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Abstract. Gravity gradiometry measurement allows imaging of anomalous 

sources in more detail than conventional gravity data. The availability of this 

new technique is limited to airborne gravity surveys using very specific 

instrumentation. In principle, the gravity gradients can be calculated from the 

vertical component of the gravity commonly measured in a ground-based gravity 

survey. We present a calculation of the full tensor gradient (FTG) of the gravity 

employing the Fourier transformation. The calculation was applied to synthetic 

data associated with a simple block model and also with a more realistic model. 

The latter corresponds to a 3D model in which a thin coal layer is embedded in a 

sedimentary environment. Our results show the utility of the FTG of the gravity 

for prospect scale delineation. 

Keywords: anomaly enhancement; fast Fourier transform (FFT); filtering; gravity; 

potential fields methods.  

1 Introduction 

In gravity and magnetic surveys, the spatial (i.e. horizontal and vertical) 

gradients of potential field data may enhance subtle prospect scale anomalies 

directly related to the anomalous sources. Recent advances in instrumentation 

for gravity data acquisition allow direct measurement of the gradients of all 

gravity vector components (gx, gy and gz) along all coordinate directions x, y, 

and z. However, measurement of the so-called full tensor gradient (FTG) of the 

gravity is generally performed on airborne platforms [1,2]. This tends to limit 

the application of FTG gravity surveys to large exploration campaigns with 

considerable budgets, i.e. for oil and gas prospecting in difficult tectonic 

settings [3,4]. 

In this paper the term “full tensor gradient of the gravity” refers to the complete 

tensor elements of the gravity gradient, although they are obtained from 

calculation, not from direct measurement. Furthermore, the complete tensor 

elements of the gravity gradient are calculated only from the vertical component 

of the gravity commonly measured in the field (i.e. ground-based survey). In the 

Fourier domain, the gravity gradient is equal to the multiplication of the gravity 
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with the wave number along the direction of the derivative [5]. Using the 2D 

FFT technique, we calculated the FTG from the vertical gravity of a simple 3D 

block model. The results gave comparable values (with low misfit) to the 

gradient tensor from direct calculation using a 3D forward modeling algorithm 

[6]. We also applied the method to enhance simulated gravity data associated 

with a thin coal layer embedded in a sedimentary environment, with satisfactory 

results. 

2 Full Tensor Gradient of Gravity 

The Full Tensor Gradient (FTG) of the gravity contains first derivatives of all 

gravity vector components g = [gx, gy, gz] with respect to the x-, y- and z-

directions in a Cartesian coordinate system, as given by, 

  ; i, j = x, y or z. (1) 

The gravitational acceleration or gravity is a potential gradient (g = ) such 

that the tensor components in Eq. (1) are in fact second derivatives of the 

potential . Therefore, there is symmetry of the tensor components, i.e. 

Gxy = Gyx, Gxz = Gzx and Gyz = Gzy giving only 6 independent tensor components, 

i.e. Gxx, Gxy, Gxz, Gyy, Gyz and Gzz. 

The gravitational potential follows Laplace’s equation 
2
 = 0, such that g 

= 0. Then, by considering the symmetry of the tensor components and the 

derivative property of the Fourier transform, we have the following Fourier 

transform pairs [5], 
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 , (2c) 

where Gx(kx,ky), Gy(kx,ky) and Gz(kx,ky) are 2D Fourier transformed gravity 

components of gx, gy and gz respectively, while kx and ky are wave numbers with 

the following property [5], 

 k = (kx
2 +ky

2 ) = ikz . (3) 

In conventional gravity surveys, the only quantity measured is the vertical 

component, i.e. gz. However, the relationships of the horizontal components gx 

and gy with the vertical component gz of the gravity in the Fourier domain can 

be obtained from Eq. (2) such that, 

 gx Û Gx =
ikx

k
Gz , (4a) 

 gy Û Gy =
i ky

k
Gz . (4b) 

Therefore, the components of the gravity gradient tensor can be theoretically 

calculated from the measured gravity anomaly by using the following equation, 

 , (5) 

where F
-1

 is the inverse Fourier transformation and . Eq. (5) shows that 

the gradient calculation can be performed in the Fourier domain as the 

multiplication of an input signal with a filter function. In addition to anomaly 

enhancement, gradient maps will exhibit amplified high-frequency components 

(including noise) since the filter function is proportional to the spatial frequency 

or wave number. 
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3 Simple Block Model 

We performed a 3D gravity forward modeling to obtain the theoretical gravity 

response of a simple block model represented by a symmetrical vertical prism 

with constant density contrast relative to its surrounding environment. The 

practical formula for calculating the gravitational attraction of a vertical 

rectangular prism has previously been proposed by several authors [7,8]. The 

vertical component of the gravity (gz) at an observation point at the origin O(0, 

0, 0) due to a vertical prism with a unit density is given by [9], 
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 (6) 

where G in this case is the gravitational constant. With edges parallel to the 

reference axes, the prism is defined by the minimum and maximum values of 

the coordinate interval formed by [x1, x2], [y1, y2] and [z1, z2] in x-, y-, and z-

directions respectively. 

 

Figure 1 A perspective view of a simple block model measuring 5 × 5 × 1 km
3
 

at 1 km depth with a density contrast of 0.5 gram/cm
3
. 

In simulating the gravity gradient tensor, several authors have used different 

geometrical dimensions for the synthetic model in accordance with the order of 

magnitude of their target, i.e. from superficial [e.g. 10] to regional-scale [e.g. 

11] anomalous sources. Nevertheless, the gradiometer data are almost linearly 
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Figure 2 Full tensor gradient of the gravity (independent components only) 

obtained from forward modeling calculation. All components use the same color 

scale shown for gzz (lower right panel). The vertical gravity response of a 

simple 3D block model is shown at the lower left panel. 

 

 



112 Hendra Grandis & Darharta Dahrin 

 

Figure 3 Full tensor gradient of the gravity (independent components only) 

obtained from FFT calculation with input from vertical gravity response of a 

simple 3D block model shown in the lower left panel (noise-free synthetic data). 

All components use the same color scale as for gzz (lower right panel). 
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scalable and independent of the length units [11]. In order to obtain spatially 

contrasting results in the gradient calculation, we used a block model with 5 × 5 

× 1 km
3
 in x-, y-, and z-directions, located at 1 km depth. The prism with a 

density contrast of 0.5 gram/cm
3
 was positioned at the center of an area of 15 by 

15 km
2
 and the calculation of the theoretical gravity anomaly was done for 0.3 

by 0.3 km grid cells (Figure 1). Normally distributed (Gaussian) noise with zero 

mean and 5% standard deviation was then added to the model response to 

simulate real gravity data. The FTG of the gravity was calculated by using the 

2D FFT technique [9]. As a comparison, we also calculated the gravity gradient 

tensor components of a vertical prism model by using an algorithm proposed by 

Montana, et al. [6], the results of which are presented in Figure 2 in the form of 

maps for each independent tensor component. 

The gradient tensor components from the noise-free and the noise-added 

synthetic data are shown in Figure 3 and Figure 4 respectively. The magnitude 

of the gradient tensor components is relatively small and they span different 

intervals from one component to the other. However, for comparison purposes, 

we have used the same colour scale from -2.5 to +2.5 mGal/km (1 mGal/km = 

10 Eötvös) for all tensor components ([gij]) and from 0 to 10 mGal for the 

vertical component of the gravity (gz) in Figures 2, 3 and 4. The actual interval 

for each component of the noise-free gravity gradient tensor is presented in 

Table 1 to the nearest tenth of mGal/km. In general, the smallest magnitude is 

the gradient along two perpendicular planar directions (gxy), while the largest 

is the derivative along horizontal and vertical directions (gxz and gyz). In 

addition, lateral boundaries are mostly enhanced in the gradient containing 

components perpendicular to those boundaries (gxx and gyy) and also in the 

vertical gradient (gzz). 

Table 1 Interval values for each component of the noise-free FTG. 

Component Minimum (mGal/km) Maximum (mGal/km) 

gxx -2.6 +1.4 

gxy -1.5 +1.5 

gxz -3.9 +3.9 

gyy -2.6 +1.4 

gyz -3.9 +3.9 

gzz -0.5 +5.1 

Qualitatively, there is no obvious difference between the FTG of the gravity 

from FFT calculation (Figure 3) or from 3D forward modeling (Figure 2). This 

comparison validates the approximation of the gravity gradient calculated from 

observed gravity data (gz). The tensor components of the gravity gradient 
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calculated from noise-added synthetic data (Figure 4) still retain the global 

pattern of the corresponding components derived from the 3D forward modeling 

presented in Figure 2.  

 

Figure 4 Full tensor gradient of the gravity (independent components only) 

obtained from FFT calculation with input from vertical gravity response of a 

simple 3D block model shown at the lower left panel (synthetic data with 5% 

gaussian noise). All components use the same color scale as for gzz (lower right 

panel). 
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Table 2 presents the absolute root mean square (RMS) errors of the tensor 

components from both the noise-free and the noise-added synthetic data 

compared to the result from the 3D forward modeling. The average errors for all 

components were 0.100 and 0.529 mGal/km for the noise-free and the noise-

added synthetic data respectively. Because of such error amplification 

(approximately 5-fold) due to noise addition (5%) in the synthetic data, 

calculated gradients from real or field gravity data having higher noise content 

must be interpreted cautiously.  

Table 2 RMS error in mGal/km. 

Component Noise Free 5% Noise 

gxx 0.139 0.466 

gxy 0.059 0.307 

gxz 0.014 0.520 

gyy 0.139 0.496 

gyz 0.014 0.553 

gzz 0.236 0.831 

average 0.100 0.529 

4 Simulated Gravity Data 

We simulated gravity data associated with a more realistic 3D model in which a 

thin coal layer is embedded in a regional sedimentary basin. We used available 

seismic data from an area with a typical coal-bed methane (CBM) prospect to 

construct the sedimentary layers. The exact location of the area is not relevant, 

therefore the coordinates of all subsequent maps were set as arbitrary for an area 

of 50 by 50 km
2
. Figure 5 shows the interpreted horizons from the seismic data 

along a South-West to North-East profile. The sedimentary layers overlying the 

basement are simply identified as layer-1 to layer-5 with densities estimated 

from well data. 

Isolated coal spots were added between layer-2 and layer-3 to represent a CBM 

bearing formation. Within layer-3, coal spots with different thicknesses (i.e. 20, 

50 and 100 meter) are located approximately at a 500 to 800 meter depth 

interval. The top of the coal layer coincides with the bottom of layer-2 (see 

Figure 5). A density of 1.7 gram/cm
3
 was assumed for the coal layer, such that 

the density contrast with its surrounding, i.e. layer-3 (2.16 gram/cm
3
), is -0.46 

gram/cm
3
. 
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Figure 5 Profile along South-

West to North-East (see inset 

map at the left for the position of 

the profile in the simulated area) 

showing the layer interfaces 

from surface to basement with 

their respective densities. The 

polygons in the inset map are 

outlines of the coal layer. 

In 3D gravity forward modeling, a more complex model is usually decomposed 

into many small prisms with uniform size. The gravity response of such a model 

is the superposition of contribution from each unitary prism expressed in Eq. 

(6). For our case it was simpler to use Parker’s formula [9,12] to calculate the 

gravity anomaly caused by an uneven, uniform layer of material by means of a 

series of Fourier transforms. The relationship between vertical gravity effect 

and its causative mass topography h(r) in the Fourier domain is given by 

[12,13], 
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where r denotes position in the x-y plane, k is the 2D wave number,  is the 

density, and G is the universal gravitational constant. Eq. (7) is convergent in 
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the whole k-plane for z0> 0, where z0 is the mean depth of the layer or density 

interface. The Fourier transformation has to be performed in 2D since the data 

are also 2D, i.e. h(r) is the depth of the density interface (positive downwards) 

as a function of the position (x, y). Eq. (7) provides an efficient way to calculate 

the gravity effect caused by a subsurface mass anomaly or topography. 

Furthermore, it can be easily applied to multi-layer cases as well. 

For the forward modeling calculation, horizons of sedimentary layers and 

basement were digitized with a 0.25 by 0.25 km
2
 grid interval. The gravity 

response calculated for the same grid is presented in Figure 6. The gravity 

anomaly maps in Figure 6 represent the basin model without coal layer and the 

same model with a coal layer. We can observe the North-South direction of the 

regional trend with the lower anomaly at the East reflecting the deepening of the 

basement. Having almost the same range in gravity anomaly (from 438.7 to 

469.7 mGal), the difference between these two gravity anomaly maps is hardly 

noticeable. This is related to the fact that the effect of the coal layer is very 

small due to its geometry (very thin with limited lateral extent) and to the low 

density contrast (-0.46 gram/cm
3
). 

The gravity gradient tensor for the simulated data (shown in Figure 7 only for 

gxx and gzz) exhibits very complicated patterns so that it is difficult to identify 

the anomalous source from the components of the gradient tensor. Most of the 

components do not reflect the anomalous source, i.e. the coal layer. Difficulties 

in identifying anomalies from the gradient tensor of simulated data may arise 

from the interference between adjacent anomalous sources and the amplification 

of high frequency components of the anomalies. 

The gravity gradient tensor might be valuable only for prospect scale, hence it is 

more appropriate for delineating more isolated gravity anomalies [14]. 

Therefore, we focused on the gradient tensor components associated with the 

thickest coal layer. We can observe the similarity, at least in the pattern, of the 

gradient tensor components between the simulated data and the ones from the 

simple anomaly (Figure 8 and Figure 9). In these figures the color scale for each 

component was set to cover the minimum and maximum values of the gradient 

(see the color scale in Figure 7 and Figure 2 for the simulated coal layer and the 

simple block model respectively). We can compare Figure 8 and Figure 9 to 

Figure 2, note that the simple block model has a positive density contrast while 

the coal has a negative density contrast such that the polarity of gradients is 

reversed. 
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Figure 6 Simulated gravity anomaly maps associated with the basin model 

without coal layer (top) and the same model with coal layer (bottom). 
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Figure 7 Gradient tensor components associated with the simulated gravity 

data, gxx(top) and gzz (bottom). 
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gxx 

  

gxy 

  

gxz 

  

Figure 8 Independent components of the gravity gradient tensor (gxx, gxy and 

gxz) of the simulated gravity data around the thickest coal layer (left) compared 

to the same components from Figure 2 (right).  
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gyy 

  

gyz 

  

gzz 

  

Figure 9 Independent components of the gravity gradient tensor (gyy, gyz and 

gzz) of the simulated gravity data around the thickest coal layer (left) compared 

to the same components from Figure 2 (right).  
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5 Discussion  

It is obvious that the full tensor gradient (FTG) of the gravity contains more 

information about the anomalous source than conventional gravity data, i.e. 

vertical component (gz) only. In addition, it has interpolative power, which can 

be exploited to adapt the survey design as the exploration program progresses 

and also to increase the effective resolution of the data [15,16]. Furthermore, the 

modeling of gravity data involving their gradients for quantitative interpretation 

will result in more sharp lateral boundaries. It is also expected that the use of 

gradients in a gravity inversion will reduce the non-uniqueness inherent in the 

modeling of the potential fields data [17,18]. 

In absence of actual measurement of the FTG, the gravity gradients can be 

calculated from the vertical component of the gravity by using the 2D FFT 

algorithm [9,19]. More information can be extracted from the calculated gravity 

gradients as they enhance the anomalous sources, more particularly their lateral 

boundaries. However, calculation of gradients in the Fourier domain also 

enhances high frequency components and noise present in the data. The latter 

necessitates precaution in the qualitative interpretation of the gradient maps. 

Our simulations using a simple block model and a more realistic case also 

showed that the FTG of the gravity is most appropriate for prospect scale 

anomaly delineation. Therefore, the prospect scale or local anomaly must be 

identified first by applying conventional regional-residual anomaly separation 

based on the spatial frequency content of the anomaly. In the case described in 

this paper, the anomaly caused by the coal layer will certainly have a localized 

spatial extent relative to a wider anomaly due to the sedimentary environment. 

A suite of filtering techniques is available for this purpose [e.g. 20,21]. 

6 Conclusion 

The use of the full tensor gradient (FTG) of the gravity for prospect scale 

anomaly delineation has been presented. In this case, the FTG of the gravity 

was calculated by using the 2D FFT algorithm from the vertical component of 

the gravity (gz). The algorithm was tested by calculating the gradient tensor of a 

simple 3D block model and a more realistic 3D model involving thin coal layers 

in a sedimentary environment. Detailed observation of independent components 

of the gradient tensor shows that the gradients of the isolated anomaly were 

similar in pattern to the gradients of the simple block model. 

The results presented in this paper are part of our ongoing research. Future 

developments will include the inversion of gravity gradient data to obtain 

inverse models with less ambiguity and sharper boundaries of anomalies. 
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Gravity and magnetic data share similar characteristics, since both are potential-

field data. Therefore, the techniques involving gradient tensor data are also 

applicable to magnetic data.  
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