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Abstract. Gravity gradiometry measurement allows imaging of anomalous
sources in more detail than conventional gravity data. The availability of this
new technique is limited to airborne gravity surveys using very specific
instrumentation. In principle, the gravity gradients can be calculated from the
vertical component of the gravity commonly measured in a ground-based gravity
survey. We present a calculation of the full tensor gradient (FTG) of the gravity
employing the Fourier transformation. The calculation was applied to synthetic
data associated with a simple block model and also with a more realistic model.
The latter corresponds to a 3D model in which a thin coal layer is embedded in a
sedimentary environment. Our results show the utility of the FTG of the gravity
for prospect scale delineation.

Keywords: anomaly enhancement; fast Fourier transform (FFT); filtering; gravity,
potential fields methods.

1 Introduction

In gravity and magnetic surveys, the spatial (i.e. horizontal and vertical)
gradients of potential field data may enhance subtle prospect scale anomalies
directly related to the anomalous sources. Recent advances in instrumentation
for gravity data acquisition allow direct measurement of the gradients of all
gravity vector components (g,, g, and g.) along all coordinate directions x, y,
and z. However, measurement of the so-called full tensor gradient (FTG) of the
gravity is generally performed on airborne platforms [1,2]. This tends to limit
the application of FTG gravity surveys to large exploration campaigns with
considerable budgets, i.e. for oil and gas prospecting in difficult tectonic
settings [3,4].

In this paper the term “full tensor gradient of the gravity” refers to the complete
tensor elements of the gravity gradient, although they are obtained from
calculation, not from direct measurement. Furthermore, the complete tensor
elements of the gravity gradient are calculated only from the vertical component
of the gravity commonly measured in the field (i.e. ground-based survey). In the
Fourier domain, the gravity gradient is equal to the multiplication of the gravity
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with the wave number along the direction of the derivative [5]. Using the 2D
FFT technique, we calculated the FTG from the vertical gravity of a simple 3D
block model. The results gave comparable values (with low misfit) to the
gradient tensor from direct calculation using a 3D forward modeling algorithm
[6]. We also applied the method to enhance simulated gravity data associated
with a thin coal layer embedded in a sedimentary environment, with satisfactory
results.

2 Full Tensor Gradient of Gravity

The Full Tensor Gradient (FTG) of the gravity contains first derivatives of all
gravity vector components g = [g,, g,, g&] with respect to the x-, y- and z-
directions in a Cartesian coordinate system, as given by,
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The gravitational acceleration or gravity is a potential gradient (g = —V¢) such
that the tensor components in Eq. (1) are in fact second derivatives of the
potential ¢. Therefore, there is symmetry of the tensor components, i.e.
Gy = Gy, G.. = G and G,. = G, giving only 6 independent tensor components,

i.e. Gy, Gy, Gy, Gyy, G- and G....

The gravitational potential ¢ follows Laplace’s equation V¢ = 0, such that V xg
= 0. Then, by considering the symmetry of the tensor components and the
derivative property of the Fourier transform, we have the following Fourier
transform pairs [5],
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where G.(k..k,), G(k.k) and G.(k.k,) are 2D Fourier transformed gravity

components of g,, g, and g. respectively, while &, and k, are wave numbers with
the following property [5],

K| = (2 +K2) =ik G)

In conventional gravity surveys, the only quantity measured is the vertical
component, i.e. g,. However, the relationships of the horizontal components g,
and g, with the vertical component g. of the gravity in the Fourier domain can
be obtained from Eq. (2) such that,

g © G = Illi" G, (4a)
k
g, & G = I?' G. (4b)

Therefore, the components of the gravity gradient tensor can be theoretically
calculated from the measured gravity anomaly by using the following equation,

A
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where F' is the inverse Fourier transformation and |k| [10. Eq. (5) shows that

the gradient calculation can be performed in the Fourier domain as the
multiplication of an input signal with a filter function. In addition to anomaly
enhancement, gradient maps will exhibit amplified high-frequency components
(including noise) since the filter function is proportional to the spatial frequency
or wave number.
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3 Simple Block Model

We performed a 3D gravity forward modeling to obtain the theoretical gravity
response of a simple block model represented by a symmetrical vertical prism
with constant density contrast relative to its surrounding environment. The
practical formula for calculating the gravitational attraction of a vertical
rectangular prism has previously been proposed by several authors [7,8]. The
vertical component of the gravity (g.) at an observation point at the origin O(0,
0, 0) due to a vertical prism with a unit density is given by [9],

g. =—G[ [ [ xIn(y+x2+y? +2)" 2 4y In(x+(x? +y? +22)"?
(6)

- - V2 z2
+zarctan (z (x* +y* +2z2)"2x71 ! ];2 ] 1 } i
Y z1
where G in this case is the gravitational constant. With edges parallel to the
reference axes, the prism is defined by the minimum and maximum values of
the coordinate interval formed by [x1, x2], )1, 2] and [z1, z3] in x-, y-, and z-
directions respectively.

15000

-5000 g

Figure 1 A perspective view of a simple block model measuring 5 x 5 x 1 km’
at 1 km depth with a density contrast of 0.5 gram/cm”.

In simulating the gravity gradient tensor, several authors have used different
geometrical dimensions for the synthetic model in accordance with the order of
magnitude of their target, i.e. from superficial [e.g. 10] to regional-scale [e.g.
11] anomalous sources. Nevertheless, the gradiometer data are almost linearly
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Figure 2 Full tensor gradient of the gravity (independent components only)
obtained from forward modeling calculation. All components use the same color
scale shown for Ag.. (lower right panel). The vertical gravity response of a
simple 3D block model is shown at the lower left panel.
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Figure 3 Full tensor gradient of the gravity (independent components only)
obtained from FFT calculation with input from vertical gravity response of a
simple 3D block model shown in the lower left panel (noise-free synthetic data).
All components use the same color scale as for Ag,, (lower right panel).
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scalable and independent of the length units [11]. In order to obtain spatially
contrasting results in the gradient calculation, we used a block model with 5 x 5
x 1 km® in x-, y-, and z-directions, located at 1 km depth. The prism with a
density contrast of 0.5 gram/cm’ was positioned at the center of an area of 15 by
15 km® and the calculation of the theoretical gravity anomaly was done for 0.3
by 0.3 km grid cells (Figure 1). Normally distributed (Gaussian) noise with zero
mean and 5% standard deviation was then added to the model response to
simulate real gravity data. The FTG of the gravity was calculated by using the
2D FFT technique [9]. As a comparison, we also calculated the gravity gradient
tensor components of a vertical prism model by using an algorithm proposed by
Montana, et al. [6], the results of which are presented in Figure 2 in the form of
maps for each independent tensor component.

The gradient tensor components from the noise-free and the noise-added
synthetic data are shown in Figure 3 and Figure 4 respectively. The magnitude
of the gradient tensor components is relatively small and they span different
intervals from one component to the other. However, for comparison purposes,
we have used the same colour scale from -2.5 to +2.5 mGal/km (1 mGal/km =
10 Eo6tvos) for all tensor components ([Ag;]) and from 0 to 10 mGal for the
vertical component of the gravity (g,) in Figures 2, 3 and 4. The actual interval
for each component of the noise-free gravity gradient tensor is presented in
Table 1 to the nearest tenth of mGal/km. In general, the smallest magnitude is
the gradient along two perpendicular planar directions (Ag,,), while the largest
is the derivative along horizontal and vertical directions (Ag,. and Ag,.). In
addition, lateral boundaries are mostly enhanced in the gradient containing
components perpendicular to those boundaries (Ag,. and Ag,,) and also in the
vertical gradient (Ag..).

Table 1 Interval values for each component of the noise-free FTG.

Component  Minimum (mGal/km) Maximum (mGal/km)

8 2.6 +1.4
gy 15 +1.5
8 3.9 +3.9
8y 26 +1.4
8- 3.9 +3.9
8 0.5 +5.1

Qualitatively, there is no obvious difference between the FTG of the gravity
from FFT calculation (Figure 3) or from 3D forward modeling (Figure 2). This
comparison validates the approximation of the gravity gradient calculated from
observed gravity data (g,). The tensor components of the gravity gradient
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calculated from noise-added synthetic data (Figure 4) still retain the global
pattern of the corresponding components derived from the 3D forward modeling
presented in Figure 2.
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Figure 4 Full tensor gradient of the gravity (independent components only)
obtained from FFT calculation with input from vertical gravity response of a
simple 3D block model shown at the lower left panel (synthetic data with 5%
gaussian noise). All components use the same color scale as for Ag,. (lower right
panel).
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Table 2 presents the absolute root mean square (RMS) errors of the tensor
components from both the noise-free and the noise-added synthetic data
compared to the result from the 3D forward modeling. The average errors for all
components were 0.100 and 0.529 mGal/km for the noise-free and the noise-
added synthetic data respectively. Because of such error amplification
(approximately 5-fold) due to noise addition (5%) in the synthetic data,
calculated gradients from real or field gravity data having higher noise content
must be interpreted cautiously.

Table 2 RMS error in mGal/km.

Component  Noise Free 5% Noise
8xx 0.139 0.466
&y 0.059 0.307
8z 0.014 0.520
Sy 0.139 0.496
8z 0.014 0.553
82z 0.236 0.831
average 0.100 0.529

4 Simulated Gravity Data

We simulated gravity data associated with a more realistic 3D model in which a
thin coal layer is embedded in a regional sedimentary basin. We used available
seismic data from an area with a typical coal-bed methane (CBM) prospect to
construct the sedimentary layers. The exact location of the area is not relevant,
therefore the coordinates of all subsequent maps were set as arbitrary for an area
of 50 by 50 km®. Figure 5 shows the interpreted horizons from the seismic data
along a South-West to North-East profile. The sedimentary layers overlying the
basement are simply identified as layer-1 to layer-5 with densities estimated
from well data.

Isolated coal spots were added between layer-2 and layer-3 to represent a CBM
bearing formation. Within layer-3, coal spots with different thicknesses (i.e. 20,
50 and 100 meter) are located approximately at a 500 to 800 meter depth
interval. The top of the coal layer coincides with the bottom of layer-2 (see
Figure 5). A density of 1.7 gram/cm’ was assumed for the coal layer, such that
the density contrast with its surrounding, i.e. layer-3 (2.16 gram/cm’), is -0.46
gram/cm’.
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Figure 5 Profile along South-
West to North-East (see inset
map at the left for the position of
the profile in the simulated area)
showing the layer interfaces
from surface to basement with
their respective densities. The
polygons in the inset map are
outlines of the coal layer.
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In 3D gravity forward modeling, a more complex model is usually decomposed
into many small prisms with uniform size. The gravity response of such a model
is the superposition of contribution from each unitary prism expressed in Eq.
(6). For our case it was simpler to use Parker’s formula [9,12] to calculate the
gravity anomaly caused by an uneven, uniform layer of material by means of a
series of Fourier transforms. The relationship between vertical gravity effect
and its causative mass topography #A(r) in the Fourier domain is given by
[12,13],

n—1

Fa) = ~2nGpexpi-|klz) 3. L Forar) ™)
n=1 :

where r denotes position in the x-y plane, k is the 2D wave number, p is the
density, and G is the universal gravitational constant. Eq. (7) is convergent in
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the whole k-plane for zy> 0, where z, is the mean depth of the layer or density
interface. The Fourier transformation has to be performed in 2D since the data
are also 2D, i.e. A(r) is the depth of the density interface (positive downwards)
as a function of the position (x, y). Eq. (7) provides an efficient way to calculate
the gravity effect caused by a subsurface mass anomaly or topography.
Furthermore, it can be easily applied to multi-layer cases as well.

For the forward modeling calculation, horizons of sedimentary layers and
basement were digitized with a 0.25 by 0.25 km® grid interval. The gravity
response calculated for the same grid is presented in Figure 6. The gravity
anomaly maps in Figure 6 represent the basin model without coal layer and the
same model with a coal layer. We can observe the North-South direction of the
regional trend with the lower anomaly at the East reflecting the deepening of the
basement. Having almost the same range in gravity anomaly (from 438.7 to
469.7 mQGal), the difference between these two gravity anomaly maps is hardly
noticeable. This is related to the fact that the effect of the coal layer is very
small due to its geometry (very thin with limited lateral extent) and to the low
density contrast (-0.46 gram/cm’).

The gravity gradient tensor for the simulated data (shown in Figure 7 only for
Ag.. and Ag.,) exhibits very complicated patterns so that it is difficult to identify
the anomalous source from the components of the gradient tensor. Most of the
components do not reflect the anomalous source, i.e. the coal layer. Difficulties
in identifying anomalies from the gradient tensor of simulated data may arise
from the interference between adjacent anomalous sources and the amplification
of high frequency components of the anomalies.

The gravity gradient tensor might be valuable only for prospect scale, hence it is
more appropriate for delineating more isolated gravity anomalies [14].
Therefore, we focused on the gradient tensor components associated with the
thickest coal layer. We can observe the similarity, at least in the pattern, of the
gradient tensor components between the simulated data and the ones from the
simple anomaly (Figure 8 and Figure 9). In these figures the color scale for each
component was set to cover the minimum and maximum values of the gradient
(see the color scale in Figure 7 and Figure 2 for the simulated coal layer and the
simple block model respectively). We can compare Figure 8 and Figure 9 to
Figure 2, note that the simple block model has a positive density contrast while
the coal has a negative density contrast such that the polarity of gradients is
reversed.
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Figure 6 Simulated gravity anomaly maps associated with the basin model
without coal layer (top) and the same model with coal layer (bottom).
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Figure 7 Gradient tensor components associated with the simulated gravity
data, Ag,.(top) and Ag.. (bottom).
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Figure 8 Independent components of the gravity gradient tensor (Ag,., Ag,, and
Ag,.) of the simulated gravity data around the thickest coal layer (left) compared
to the same components from Figure 2 (right).
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Figure 9 Independent components of the gravity gradient tensor (Ag,,, Ag,. and
Ag..) of the simulated gravity data around the thickest coal layer (left) compared
to the same components from Figure 2 (right).
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5 Discussion

It is obvious that the full tensor gradient (FTG) of the gravity contains more
information about the anomalous source than conventional gravity data, i.e.
vertical component (g,) only. In addition, it has interpolative power, which can
be exploited to adapt the survey design as the exploration program progresses
and also to increase the effective resolution of the data [15,16]. Furthermore, the
modeling of gravity data involving their gradients for quantitative interpretation
will result in more sharp lateral boundaries. It is also expected that the use of
gradients in a gravity inversion will reduce the non-uniqueness inherent in the
modeling of the potential fields data [17,18].

In absence of actual measurement of the FTG, the gravity gradients can be
calculated from the vertical component of the gravity by using the 2D FFT
algorithm [9,19]. More information can be extracted from the calculated gravity
gradients as they enhance the anomalous sources, more particularly their lateral
boundaries. However, calculation of gradients in the Fourier domain also
enhances high frequency components and noise present in the data. The latter
necessitates precaution in the qualitative interpretation of the gradient maps.

Our simulations using a simple block model and a more realistic case also
showed that the FTG of the gravity is most appropriate for prospect scale
anomaly delineation. Therefore, the prospect scale or local anomaly must be
identified first by applying conventional regional-residual anomaly separation
based on the spatial frequency content of the anomaly. In the case described in
this paper, the anomaly caused by the coal layer will certainly have a localized
spatial extent relative to a wider anomaly due to the sedimentary environment.
A suite of filtering techniques is available for this purpose [e.g. 20,21].

6 Conclusion

The use of the full tensor gradient (FTG) of the gravity for prospect scale
anomaly delineation has been presented. In this case, the FTG of the gravity
was calculated by using the 2D FFT algorithm from the vertical component of
the gravity (g,). The algorithm was tested by calculating the gradient tensor of a
simple 3D block model and a more realistic 3D model involving thin coal layers
in a sedimentary environment. Detailed observation of independent components
of the gradient tensor shows that the gradients of the isolated anomaly were
similar in pattern to the gradients of the simple block model.

The results presented in this paper are part of our ongoing research. Future
developments will include the inversion of gravity gradient data to obtain
inverse models with less ambiguity and sharper boundaries of anomalies.
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Gravity and magnetic data share similar characteristics, since both are potential-
field data. Therefore, the techniques involving gradient tensor data are also
applicable to magnetic data.
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