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Abstract. The main problem with the inversion of a low velocity medium is the
application of an appropriate ray tracing method after choosing a suitable model
parameterization. Block parameterization is not suitable, because it is not
capable of representing the velocity model well. A large amount of blocks with a
small grid size are needed to express the model well, but in that case, a ray
coverage problem will be encountered. A knot-point parameterization model is
better suited than a block model, because it can express the velocity model well,
while the number of variables is much smaller. Ray calculation using the pseudo-
bending method is not appropriate for the velocity model because of an
instability problem at high velocity gradients. The crucial problem of this
method involves the initial ray-path that is optimized in order to obtain the “true”
ray, but does not satisfy the Fermat principle. These problems can be solved by
applying the eikonal-solver method, because this can handle high-velocity
gradients and does not need an initial ray path. Using a suitable model
parameterization and appropriate ray tracing method, the inversion can obtain
good results that fit the desired output. Applying a block model and the pseudo-
bending method will not produce the desired output.

Keywords: Eikonal-solver method; Fermat principle; knot-point parameterization; low
velocity structure; pseudo-bending method.

1 Introduction

Many current inversion techniques use seismic wave arrival time data to
estimate subsurface structures [1-3]. This is preceded by an effective model
parameterization and followed by the selection of an appropriate method of
theoretical ray calculation acting as a forward modeling. After that, a system of
equations in the form of a matrix can be formed and its inversion can be
calculated by various methods.

When model Parameterization is performed to describe a subsurface structure,
the chosen number of parameters should not be too high, so as to get a kernel
matrix that is not too large and doesn’t contain too many zero-value matrix
components. Until now, parameterizations usually are carried using a block
model, but a large number of blocks are needed to describe the geological
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structure well. Therefore, an alternative method to parameterize the model is
needed. In this study, model parameterization will be conducted using a knot
point model as well as a block model. So far, the knot point model has been
applied by few seismologists [4]. Both methods of parameterization will be
applied to the same subsurface structure, selected according to the criteria
mentioned above. Miyazawa and Kato [5] noted that using the velocity and
slowness at knot points will produce different tomography result, unless a
carefully formulated tomographic problem is applied. We will apply slowness
parameterization because in the way we will get the linear form of the kernel
function.

The next step is the selection of a ray tracing method suitable for the selected
model parameterization. Application of the pseudo-bending method ([6]) is very
popular because of its efficiency. However, this method has the disadvantage
that it needs an initial value (initial trajectory). This will lead to inaccuracies in
the calculation of the “real” trajectory as well as its traveltime, especially in low
velocity zones. In addition, there is an instability problem in the ray calculation
in case of high-velocity gradient structures. In this study, we have analyzed the
problems of the pseudo-bending method and have found another ray tracing
method, which does generate an accurate calculation. This method is called the
eikonal-solver method ([7]), where an initial value (initial trajectory) is not
required and the problems with high velocity gradients can be overcome. The
selection criterion for choosing the appropriate method is that is has to satisfy
the Fermat principle, according to which the rays should avoid low-velocity
zones.

The last step is the formulation of the inversion formula using a gradient
inversion method. The inversion method that we have developed can be applied
to a highly heterogeneous medium, especially in cases where volcanic seismic
low-velocity anomalies exist in weak zones and zones of high fluid content. We
have compared the method with the inversion method that is most commonly
employed and that uses a block model and pseudo bending method. In this
article, the superiority of our method will be demonstrated.

This method has not yet been applied to real data because of the unavailability
of 2D field data. In the near future, the method will be further developed for 3D
cases and applied to data of some volcanoes in Indonesia.
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2 The Method

2.1 Model Parameterization

Model parameterization or definition of estimated variables, preceding the
inversion process is an essential first step, because if this is not done
appropriately, the results will not properly describe the subsurface. In other
words, the inversion result must satisfy the physical and geological principles.
In the case of parameterization for a subsurface structure, previous geological
and geophysical studies provide important preliminary data. From these data,
we do not necessarily need to create a block model; a 1D model or a boundary
layer model may be is enough. However, in the case of something like a
volcanic structure, a block model or knot-point model is more suitable, because
of its heterogeneity, which makes the layers of the structure difficult to define.
In the block model, the constant velocity or slowness is defined for each block,
while in the knot-point model, the velocity or slowness is defined at knot point.

In this study, slowness at a point S(X, z) in the knot-point model is defined as a

linear interpolation ([2]) from four knot points around that point, which can be
formulated as

i+1 k+1 X=X 1|z=7z
s(x,z):z:;z:;Sn]m o (1)

where S, is the slowness at point (x;,z, ).

2.2  Pseudo-Bending Method

This method was developed by Um and Thurber [6], based on the ray path that
is represented by a linear interpolation from a number of points. This method
requires an initial trajectory. The initial value is optimized to obtain the final
trajectory that satisfies the ray equation. This can be done by determining the
normal direction of the initial ray trajectories followed by the application of the
Fermat principle.

Um and Thurber proposed a three-point scheme that is successively renewed
satisfying the Fermat principle along the ray. Figure 1 shows three points r_,

and ¢, as well as the initial-guess point . The pseudo-bending method will

update the initial-guess point to estimate r"*. This estimation is obtained by
considering the perturbation r_, which is the midpoint between r_, and r

mid i+1"

The vector N that expresses the bending direction is calculated by the formula
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H V- (Vv-m, )n:qt 2
Vv —(Vv-m,)m,|
where
m, = @ (3)
|r|+1 - ri—1|

The distance R along N is obtained by minimization or application of the
Fermat principle on the traveltime equation.
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Figure 1 Ilustration of the three-point perturbation scheme in the pseudo-
bending method.

2.3 Eikonal-Solver Method

Vidale [8,9] proposed a finite difference approximation to the 2D and 3D
eikonal equations. Of course, this finite difference scheme is applied to the
gridded subsurface structure model. Vidale formulation is not accurate for the
case of a heterogeneous structure because it can cause multipathing effects from
other waves such as a head wave. Afnimar & Koketsu [7] proposed a scheme to
solve this problem by applying the Podvin & Lecomte operator [10], and also
provided illumination for the 2D case and propose a new operator for the 3D
case with an illumination condition as well.

The result of the implementation of the above scheme is a travel time at each
grid point. If it is made its contours, it will get the wavefront. The ray can be
calculated by tracing it from the station to the source point, considering that the
ray direction or the wave propagation direction is always perpendicular to the
wavefront.
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2.4 Gradient Inversion Method

The function of seismic wave traveltime t with respect to the defined
parameter, in this case the slowness g as contained in Eq. (1), is a nonlinear

problem because of the heterogeneity of the earth structure. In the gradient
inversion method, a nonlinearity problem can be solved by iteration of the
linearized form of the traveltime function [1], which starts from an initial
model. The linearization form is

K |1
> X 4, At (4)
S0,

The traveltime derivative with respect to the slowness at a knot point can be
formulated as a chain derivative, which involve Eq. (1)

ot ot os(xz2)
S, 0s(x,z) oS,

, ®)
o X=Xxz-1
L Ax | Az
where |, , isaray length at (x, z). In order to ensure that the solution of matrix
Eqg. (4) is stable, it is necessary to apply damping
HAS ~0. (6)

The combination of Egs. (4) and (6) can be written in a more compact form
AAS=d. (7

which can be solved by applying the LSQR method [11]. The uncertainty of the
inversion result is calculated from the square root of the diagonal components of
the covariance matrix

Yo
C=N'_—M(A A) ®

where N is the number of data and M is number of parameters [12].

3 Application to Volcano Structure Model

In this study, we have tried to explore the application of the method described in
section 2 to, the volcano structure as shown in Figure 2 (left). The shape of this
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structure occurs uniquely in the volcano, where there are low-velocity
anomalies associated with magma or fluids or weak zones.

3.1 Model Parameterization

To obtain an accurate inversion result, we must first define a suitable model
parameterization. If the model parameterization is made by using a block
model, as is mostly the case in tomography, a large number of blocks is needed
to describe the geological model well. If the block size is 0.5 km, as shown in
Figure 2 (middle), then the number of variables is 400. This parameterization is
good enough to describe the model, but because of the large number of
variables many blocks will not be crossed by rays, which will result many zero
values in the kernel matrix. In other words, ray coverage will not be good. If the
block size is enlarged, the number of variables will be reduced but the
description of the model will be worse. To solve this problem, we propose to
apply knot-point model parameterization, as shown in Figure 2 (right). With at
distance between knot-points of 2 km, the number of variables is only 36,
whereas the model is described much better, as shown Figure 2 (left). Hence,
this parameterization is very effective compared to the block model. Slowness
distribution at a certain point is calculated using Eq. (1).
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Figure 2 Left: Low velocity model (red). Middle: Parameterizing the model

using blocks with a size of 0.5 km. Right: Parameterizing the model using knot
points with distance between points of 2 km.

3.2 Selection of Ray Tracing Method

Parameter determination as described above is followed by the selection of a
suitable ray tracing method. Application of the pseudo-bending method on this
model will encounter an instability problem, which occurs in the ray calculation
marked by the dashed white line in Figure 3 (left). This is caused by the large
velocity gradient. Gradient calculation using Eqg. (2) is needed for the
minimization of the ray trajectory, but because the gradient is large, it will result
in no solution. A serious problem is the inaccuracy of this method, because it
does not follow the Fermat principle. For example, rays from a source number
7, see (Figure 3 left), that should “avoid” low-velocity zones and should pass
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the high-velocity zones, where the traveltime will be shorter. Likewise rays
from other source points. Another problem with the method is that it requires an
initial trajectory. Usually, the initial trajectory is a straight line, as shown in
Figure 1. If the velocity structure is not too heterogeneous, the trajectory
optimization performed by this method will get the “real” raypath (the one
which has the smallest travel time). However, for a very heterogeneous velocity
structure, which contains low-velocity anomalies, this is not a good method,
because the selection of the initial trajectory close to the actual trajectory is very
difficult. As a result, the trajectory obtained will not turn out as expected.

6 km/s

Depth (km)
Depth (km)

Distance (km) Distance (km)

Figure 3 Left: Application of the pseudo-bending method [6]. Right:
Application of the eikonal-solver method [7].

To overcome the above problems, in this research, we have applied the eikonal-
solver method. The result, as shown in Figure 3 (right), shows that all rays can
be calculated properly. The high velocity gradient problem can be solved,
because the calculation method does not involve the velocity gradient, as is the
case in the pseudo-bending method. Ray trajectories obtained with this method
can avoid low-velocity zones and pass high-velocity zones. This satisfies the
Fermat principle, according to which the travel path must pass through a zone in
the minimum traveltime.

3.3 Application of Gradient Inversion Method

As explained in Section 2.4, the concept of this inversion is the minimization of
the theoretical traveltime and the observational traveltime, which is done
iteratively starting from initial model to get the optimal final model. In order to
test the method developed in this study, we have applied to a synthetic data. The
observational traveltime is the traveltime calculated in the model in Figure 2
(left). To approach the field conditions, where field data always contain noise,
the data were added with Gaussian noise. The initial model applied in the
inversion was 1D model that is commonly used in tomography. It was taken
from the left or right side of the velocity model in Figure 2, from 2 km/s (on the
surface) to 6 km/s (at the basement).
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This synthetic model involves nine source points and nine receivers on the
surface. Consequently, there are 81 observational data with 36 parameters.
Gaussian noise with mean level o=0.0—0.2 is included in the observational
data. To avoid instability in the matrix inversion, norm damping #=5.0 was

applied. The inversion was performed in eight iterations and the solution was
the result whose RMS traveltime difference between two iterations was small
enough.

The inversion result using the observational data without noise is shown in
Figure 4. The selected result is the fourth iteration, where the RMS value was
relatively close to the subsequent iteration result. This result could very well be
close to the desired model. The uncertainty is smaller than 0.3 km/s. The
biggest uncertainties are at the bottom of the model, because of little ray
coverage compared to the top of the model. For the data with a noise level of
0.1, the inversion result, see (Figure 5 middle), still shows the desired output.
The uncertainty, see (Figure 5 right) is still very good for the low-velocity zone,
which is about 0.25 km/s. For data with higher noise levels, as in Figure 6, the
inversion result is less comprehensive compared to the desired output.
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Figure 4 Inversion result with damping ,=5.0 and Gaussian noise level

0=0.0. Left: RMS values of traveltime residual versus iteration. Middle:
Inversion result image at the fourth iteration. Right: Uncertainty of inversion
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Figure 5 Inversion results with damping ,=5.0 and Gaussian noise level

o =0.1. Left: RMS travel time residual versus iteration. Middle: Inversion result
image at the third iteration. Right: Uncertainty of inversion result.
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Overall, the inversion result can successfully reconstruct the low-velocity zones.
The key of this inversion result is the appropriate model parameterization,
followed by a suitable method of ray tracing, so the rays can travel through all

areas between four knot points.
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Figure 6 Inversion results with damping £ =5.0 and Gaussian noise level

o=02. Left: RMS value of traveltime residual versus iteration. Middle:
Inversion result image at the third iteration. Right: Uncertainty of inversion
result.

For comparison, we have also performed an inversion using the same data, but
now applying block-model parameterization and calculating the rays using the
pseudo-bending method that is commonly applied in tomography. With model
parameterization as shown in Figure 2 (middle), the inversion result shown in
Figure 7 (left) does not approach the desired output. This is probably caused by
the inappropriate ray calculation, as discussed in section 3.2. Attempting to
improve the ray coverage, we enlarged the block size to 1 km and 1.5 km; the
inversion results are shown in Figure 7 (middle and right). The low-velocity
anomaly in the deep targets could be somewhat resolved, but it doesn’t describe
the subsurface structure well, because the block size is too large.
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Figure 7 Inversion results with block model and pseudo-bending, damping
4 = 2.0 and without noise. Left: Inversion result for block size 0.5 km. Middle:

Inversion result for block size 1 km. Right: Inversion result for block size 1.5
km.
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4 Conclusion

In this study, firstly, an appropriate model parameterization for low velocity
zones using knot points has been successfully developed. The knot-point model
reduces the number of inversion variables, but it can describe the subsurface
structure very well. Secondly, the eikonal-solver method can overcome the
problems of the pseudo-bending method with, high-velocity gradients and ray
trajectories that do not conform to the Fermat principle. Thirdly, considering
these two points, the inversion results of the proposed method can reconstruct
low-velocity zones well. This is achieved by appropriately describing the
structure and calculating the precise ray tracing. On the other hand, application
of the inversion method using a block model and the pseudo-bending method
doesn’t produce good inversion results.
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