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Abstract. In the present investigation, we use the Jackson (p,q)-differential
operator to introduce the extended Salagean operator denoted by R{;,q. Certain bi-
univalent function classes based on operator R’;‘q related to the Chebyshev
polynomials are introduced. First two coefficient bounds and Fekete-Szego
inequalities for the function classes are established. A number of corollaries are
developed by varying parameters involved.
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1 Introduction

The g-calculus has great applications in the space of geometric functions theory
because of their usefulness in the area of ordinary fractional calculus and
optimal control problems. Jackson (see [1,2]) developed the concept of g-
integral and g-derivative and much later its geometrical interpretation was
identified through studies of quantum groups. This has attracted the attention of
several researchers. Researchers all over the globe have applied it to construct
and investigate several classes of analytic and bi-univalent functions. For recent
expository work on so called post-quantum calculus or (p,q) calculus, see [3,4].
We here recall the definition of fractional g-calculus operators of complex
valued function f(z).

Definition 1.1. (see [3]) The (p,q)-derivative of f is defined as:
f(pz)—f(q2)
(Dpgf)(2) = ,(p—q)z (z+#0) Q)
f(0)

provided that f is differentiable at 0. Now D,, ,z" = [n],, ,z" !, where
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[lpg =" (0<q<p<1) @)

refers to a twin-basic number. For p=1, the Jackson (p,q)-derivative reduces to
the Jackson g-derivative given by:

(Daf) (@) = FELE (7 2 0).

The class of all analytic functions f normalized by f(0) = f'(0)—1=0 is
given by:
f@) =z+Xnp0,2" (zEV) ©)

where U: = {z € C:|z| < 1} represents the open unit disk. We denote such class
by A. Let S represent the class of all analytic univalent functions of the form (3)
inU. Letf,g € A. Then f is subordinate to g, written as f < g, if there is an
analytic function w in U with w(0)=0 and |w(z)|<1 such that f(z)=g(w(z)) (z €
U) (see [5, 6]). “The Koebe One-Quarter-Theorem asserts that the image of U

under every function f € S contains a disk of radius %. Therefore, the inverse of
f €Sis a univalent analytic function on the disk U, = {z:z € C and |z| <
pp= %}”, see [7]. For each f € S, f(z) = w has an inverse function f~1(w) of
f(z) defined as:

gw) = f~1w)

=W - a2W2 + (Za% —_ a3)W3 — (Sag — 5a2a3 + a4)W4 + .- (4)

If both f,f~1 € Sthen f is said to be bi-univalent in U. The class of all
functions f given by (3) is denoted by Y. For a detailed history and other related
properties of functions in the class Y. , see recent works in [8-13].

For a function f given by (3), a simple calculation shows that
Dp‘qf(Z) =1+ Z?lo=2[n]p,q anzn_l- (5)

The (p,q)-analogue of Salagean differential operator R,’,flq:A - A(k €Ny =
N U {0}) is defined by:

RYof(2) = £(2)
Ry of (2) = 2(Dyaf (@),

Ryqf (2) = Ry q(Rpg'f(2)) (6)

Thus, for a function f(z) of the form (3), we have:
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Rpaf(2) =z + Xiza[nlpq anz". (7)

Similarly, for a function g of the form (4), we have:
RE,9(W) =w — [2]F sa,w? + (2a5 — a3)[3]% ;w3 —

(5a3 — 5a,a3 + a)[4]5 w* + - (8)

From above, we observe that:

p_)iigf_l)l_R;';.qf(Z) =z+ p—)ii;’r—l)l— Z?f:z[n]’{;,q anz"

=z+ Y% ,n*a, z" = D*f(2), 9
where D¥ is the Salagean differential operator which was defined in [14] and
has been studied by several authors.

Chebyshev polynomials of the first and second kind and their properties have
been studied by several researchers (see, for details [15,16]). We consider

L_(zeU)

1-2tz+z2

L(z,t) =

T

as its generating function. Taking t = cosa,a € ( 3 ,g),we have:

1

L(Z’ t) = 1-2cos az+z?
=1+2cosaz+ (3cos?a —sin?a)z? + -
=1+ U (t)z+ Uy(t)z2 + - (z€U,t € (—1,1)), (10)
; -1
where U,,_, (t) = Sm\(/io_fstzt)(n € N). Thus we have
U, (t) = 2t Us(t) = 8t3 — 4t,
1 3 (1)
Uy (t) = 4t? —1, Uy(t) = 16t* — 122 + 1, ...

Recently, several researchers, Altinkaya and Yalcin [17-19], Bulut et al. [20,21]
Guney et al. [22] and Caglar [23] (also see [24]) to mention a few, have
obtained Fekete-Szego inequalities and some coefficient bounds for different
subclasses of bi-univalent functions. Motivated by the above researchers, we
consider two subclasses of bi-univalent functions that are obtained by using the
D,,q operator of the Salagean type associated with the Chebyshev polynomial.

Definition 1.2. A function f € ). defined as Eq. (3) belongs to the function
class Ry, . (v, £)(0 < y < 1) if the conditions
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RKY2f(2)
RE*1f(2)

REYYF(2)
RE .f(2)

(1-7y) +y <Lz (3<t<Lzev), (12)

and

_ qu g(W) R}pf._{lzg(w) 1 .
(= 1) i + ¥ g < LW G<t<uweuv) @)

are satisfied, where g is stated in (4).

By specializing the parameters y,p, g and k in the above definition, we obtain
the various subclasses of }..

Definition 1.3. A function f € Y. belongs to the function class TZk.p,q (B, v) if

Rp qf(Z)

(1 =P L=+ B(RE4f(2)) < L(z,D), (14)

and

RE a9(w) /
(1 B) AT 1 B(RE .9(W)) < L(w, t) (15)
(0< B <1,5<t<1;zweU) hold where RS ,f (2) and Rf ;g (w) are
given by Eq. (7) and Eq. (8) respectively.

Remark 14. For p—->1,q—->1-, we get the class Téc,l,l_(ﬁ' t) =
F5(B,L(z,t)) consists of function f € ¥ and satisfying

1- 2D 4 Bk f(2)) < L(zt)

and

(1 B2 1 (kg (w)) < L(w,0).
This class is due to Guney et al.[22].

Remark 1.5. For p —» 1,q —» 17and k=0, we obtain the class Ty, ,-(B,t) =
By (B,t) (see[20, 21]) where f € ¥ satisfying

-2+ @) < Lz D

and

1 - AL+ Bgw))’ < L(w,0).
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In this work, we investigate the first two coefficient bounds and Fekte-Szego
inequalities in the above newly constructed function classes by using the
Chebyshev polynomial.

2 Coefficient Bounds

In the following theorems, we establish Chebyshev polynomial bounds |a,| and
|as| for the function classes RIZ(,p,q (y,t) and Tz"_p,q B, 1).

Theorem 2.1. Assume that f €) defined as Eg. (3) is in the class
1
RS o (v, D) (E <t< 1). Then

2t\2t
92| < Ja e (16)
and
4t?
<
|(13| - [2]%;{%([Z]p,q_l)z(1+V([2]p,q_1))2
2t
+ [3]§,q([3]p,q_1)(1+]’([3]p,q_1))' (17)
where
Ay = Bl g1+ v([Blpq — D)(Blpg — D — [2135Q +v([215 4 -
1))([2]p,q - 1); (18)
and
Ay = 2155+ v([2]p, — D) ([2]pq — D2 (19)

Proof: Assume that f € Rlip'q(y, t). Definition 1.2 yields:

_ \REET@ REY2f(2) 2
A -NBLD+y BB+ 0, 0@ + L@+ (20)
and
k+1 k+2
(1—y) R d™) | Bog 60 _ 4\ 7 (yg(w) + Uy (D)s2(w) + - (21)

RE .gw) yR’;f{;lg(W)
where r(z) and s(w) are analytic functions given by
r(2) = 1z + 2% + ¢c323 + -+, (22)
s(w) = dyw +dyw? + dyw3 + -+, (23)
where r(0) =s(0) =0,|r(2)| < 1,|sw)| <1 (z,w € U). If |r(z)|] < 1and
[s(w)] < 1, then
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lc;l <1and|d;]| <1 foralli € N.

Making use of Eq. (22) in Eq. (20) and Eq. (23) in Eq. (21), we get

REVZf(2)
REFLf(2)

REVf (2)
RE . f(2)

=1 + Ul(t)clz + [Ul(t)CZ + Uz(t)clz]zz + .-

1-v) +y

and
_ _\REE'aw) RERZg(w)
=7 RE g(w) + RE*1g(w)

It follows from Eq. (7) and Eq. (8) that

_ \REE@ REV2f(2)
=N gm TR

=1+ 215, +v([2]pq — D)([2]p,q — Dazz + ([Blpq —

(24)

(25)

(26)

D{B15,41 +¥(Blpg — D)as = (121p,q — D215 + (2154 -

1)az)z® + -
and
k+2

Rk g(w) Ry g(w)
(1= ) By T = 1= (215, (14 Y (2] =

D)([2 ]p, = Dayw + [{2([3]p,q ~ DBl +y([Blpq — D) -
([z]p,q - 1) [2]§,q(1 + Y([Z]lz),q - 1))}‘1% - [3]§,q(1 + y([B]p,q -

1))([3]p,q - 1)a3]W2 + -
Using Eq. (27) in Eg. (25) and Eqg. (28) in Eq. (26), we obtain:

+[2]54 (1 +y([2)pq - 1)) ([2lpq = 1)azz + [([3]p.q -
) 31 (14 7([3pq - 1)) as = ([21pq — DI21Z5 (1 +
v([2134 — 1)) az] z2+ =14 U (t)cyz + [U;(t)c, +
U, (O)ct]z* + -

and

(27)

(28)

(29)
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1= ([2]p,q = D121 g (1+7([2]g — 1)) @200 + [ {21310 -

D31 q (1+7(Blog = 1)) = (1 +¥([20q ~ 1D)((2)pq
D)[21353a3 = ([31pq — 1) 138154 (1 +¥([31p — 1)) as] w? + -
=1+ U;()dyo + [U;(t)d, + Uy(t)d?|w? + - (30)

Equating the coefficients in Eq. (29) and Eq. (30), we get:

(121 — D215 q (1 +¥([2)pq = 1)) @2 = Us(B)ey, (31)

~([21pq — 1213 (1 +¥([213 — 1)) a3 + (350 — )BIS, (1+

y([3lpq — 1)) @ = Ur(B)c, + Uz (6)cF, (32)
and

~([2lpq = D21 (1+¥([2)pq — 1)) a2 = Us(8)dy, (33)
and

{2([ ) pq(l"'y( pq_l)) pq_l) 1%]51(

V([Z]p,q 1))} a5 — ([8lpq — 1)[Bl54 (1 +y([3] ) as =

U (t)dy + Up(t)ds. (34)
From Eg. (31) and Eq. (33), we obtain:

c1 = —dy, (35)

and

2([2] 1) (1 +y([2],4 — 1))2 a3
= UF(t)(cf + d%)- (36)

Adding Eqg. (32) and Eqg. (34) and using Eqg. (36) in the resulting equation, we
obtain:

[2([3]7741 - 1) pq (1 + 7’( pa 1)) - 2([2]p.q - 1)[2]% (1 +

r([213 = 1)) = 53 22035 (121 = D) [1+¥([20pq — V)] ] af =

Uy (t)(c2 +d3), (37)
which gives:
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2 _ (Cz+d2)U13(t)
2 = a2 (0-4,0,0]° (38)

where A, and A, are given in Eq. (18) and Eq. (19) respectively. Applying Eq.
(24) to the coefficients ¢, and d, and using Eqg. (11) in Eqg. (38), we get the
desire estimate for |a,|.

Subtracting Eq. (34) from Eq. (32) and using Eq. (35) and Eq. (36) in the
resulting equation yields:

(c2+a2)ui(e) (c2—=d3)U, (t) (39)

a3 22124 ([21p.q-1) [1+7([21pg-1)]°  2[315,4(Blpg=1)[1+¥([8]p,q=1)]

Taking the coefficient inequalities for cy,c,,dyand d, from Eq. (24) and
making use of Eq. (11) in Eq. (39) we get the estimate for |a3| as stated in Eq.
(17). This proves the Theorem 2.1.

Letting p — 1 and g— 1~ in Theorem 2.1, we get the result for the class
R | -1y, 1) = ME(y,L(z,1)) due to Guney et al. [22] as follows:
Corollary 2.2 (see [22]): Let f € Mf(y,L(z, t)).Then

< 2tV2t
T VI2(1+2y)38—(y (y +5)+2)22K]4t2+22K (1+7)?|

la,|

and

4t? t
az| < .
las| < (1+y)222k + (1+2y)3k

Letting y = 0 in Theorem 2.1, the following result for the function class
R§ ,4(0,0) = Nyt (t) is obtained.

Corollary 2.3. If f € N¢t, . (t), then

2t/2t

j I[([3]p,q=DI31E 4= ([2]p,q— D212 4t2+([2]p,g - 12 [2]5K |

laz| <

and

2t 4t2
31K q(Blpg—1) = [2135([2lpq—1? "

las| <

Letting p —» 1and q — 1~ in the above corollary, we get the following result
for the class R ; ;- (0,£) = Ny (t).
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Corollary 2.4. Let f € Ny (t). Then

2tV/2t
\/|(3k—22k)8t2+22k|’

laz| <

and

4t2

t
|a3| S?"‘ﬁ

Putting y = 1 in Theorem 2.1, the result for the class R’Z"p'q(l, t) = Uflp.q (t)is
as follows:

Corollary 2.5. Let f € U, .(t). Then
2ty2t

|a2 | S k & )
\/|[([3]p,q_1) [3]pI11_([2]p,q_1)[2]§Z+3]4t2 +[2];27,q+2 ([2]p,q _1)2 |

and

4t2 2t
az| < + .
|5 21252 ([2]pq—D? * (Blpg—DIBIEL

Taking p —» 1, —» 17and y = 1 in the above theorem, the result for the class
R§ 1 1-(1,1) = K (L(z, 1)) is obtained.

Corollary 2.6 (see [22]): If f € K¢ (L(z,t)) , then

tvat

\/|[3k+1_22(k+1)]2t2+22k|

laz| <

and

t2 t

|a3| Sﬁ‘l‘@'

Theorem 2.1 for k=0 gives

Corollary 2.7. Let the function f € Vs, , (v, ) (= Rip,q (v, t)). Then
2t/2t
N A
and

las| < 4t2 n 2t
3l = (1+V([2]p,q_1))2([2]p,q_1)2 (1+V([3]p,q_1))([3]p,q_1)’
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where

My =1 +y([Blpg — D)[Blpg — 1) — (2lpg — DI +r (2154 —
1) + ([Z]p,q - 1)(1 + V([Z]p,q - 1))2}:

and
M, =(1+ Y([Z]p,q - 1))2([2]p,q - 1)2-
Letting p — 1 and g — 17in the above result, we get

Corollary 2.8. Let f € Vs:(y,t)(= Ry 1 1- (v, ). Then

2t\2t
JIA+Z-(y+y2)at?|

laz| <

and

4t2 n t
1+y)2  1+2y

las| <

Putting y = 0 in the above corollary gives the following.

Corollary 2.9. Let f € V5 (£)(= V5 (0, t). Then
|a2| < Zt\/ﬂ,

and
lag| <t + 4t

Putting y = 1 in Corollary 2.8 gives:

Corollary 2.10. Let f € @y (£)(= Vx(1,1)). Fort # iz we have
V2t

|[1—2¢2]

laz| <

and

las| < 2+

Theorem 2.11. Let f € T, (B, ). Then

2tv2t

|a2| < 2
j I[[31% g (1+2B)—[2]5 4 (1+B)2]4t2+[2]2K (1+)?|

(40)

and
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las| < (1+z;>t[3]’,§,q (1+[;§§2[2]%fi; ' (41)
Proof: Let f € Ty, . (B,t). Proceeding as before, we have

1+ B)[2]% gaz = Uy (D)cy, (42)

(14 2B)[3]% jas = Uy (t)c; + Uy (t)c? (43)
and

—(1+ B)[2]5 402 = U1 (H)dy, (44)

(1+2B)(2a5 — a3)[3]5,4 = U1()d, + U (t)di, (45)
It follows from Eq. (42) and Eq. (44) that

c; = —dq, (46)

2(1+ p)?[2155a5 = UF (&) (ct + ai). (47)
Similarly, from Eq. (43) and Eq. (45) we have:

2(1+2B)[315,445 = Ur(t)(cz + da) + U () (cf + d7). (48)
Using Eq. (47) in Eqg. (48) and simplifying we get:

a2 = k(Cz:dz)Uf(t) — _

2[(1+2B)[31f U (- (1+B)2 (213 U> (0] (49)

Putting the values of U, (t), U,(t) from Eqg. (11) and using Eqg. (24) in Eq. (49)
we get the desire estimate for |a,| as given by Eq. (40).

Subtracting Eq. (45) from Eqg. (43) and making use of Eq. (46) and Eq. (47) in
the resulting equation and simplifying, we get:

— (cp—d3)Uq(t) (sz—dzz)lhz(t) (50)
200+2p) 31K, ~ 2(1+2B)2[3]2K

3

Using Eq. (11) and Eqg. (24) in Eq. (50) we get the bounds for |as|. The proof of
Theorem 2.11 is completed.

Taking g = 17,p = 1in Theorem 2.11, the result for the class TZ",Ll- B, (=
F§ (B, L(z,1)) is obtained.

Corollary 2.12. Let f € Y, given by Eq. (3) be in the class Fz"(ﬁ,L(z, t)). Then
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2tV2t
VI[(A+2p)3k—(1+p)222K]4t2+(1+p)222K|

laz| <

and

2t 42
las| < (1+2pB)3k + (1+B)222K

Putting 8 = 0in Corollary 2.12 we get the result for the function class
Ty, 1-(0,0) = F (L(z,1)) as follows:
Corollary 2.13 (see [22]): Let f € F§f(L(z,t)). Then

2ty2t
\/|[3k_22k]4t2+22k|’

laz| <

and
2t . 4t?
|a3| S?‘l‘ﬁ .

Corollary 2.13 for B =1 vyields the result for the class Tz'"lll-(l,t)z
H (L(z,1)) as below.

Corollary 2.14. Let f € Hg(L(z,t)). Then

2t\2t

la,| < )
\/l[3k+1_22(k+1)]4_t2+22(k+1)|

and

2t t2
|a3| < -3k+1_ + ﬁ

Corollary 2.12 for k=0 gives the result for the class Tz",m-(ﬁ, t) =
F5 (B, L(z,t)) as below.
Corollary 2. 15. Let f € F5(B, L(z,t)). Then

2t\/2t
JIB+1)2-4p%¢2]

laz| <

and

2t 4t2
las| < 1+28 t+ (1+p)2"
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Putting £ =0 in Corollary 2.15 gives the result for the function
class Ty, 1-(0,t) = Tx (t).

Corollary 2. 16. Let f € Ty (¢). Then
la,| < 2tV2t,
and
lag| < 2t + 4t2.
Letting 8 = 1 in Corollary 2.15, we get the result for the class Fx(1,L(z,t)) =
Fy(L(z1)).
Corollary 2.17. Let f € Fy(L(z,t)). Then

tvat

|a2| S mi

and

2
las| < t? +3t .

3 Fekete-Szego Inequalities

In the following section, we obtain the Fekete-Szego problems for the function
class R'Z‘,p,q (y,t) and Tzk,p,q (B, t) as follows:

Theorem 3.1. Let f € R§ , . (y, ©). Then

Az
2t —=+M.
e =D, o (D) In—1] < | : 5|
|a3 _ na%l < p.q p.q p.q (51)
8t3|1-7| fT‘E+M3
47 =12 15
where
M3 =M5_M4_A2, (52)
My = ([2]p — D215 A +v (2154 — D) (53)
M5 = ([3]p,q - 1)[3]5,61(1 + V([3]p,q - 1)) (54)

and A; is defined in Eq. (19).

Proof: It follows from Eqg. (32) and Eq. (34) that
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I _ (c2+dp)UZ (L) (c2—dx)Us (D)
a3 =1z = (L =1 i hy 0z ©-2,0, 0] 2Ms
1 1
=0, (900 +57) 2 + (9 — 537) o), (55)

where

B 1-nUZ ()
g = 2[(Ms—M)UZ(£)—A U (D] o0

Taking the values of U;(t) and U, (t) from Eq. (11) and substituting it in Eq.
(56) we conclude that

2t 1
— 0<|gm| <5

|as —naz| < {™ 2Ms (57)
atlgml gl = 5.

The estimate Eq. (51) follows from Eq. (57). The proof of Theorem 3.1 is thus
completed.

Taking p — 1 and g —» 17 in Theorem 3.1 yields:

Corollary 3.2. Let f € Msi(y,L(z,t))(= R§ 1 1-(7,1)). Then

252k
[, |7(1+‘ftzz +2(1+2y)3k—(y2+5y+2)22k|
—1] <

3k(1+2y)’ In | = 2(1+2y)3k

5 8|1-n|t3

- <
las —naz| < 5 |(2(1+2y)3k—(y2+5y+2)22K)4t2+(1+y)222k|’
252k
|7(1+Z)tzz +2(1+2y)3k—(y2+5y+2)22k|
— >

\ In—-1]= 2(1+2y)3k

Theorem 3.1 for n = 1 gives the following:

Corollary 3.3. Let f € Ry, . (¥,t) . We have

Letting n = 1 in Corollary 3.2 we have:

Corollary 3.4 (see [22]): Let f € M (y,L(z,t)). We have

— 2 <;
las —azl < (1+2y)3



Coefficient Estimates for Bi-Univalent Functions 63

Theorem 3.1 fory = 0 gives

Corollary 35. Let f € Ny, . (t)(= Ry, ,(0,t). Then
las —na3| <
2k _1\2
y CIRECRA 318 4 (3lp-D-(2I3 ()

_— _1 S
BE,he 1 U 315 g Blpg—1)

8t3[1-1|
| [[3]I;§q ([3]p,q_1)_[2];27fcq+1([2]p,q_1)]4t2 +[2];27{21([2]p,q _1)2 | ’

12135 (21p,g-1)2
—EA A+ (318 4 (13,4~ D~ (2135 1 (1214~ 1)

[31% 4([3]pq—1)

-1>
\ n—1=

Taking p = 1 and g = 17 in Corollary 3.5, the result for the class Nf(t) =
N1 1~ (t) is obtained.

Corollary 3.6. Let f € Nf (t). Then for any real number 7,

22Kk ook
t —2+3 -2

I v In—1] < |*=—=—1I

laz —naz| < 2k
8t3|1-7n| Sz 372

t
|(3k—22k)8t2+22k| =11z 3k |

Taking n =1 and kK = 0 in Corollary 3.6 we get the estimate for the class
N5 (1) = Ng ().

Corollary 3.7. Let f € X, given by Eq. (3) be in the class Ny(t). Then
las —a3| < t.

Theorem 3.8. Let f € ¥, given by Eq. (3) be in the class Ty, . (8, t). Then for
any n € R, we have:
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las —nai| <

Ko bk EB[213
2t (1+2B)[3]p,q—(1+p) [z]p,q"'T

—_—, _1 S
azppg, 1 2B 31,

8|1-n|t3
[((1+2B)[31% g—(1+B)2[2]3% )42+ (1+B)2[2]% 41

a+p)?[213%
4t2

(1+2B)[31K g—(1+B)2[2]K g+

-1 >
In=11= REEDELE
Proof: From Eq. (43) and Eq. (45) we have:
U3(t)(ca+d5) Uy (t)(cp—dp)

_ 2 _
a3 =1 = (1= 1) 5 m B, 20—+ p Bt 0] T 20+2m)Ek,

1 1
Ui {[s(n) + 2(1+zm[3]’;,,q] Q2+ [5(77) N 2(1+25)[3]'£,q] dz}’ (58)

where

(1_7]) U12 (t) (59)
2[(1+2B)[315 qUZ(D)—(1+B)?[2]25 UL (D]

In view of (11), we obtain:

s(n) =

2t 1
=~ 0< < - -
I fever e i MO e revey oy
las —na3| < 1 (60)
4t|s(n)| Is(m] =

T 21+2B)[315 4
The estimates of Theorem 3.8 follow from Eg. (60). This completes the proof.

Remark 3.9. Many corollaries will be generated by varying parameters
involved in Theorem 3.8.

4 Conclusion

A good amount of literature is available for the first few coefficients and the
Fekete-Szego problem for different subclasses of univalent and bi-univalent
analytic functions by making use of the class of Caratheodory functions. In the
present investigation, the authors have introduced newly constructed bi-
univalent analytic function classes R , (v, t) and Ty, . (B,t) associated with
the Chebyshev polynomials by using the Salagean (p,q)-differential operator
and obtained initial coefficients and Fekete-Szego problems for the above
mentioned classes. The generalization of some of the previous results studied by
various researchers was obtained. The sigmoid function and Faber polynomial
can be used to derive similar results for the classes studied.
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