 

   m  

    xj = ∑ αi. aij. 

i=1 

Since, aij = [aijL, aijU] 

  m  

    xj = ∑ αi. [aijL, aijU] 

i=1 

m  

       = ∑ [αi aijL, αi aijU]  

i=1 

                      m                      m 

  =      ∑  (αi. aijL)  ,   ∑  (αi. aijU) 

         i=1                  i=1 

 

   = [xjL, xjU]. 
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xjL is the j
th
 component of xL  R(AL) and xjU is the j

th
 component of xU R(AU). 

Hence x = [xL, xU]. Therefore, R(A) = [R(AL), R(AU)] 

(ii) For A = [AL, AU], the transpose of A is A
T
 = [AL

T
, AU

T
].  By using (i) 

we get, C(A) = R(A
T
) = [R(AL

T
), R(AU

T
)] = [C(AL), C(AU)]. 

Lemma 2.5. (Theorem 3.7 [8]) 

For A and B(IVFM)mn 

(i) R (B)  R (A)  B = XA for some X  (IVFM)m 

(ii) C (B)   C (A)  B = AY for some Y  (IVFM)n 

Proof.  

(i) Let A = [AL, AU] and B = [BL, BU].  Since, B = XA, for some X  (IVFM), 

put X = [XL, XU]. Then, by Equation (3), BL = XL AL and BU = XU AU. 

Hence, by( Lemma (2.2)), R (BL)  R (AL) and R (BU)  R (AU) 

By Lemma (2.4)(ii), R (B) = [R(BL), R (BU)]  [R (AL), R (AU)] = R (A).Thus 

R (B)  R (A). Conversely, R (B)  R (A). 

 R (BL)  R (AL) and R (BU)  R (AU)     (By Lemma (2.4) (ii)) 

 BL = YAL and BU = ZAU  (By Lemma (2.2)) 

Then  B  = [BL, BU] 

 = [YAL, ZAU] 

 = [Y,Z] [AL, AU] (By Eq. (3)) 

 = X[AL, AU], where X = [Y, Z](IVFM)mn 

 = XA  

          B  = XA 

(ii) This can be proved along the same lines as that of (i) and hence omitted. 

3 g- Inverses of Interval Valued Fuzzy Matrices 

In this section, we will discuss the g-inverses of an IVFM and their relations in 

terms of the row and column spaces of the matrix as a generalization of the 

results available in the literature on fuzzy matrices [2, 6] as a development of 

our earlier work [8] on regular IVFMs and analogous to that for complex 

matrices [9].  
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Definition 3.1. For A(IVFM)mn if there exists X(IVFM)nm such that 

(1) AXA = A 

(2) XAX = X 

(3) (AX)
T 

= (AX) 

(4) (XA)
T
= (XA), then X is called a g-inverse of A. 

 

X is said to be a - inverse of A and XA{} if  X satisfies  equation where  

is a subset of {1, 2, 3, 4}.  A {} denotes the set of all - inverses of A. In 

particular if   = {1, 2, 3, 4} then X unique and is called the Moore Penrose 

inverse of A, denoted as A
†
. 

Remark 3.2. From Definition (3.1) of -inverses for A(IVFM), by applying 

Eq. (3) for A = [AL, AU] and X = [XL, XU] it can be verified that the existence 

and construction of {}-inverses of A(IVFM)mn  reduces to that of the {}-

inverses of AL, AU Fmn. 

Theorem 3.3. Let A(IVFM)mn and XA{1}, then XA{2}if and only if R 

(AX) = R (X) 

Proof.  

       Since A = [AL, AU] and X = [XL, XU] 

XA{2} XAX = X, then by Eq. (3),  

               XLALXL = XL and XUAUXU = XU ; XLAL{2}and XUAU{2} 

               ALXL{1} and AUXU{1} 

               R (XL) = R (ALXL)  and R (XU) = R (AUXU) 

               R (AX) = R (X).  (By Lemma (2.4)) 

Conversely, 

Let R (AX) = R (X), then by Lemma (2.4), R (X)  R (AX) implies X = YAX 

for some Y(IVFM)m.  X(AX)   = (YAX)(AX) 

                                         XAX  = Y(AXA)X 

                                             = YAX  (By Definition (3.1)) 

                                            = X 

Thus XA{2}. 
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Remark 3.4. In the above Theorem (3.3), the condition XA{1} is essential.  

This is illustrated in the following example. 

Example 3.5. 

                                   [0,1]     [1,1]                                            [1,1]      [0,1] 

             Let A  =         [1,1]     [0,0]      ,                       X =       [0,0]       [0,1]                                                                        

                                                                                                           

Then by representation (1) we have,                    0       1                         1        1 

                                                               AL  =      1       0      ,   AU =       1        0  

                                                                                           

               1        0                                   1        1 

XL =       0        0          and   XU =        0        1   ,                        

 

                         0      0                                                                        1     1 

ALXLAL =         0      1      AL implies XLAL{1}and AUXUAU =       1     1     AU  

implies    XUAU{1}     

         

                      0        0                                   1       1 

    ALXL  =      1        0          and   AUXU =      1        1                                                                                          

                                                                                         

But XLALXL =    0         0       XL.  and XUAUXU =    1        1          XU.  

                            0        1                                              1       1 
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Hence   XLAL{2} and XU AU{2}. Then by Eq. (3) we have, AXA A, 

therefore XA{1}. Here R (XL) = R (ALXL) and R (XU) = R (AUXU).  Therefore 

by Lemma (2.4), R (X) = R (AX), but XAX  X.  Hence XA{2}. 

Theorem 3.6. For A(IVFM)mn, A has a {1, 3}inverse if and only if A
T
A is a 

regular IVFM and R (A
T
A) = R (A). 

Proof. Since A is regular, Lemma (2.4), AL and AU are regular. Let A has a     

{1, 3} inverse X (say) then by Eq. (3), AL has a {1, 3} inverse XL and AU has a 

{1, 3} inverse XU. 

Then  ALXLAL = AL and (ALXL)
 T

 = ALXL 

AL
T
 (ALXLAL)  = AL

T
AL 

(AL
T
ALXL) AL = AL

T
AL 

R (AL
T
AL)  R (AL)  (By Lemma ( 2.2 )) 

Similarly, R (AU
T
AU)  R (AU) 

Therefore by Equation (3) we have, R (A
T
A)  R (A) 

Also  (ALXL)
 T

AL = ALXLAL 

  XL
T 

AL
T
AL = AL 

  XL
T
 (AL

T
AL) = AL 

R (AL)  R (AL
T
AL)     (By Lemma ( 2.2 )) 

Similarly, R (AU)  R (AU
T
AU). By Equation (3) we have, R (A)  R 

(A
T
A).Thus, R (A) = R (A

T
A). Since XA{1}, R (A) = R (XA). Hence, R 

(A
T
A) = R (A) = R (XA). Since R (A

T
A)  R (XA) (By Lemma ( 2.5)), 

YA
T
A = XA let Y = [YL, YU] then, AL

T
AL (YLAL

T
AL) = AL

T
AL (XLAL) 

                                                       (AL
T
AL)YL (AL

T
AL) = AL

T
 (ALXLAL) 

                                                                                        = AL
T
AL 

Similarly, AU
T
AU (YUAU

T
AU) = AU

T
AU. By (3) we have, A

T
A (YA

T
A) = A

T
A 

Thus A
T
A is a regular interval valued fuzzy matrix. Conversely, let A

T
A be a 

regular interval-valued fuzzy matrix and R (A) = R (A
T
A). By Lemma (2.3),       
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A is a regular IVFM. Let us take Y = (A
T
)

A

T
(IVFM). We claim that YA  

{1, 3}.   

R (A) = R (A
T
A) and A

T
A is regular, by Lemma (2.3) A = A(A

T
A)


A

T
A) = 

AYA, YA{1} and since R (A) = R (A
T
A), A = XA

T
A, by Lemma (2.4),        

AL = XLAL
T
AL and AU = XU AU

T
AU.  Let Y= [YL, YU]. 

Then, ALYL = XLAL
T
AL (AL

T
AL)


AL

T
 

                    = XLAL
T
AL (AL

T
AL)


AL

T
ALXL

T
 

                    = XL (AL
T
AL)(AL

T
AL)


 (AL

T
AL)XL

T
 

                    = XL (AL
T
ALXL

T
) 

                    = XLAL
T
 

Similarly, AUYU = XUAU
T
. Then by Eq. (3) we have, AY = XA

T
 

     (ALYL)
 T

 = (XLAL
T
)

 T
 

                    = ALXL
T
 

                    = XLAL
T
ALXL

T
 

                    = XLAL
T
 = ALYL 

Similarly, (AUYU)
 T

= XUAU
T
 = AUYU. Then by Equation (3) we have, (AY)

 T
 = 

AY, YA{3}. Since R (A) = R (A
T
A) by Lemma (2.4) and regularity of A

T
A 

we get 

A = A(A
T
A)

 (
A

T
A) = AYA, YA{1}. Thus A has a {1, 3} inverse. 

Theorem 3.7. For A(IVFM) mn, A has {1, 4} inverse if and only if AA
T
 is 

regular and C (AA
T
) = C (A). 

Proof. This can be proved in the same manner as that of Theorem (3.6). 

Corollary 3.8. Let A(IVFM) mn be a regular IVFM with A
T
A is a regular 

IVFM and R (A
T
A) = R (A), then Y = (A

T
A)


A

T
A{1, 2, 3}. 

Proof. YA{1, 3} follows from Theorem (3.6), it is enough verify Y = [YL, 

YU]A{2} that is, YLALYL = YL and  YUAUYU=YU.  

YLALYL = YL (XL
T
AL

T
AL) (AL

T
AL)

 
AL

T
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              = YLXL
T
 (AL

T
AL) (AL

T
AL)


 (AL

T
ALXL) 

              = YLXL
T
 (AL

T
AL) (AL

T
AL)


 (AL

T
AL)XL 

              = YLXL
T
AL

T
ALXL 

              = YLALXL 

              = [(AL
T
AL)


AL

T
]ALXL 

              = (AL
T
AL)


 (AL

T
ALXL) 

              = (AL
T
AL)


AL

T 

                     
= YL 

Similarly, YUAUYU=YU. Then by Eq. (3), YAY = Y. 

Thus YA{1,2, 3}.   

Theorem 3.9. Let A(IVFM) mn be a regular IVFM with AA
T
 is a regular 

IVFM and R (A
T
) = R (AA

T
) then Z = A

T
 (AA

T
)

 A{1, 2, 4}. 

Proof. Similar to the proof of Theorem (3.7) and Corollary (3.8) hence omitted. 

4 Conclusion       

The main results of the present paper are the generalization of the results on g-

inverses of regular fuzzy matrices found in [2, 6] and the extension of our 

earlier work on regular IVFMs [8]. 
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