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Abstract. In the present investigation, we use the Jackson (p,q)-differential 

operator to introduce the extended Salagean operator denoted by 𝑅𝑝,𝑞
𝑘 . Certain bi-

univalent function classes based on operator 𝑅𝑝,𝑞
𝑘  related to the Chebyshev 

polynomials are introduced. First two coefficient bounds and Fekete-Szego 

inequalities for the function classes are established. A number of corollaries are 

developed by varying parameters involved. 
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1 Introduction 

The q-calculus has great applications in the space of geometric functions theory 

because of their usefulness in the area of ordinary fractional calculus and 

optimal control problems. Jackson (see [1,2]) developed the concept of q-

integral and q-derivative and much later its geometrical interpretation was 

identified through studies of quantum groups. This has attracted the attention of 

several researchers. Researchers all over the globe have applied it to construct 

and investigate several classes of analytic and bi-univalent functions. For recent 

expository work on so called post-quantum calculus or (p,q) calculus, see [3,4]. 

We here recall the definition of fractional q-calculus operators of complex 

valued function f(z). 

Definition 1.1. (see [3]) The (p,q)-derivative of f is defined as: 

 (𝐷𝑝,𝑞𝑓)(𝑧) = {

𝑓(𝑝𝑧)−𝑓(𝑞𝑧)

(𝑝−𝑞)𝑧

𝑓′(0)
(𝑧 ≠ 0) (1) 

provided that f is differentiable at 0. Now 𝐷𝑝,𝑞𝑧
𝑛 = [𝑛]𝑝,𝑞𝑧

𝑛−1, where 
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 [𝑛]𝑝,𝑞 =
𝑝𝑛−𝑞𝑛

𝑝−𝑞
(0 < 𝑞 < 𝑝 ≤ 1) (2) 

refers to a twin-basic number. For p=1, the Jackson (p,q)-derivative reduces to 

the Jackson q-derivative given by: 

 (𝐷𝑞𝑓)(𝑧) =
𝑓(𝑧)−𝑓(𝑞𝑧)

(1−𝑞)𝑧
 (𝑧 ≠ 0). 

The class of all analytic functions f normalized by 𝑓(0) = 𝑓′(0) − 1 = 0 is 

given by: 

 𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛
∞
𝑛=2 𝑧𝑛 (𝑧 ∈ 𝑈)  (3) 

where 𝑈: = {𝑧 ∈ 𝐶: |𝑧| < 1} represents the open unit disk. We denote such class 

by 𝐴. Let S represent the class of all analytic univalent functions of the form (3) 

in U. Let 𝑓 , 𝑔 ∈ 𝐴. Then f  is subordinate to g, written as 𝑓 ≺  𝑔, if there is an 

analytic function w in U with w(0)=0 and |w(z)|<1 such that f(z)=g(w(z)) (𝑧 ∈
 𝑈) (see [5, 6]). “The Koebe One-Quarter-Theorem asserts that the image of U 

under every function 𝑓 ∈ 𝑆 contains a disk of radius 
1

4
. Therefore, the inverse of 

𝑓 ∈ 𝑆 is a univalent analytic function on the disk 𝑈𝜌 = {𝑧: 𝑧 ∈ 𝐶 𝑎𝑛𝑑 |𝑧| <

𝜌, 𝜌 ≥
1

4
}”, see [7]. For each 𝑓 ∈ 𝑆, 𝑓(𝑧) = 𝑤 has an inverse function 𝑓−1(𝑤) of  

f(z) defined as: 

 𝑔(𝑤) = 𝑓−1(𝑤) 

 = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ (4) 

If both 𝑓, 𝑓−1 ∈ 𝑆 then f is said to be bi-univalent in 𝑈. The class of all 

functions f given by (3) is denoted by ∑. For a detailed history and other related 

properties of functions in the class ∑ , see recent works in [8-13]. 

For a function f given by (3), a simple calculation shows that 

 𝐷𝑝,𝑞𝑓(𝑧) = 1 + ∑ [𝑛]𝑝,𝑞
∞
𝑛=2 𝑎𝑛𝑧

𝑛−1. (5) 

The (p,q)-analogue of Salagean differential operator 𝑅𝑝,𝑞
𝑘 : 𝐴 → 𝐴(𝑘 ∈ 𝑁0 =

𝑁 ∪ {0}) is defined by: 

 𝑅𝑝,𝑞
0 𝑓(𝑧) = 𝑓(𝑧) 

 𝑅𝑝,𝑞
1 𝑓(𝑧) = 𝑧 (𝐷𝑝,𝑞𝑓(𝑧)), 

⋯ 
𝑅𝑝,𝑞
𝑘 𝑓(𝑧) = 𝑅𝑝,𝑞

1 (𝑅𝑝,𝑞
𝑘−1𝑓(𝑧)) (6) 

Thus, for a function f(z) of the form (3), we have: 
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 𝑅𝑝,𝑞
𝑘 𝑓(𝑧) = 𝑧 + ∑ [𝑛]𝑝,𝑞

𝑘∞
𝑛=2 𝑎𝑛𝑧

𝑛. (7) 

Similarly, for a function g of the form (4), we have: 

 𝑅𝑝,𝑞
𝑘 𝑔(𝑤) = 𝑤 − [2]𝑝,𝑞

𝑘 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)[3]𝑝,𝑞
𝑘 𝑤3 − 

 (5𝑎2
3 − 5𝑎2𝑎3 + 𝑎4)[4]𝑝,𝑞

𝑘 𝑤4 +⋯ (8) 

From above, we observe that: 

 𝑙𝑖𝑚
𝑝→1,𝑞→1−

𝑅𝑝.𝑞
𝑘 𝑓(𝑧) = 𝑧 + 𝑙𝑖𝑚

𝑝→1,𝑞→1−
∑ [𝑛]𝑝,𝑞

𝑘∞
𝑛=2 𝑎𝑛𝑧

𝑛 

  = 𝑧 + ∑ 𝑛𝑘𝑎𝑛
∞
𝑛=2 𝑧𝑛 = 𝐷𝑘𝑓(𝑧), (9) 

where 𝐷𝑘 is the Salagean differential operator which was defined in [14] and 

has been studied by several authors. 

Chebyshev polynomials of the first and second kind and their properties have 

been studied by several researchers (see, for details [15,16]). We consider 

 𝐿(𝑧, 𝑡) =
1

1−2𝑡𝑧+𝑧2
(𝑧 ∈ 𝑈)

 
as its generating function. Taking 𝑡 = 𝑐𝑜𝑠 𝛼 , 𝛼 ∈ (−

𝜋

3
,
𝜋

3
), we have: 

 𝐿(𝑧, 𝑡) =
1

1−2𝑐𝑜𝑠 𝛼𝑧+𝑧2
 

  = 1 + 2 𝑐𝑜𝑠 𝛼 𝑧 + (3 𝑐𝑜𝑠2 𝛼 − 𝑠𝑖𝑛2 𝛼)𝑧2 +⋯ 

  = 1 + 𝑈1(𝑡)𝑧 + 𝑈2(𝑡)𝑧
2 +⋯    (𝑧 ∈ 𝑈, 𝑡 ∈ (−1,1)), (10) 

where 𝑈𝑛−1(𝑡) =
𝑠𝑖𝑛( 𝑐𝑜𝑠−1 𝑡)

√1−𝑡2
(𝑛 ∈ 𝑁). Thus we have 

𝑈1(𝑡) = 2𝑡, 𝑈3(𝑡) = 8𝑡
3 − 4𝑡,    

(11)  
𝑈2(𝑡) = 4𝑡

2 − 1, 𝑈4(𝑡) = 16𝑡
4 − 12𝑡2 + 1,… 

Recently, several researchers, Altinkaya and Yalcin [17-19], Bulut et al. [20,21] 

Guney et al. [22] and Caglar [23] (also see [24]) to mention a few, have 

obtained Fekete-Szego inequalities and some coefficient bounds for different 

subclasses of bi-univalent functions. Motivated by the above researchers, we 

consider two subclasses of bi-univalent functions that are obtained by using the 

Dp,q  operator of the Salagean type associated with the Chebyshev polynomial. 

Definition 1.2. A function 𝑓 ∈ ∑ defined as Eq. (3) belongs to the function 

class 𝑅∑,𝑝,𝑞
𝑘 (𝛾, 𝑡)(0 ≤ 𝛾 ≤ 1) if the conditions 
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 (1 − 𝛾)
𝑅𝑝.𝑞
𝑘+1𝑓(𝑧)

𝑅𝑝.𝑞
𝑘 𝑓(𝑧)

+ 𝛾
𝑅𝑝.𝑞
𝑘+2𝑓(𝑧)

𝑅𝑝.𝑞
𝑘+1𝑓(𝑧)

≺ 𝐿(𝑧, 𝑡) (
1

2
< 𝑡 < 1; 𝑧 ∈ 𝑈), (12)

 

and 

 (1 − 𝛾)
𝑅𝑝.𝑞
𝑘+1𝑔(𝑤)

𝑅𝑝.𝑞
𝑘 𝑔(𝑤)

+ 𝛾
𝑅𝑝.𝑞
𝑘+2𝑔(𝑤)

𝑅𝑝.𝑞
𝑘+1𝑔(𝑤)

≺ 𝐿(𝑤, 𝑡) (
1

2
< 𝑡 < 1;𝑤 ∈ 𝑈), (13) 

are satisfied, where g is stated in (4). 

By specializing the parameters 𝛾, 𝑝, 𝑞 and k in the above definition, we obtain 

the various subclasses of ∑. 

Definition 1.3. A function 𝑓 ∈ ∑  belongs to the function class 𝑇∑,𝑝,𝑞
𝑘 (𝛽, 𝑡) if  

 (1 − 𝛽)
𝑅𝑝.𝑞
𝑘 𝑓(𝑧)

𝑧
+ 𝛽(𝑅𝑝,𝑞

𝑘 𝑓(𝑧))′ ≺ 𝐿(𝑧, 𝑡), (14)

 
and 

 (1 − 𝛽)
𝑅𝑝.𝑞
𝑘 𝑔(𝑤)

𝑤
+ 𝛽(𝑅𝑝,𝑞

𝑘 𝑔(𝑤))′ ≺ 𝐿(𝑤, 𝑡) (15) 

(0 ≤ 𝛽 ≤ 1,
1

 2
< 𝑡 < 1;  𝑧, 𝑤 ∈ 𝑈), hold where 𝑅𝑝,𝑞

𝑘 𝑓(𝑧) and 𝑅𝑝,𝑞
𝑘 𝑔(𝑤) are 

given by Eq. (7) and Eq. (8) respectively.  

Remark 1.4. For 𝑝 → 1, 𝑞 → 1−, we get the class 𝑇∑,1,1−
𝑘 (𝛽, 𝑡) =

𝐹∑
𝑘(𝛽, 𝐿(𝑧, 𝑡)) consists  of function 𝑓 ∈ ∑ and satisfying 

 
 (1 − 𝛽)

𝐷𝑘𝑓(𝑧)

𝑧
+ 𝛽(𝐷𝑘𝑓(𝑧))′ ≺ 𝐿(𝑧, 𝑡)

 

and 

 (1 − 𝛽)
𝐷𝑘𝑔(𝑤)

𝑤
+ 𝛽(𝐷𝑘𝑔(𝑤))′ ≺ 𝐿(𝑤, 𝑡). 

This class is due to Guney et al.[22]. 

Remark 1.5. For 𝑝 → 1, 𝑞 → 1−and k=0, we obtain the class 𝑇∑,1,1−
0 (𝛽, 𝑡) =

𝐵∑(𝛽, 𝑡) (see[20, 21]) where 𝑓 ∈ ∑ satisfying  

 (1 − 𝛽)
𝑓(𝑧)

𝑧
+ 𝛽(𝑓(𝑧))′ ≺ 𝐿(𝑧, 𝑡) 

and 

 (1 − 𝛽)
𝑔(𝑤)

𝑤
+ 𝛽(𝑔(𝑤))′ ≺ 𝐿(𝑤, 𝑡).
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In this work, we investigate the first two coefficient bounds and Fekte-Szego 

inequalities in the above newly constructed function classes by using the 

Chebyshev polynomial. 

2 Coefficient Bounds 

In the following theorems, we establish Chebyshev polynomial bounds |a2| and 

|a3| for the function classes 𝑅∑,𝑝,𝑞
𝑘 (𝛾, 𝑡) and  𝑇∑,𝑝,𝑞

𝑘 (𝛽, 𝑡). 

Theorem 2.1. Assume that 𝑓 ∈ ∑ defined as Eq. (3) is in the class 

R∑,p,q
k (γ, t) (

1

2
< 𝑡 < 1). Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|(𝐴1−𝐴2)4𝑡
2+𝐴2|

, (16)
 

and 

 |𝑎3| ≤
4𝑡2

[2]𝑝,𝑞
2𝑘 ([2]𝑝,𝑞−1)

2(1+𝛾([2]𝑝,𝑞−1))
2
 

                                       +
2𝑡

[3]𝑝,𝑞
𝑘 ([3]𝑝,𝑞−1)(1+𝛾([3]𝑝,𝑞−1))

, (17)
 

where 

  𝐴1 = [3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1))([3]𝑝,𝑞 − 1) − [2]𝑝,𝑞

2𝑘 (1 + 𝛾([2]𝑝,𝑞
2 −

1))([2]𝑝,𝑞 − 1),  (18) 

and 

 𝐴2 = [2]𝑝,𝑞
2𝑘 (1 + 𝛾([2]𝑝,𝑞 − 1))

2([2]𝑝,𝑞 − 1)
2. (19) 

Proof: Assume that 𝑓 ∈ R∑,p,q
k (γ, t). Definition 1.2 yields: 

 (1 − 𝛾)
𝑅𝑝,𝑞
𝑘+1𝑓(𝑧)

𝑅𝑝,𝑞
𝑘 𝑓(𝑧)

+ 𝛾
𝑅𝑝,𝑞
𝑘+2𝑓(𝑧)

𝑅𝑝,𝑞
𝑘+1𝑓(𝑧)

1 + 𝑈1(𝑡)𝑟(𝑧) + 𝑈2(𝑡)𝑟
2(𝑧) +⋯ (20)

 

and 

 (1 − 𝛾)
𝑅𝑝,𝑞
𝑘+1𝑔(𝑤)

𝑅𝑝,𝑞
𝑘 𝑔(𝑤)

+ 𝛾
𝑅𝑝,𝑞
𝑘+2𝑔(𝑤)

𝑅𝑝,𝑞
𝑘+1𝑔(𝑤)

= 1 + 𝑈1(𝑡)𝑠(𝑤) + 𝑈2(𝑡)𝑠
2(𝑤) +⋯ (21)

 

where r(z) and s(w) are analytic functions given by 

 𝑟(𝑧) = 𝑐1𝑧 + 𝑐2𝑧
2 + 𝑐3𝑧

3 +⋯, (22) 
𝑠(𝑤) = 𝑑1𝑤 + 𝑑2𝑤

2 + 𝑑3𝑤
3 +⋯, (23) 

where r(0) = s(0) = 0, |r(z)| < 1, |𝑠(𝑤)| < 1  (𝑧, 𝑤 ∈ 𝑈). If |r(z)| < 1 and 

|s(w)| < 1, then 
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 |𝑐𝑖| ≤ 1 and |𝑑𝑖| < 1  for all 𝑖 ∈ 𝑁.     (24) 

Making use of Eq. (22) in Eq. (20) and Eq. (23) in Eq. (21), we get 

 (1 − 𝛾)
𝑅𝑝,𝑞
𝑘+1𝑓(𝑧)

𝑅𝑝,𝑞
𝑘 𝑓(𝑧)

+ 𝛾
𝑅𝑝,𝑞
𝑘+2𝑓(𝑧)

𝑅𝑝,𝑞
𝑘+1𝑓(𝑧)

 

 = 1 + 𝑈1(𝑡)𝑐1𝑧 + [𝑈1(𝑡)𝑐2 +𝑈2(𝑡)𝑐1
2]𝑧2 +⋯ (25) 

and 

 (1 − 𝛾)
𝑅𝑝,𝑞
𝑘+1𝑔(𝑤)

𝑅𝑝,𝑞
𝑘 𝑔(𝑤)

+ 𝛾
𝑅𝑝,𝑞
𝑘+2𝑔(𝑤)

𝑅𝑝,𝑞
𝑘+1𝑔(𝑤)

 

 = 1 + 𝑈1(𝑡)𝑑1𝑤 + [𝑈1(𝑡)𝑑2 +𝑈2(𝑡)𝑑1
2]𝑤2 +⋯ (26) 

It follows from Eq. (7) and Eq. (8) that 

 (1 − 𝛾)
𝑅𝑝,𝑞
𝑘+1𝑓(𝑧)

𝑅𝑝,𝑞
𝑘 𝑓(𝑧)

+ 𝛾
𝑅𝑝,𝑞
𝑘+2𝑓(𝑧)

𝑅𝑝,𝑞
𝑘+1𝑓(𝑧)

 

 = 1 + [2]𝑝,𝑞
𝑘 (1 + 𝛾([2]𝑝,𝑞 − 1))([2]𝑝,𝑞 − 1)𝑎2𝑧 + ([3]𝑝,𝑞 −

1){[3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1))𝑎3 − ([2]𝑝,𝑞 − 1)[2]𝑝,𝑞

𝑘 (1 + 𝛾([2]𝑝,𝑞
2 −

1))𝑎2
2}𝑧2 +⋯ (27) 

and 

 (1 − 𝛾)
𝑅𝑝,𝑞
𝑘+1𝑔(𝑤)

𝑅𝑝,𝑞
𝑘 𝑔(𝑤)

+ 𝛾
𝑅𝑝,𝑞
𝑘+2𝑔(𝑤)

𝑅𝑝,𝑞
𝑘+1𝑔(𝑤)

= 1 − [2]𝑝,𝑞
𝑘 (1 + 𝛾([2]𝑝,𝑞 −

1))([2]𝑝,𝑞 − 1)𝑎2𝑤 + [{2([3]𝑝,𝑞 − 1)[3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1)) −

([2]𝑝,𝑞 − 1)[2]𝑝,𝑞
𝑘 (1 + 𝛾([2]𝑝,𝑞

2 − 1))}𝑎2
2 − [3]𝑝,𝑞

𝑘 (1 + 𝛾([3]𝑝,𝑞 −

1))([3]𝑝,𝑞 − 1)𝑎3]𝑤
2 +⋯ (28) 

Using Eq. (27) in Eq. (25) and Eq. (28) in Eq. (26), we obtain: 

 1 + [2]𝑝,𝑞
𝑘 (1 + 𝛾([2]𝑝,𝑞 − 1)) ([2]𝑝,𝑞 − 1)𝑎2𝑧 + [([3]𝑝,𝑞 −

1)[3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1)) 𝑎3 − ([2]𝑝,𝑞 − 1)[2]𝑝,𝑞

2𝑘 (1 +

𝛾([2]𝑝,𝑞
2 − 1)) 𝑎2

2] 𝑧2 +⋯ = 1 + 𝑈1(𝑡)𝑐1𝑧 + [𝑈1(𝑡)𝑐2 +

𝑈2(𝑡)𝑐1
2]𝑧2 +⋯ (29) 

and 
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 1 − ([2]𝑝,𝑞 − 1)[2]𝑝,𝑞
𝑘 (1 + 𝛾([2]𝑝,𝑞 − 1)) 𝑎2𝜔 + [{2([3]𝑝,𝑞 −

1)[3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1)) − (1 + 𝛾([2]𝑝,𝑞

2 − 1))([2]𝑝,𝑞 −

1)[2]𝑝,𝑞
2𝑘 }𝑎2

2 − ([3]𝑝,𝑞 − 1) [3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1)) 𝑎3] 𝜔

2 +⋯ 

 = 1 + 𝑈1(𝑡)𝑑1𝜔 + [𝑈1(𝑡)𝑑2 + 𝑈2(𝑡)𝑑1
2]𝜔2 +⋯ (30) 

Equating the coefficients in Eq. (29) and Eq. (30), we get:  

 ([2]𝑝,𝑞 − 1)[2]𝑝,𝑞
𝑘 (1 + 𝛾([2]𝑝,𝑞 − 1)) 𝑎2 = 𝑈1(𝑡)𝑐1, (31) 

 −([2]𝑝,𝑞 − 1)[2]𝑝,𝑞
2𝑘 (1 + 𝛾([2]𝑝,𝑞

2 − 1)) 𝑎2
2 + ([3]𝑝,𝑞 − 1)[3]𝑝,𝑞

𝑘 (1 +

𝛾([3]𝑝,𝑞 − 1)) 𝑎3 = 𝑈1(𝑡)𝑐2 + 𝑈2(𝑡)𝑐1
2, (32) 

and 

 −([2]𝑝,𝑞 − 1)[2]𝑝,𝑞
𝑘 (1 + 𝛾([2]𝑝,𝑞 − 1)) 𝑎2 = 𝑈1(𝑡)𝑑1, (33) 

and 

 {2([3]𝑝,𝑞 − 1)[3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1)) − ([2]𝑝,𝑞 − 1)[2]𝑝,𝑞

2𝑘 (1 +

𝛾([2]𝑝,𝑞
2 − 1))} 𝑎2

2 − ([3]𝑝,𝑞 − 1)[3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1)) 𝑎3 =

𝑈1(𝑡)𝑑2  + 𝑈2(𝑡)𝑑1
2. (34) 

From Eq. (31) and Eq. (33), we obtain: 

 𝑐1 = −𝑑1, (35) 

and 

 2([2]𝑝,𝑞 − 1)
2
[2]𝑝,𝑞

2𝑘 (1 + 𝛾([2]𝑝,𝑞 − 1))
2
𝑎2
2 

 = 𝑈1
2( 𝑡)(𝑐1

2 + 𝑑1
2).  (36) 

Adding Eq. (32) and Eq. (34) and using Eq. (36) in the resulting equation, we 

obtain: 

 [2([3]𝑝,𝑞 − 1)[3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1)) − 2([2]𝑝,𝑞 − 1)[2]𝑝,𝑞

2𝑘 (1 +

𝛾([2]𝑝,𝑞
2 − 1)) −

𝑈2(𝑡)

𝑈1
2(𝑡)

2[2]𝑝,𝑞
2𝑘 ([2]𝑝,𝑞 − 1)

2
[1 + 𝛾([2]𝑝,𝑞 − 1)]

2
] 𝑎2

2 =

𝑈1(𝑡)(𝑐2 + 𝑑2), (37) 

which gives: 
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 𝑎2
2 =

(𝑐2+𝑑2)𝑈1
3(𝑡)

2[𝐴1𝑈1
2(𝑡)−𝐴2𝑈2(𝑡)]

 , (38) 

where 𝐴1 and 𝐴2 are given in Eq. (18) and Eq. (19) respectively. Applying Eq.  

(24) to the coefficients 𝑐2 and 𝑑2 and using Eq. (11) in Eq. (38), we get the 

desire estimate for |𝑎2|. 

Subtracting Eq. (34) from Eq. (32) and using Eq. (35) and Eq. (36) in the 

resulting equation yields: 

 𝑎3 = 
(𝑐1
2+𝑑1

2)𝑈1
2(𝑡)

2[2]𝑝,𝑞
2𝑘 ([2]𝑝,𝑞−1)

2
[1+𝛾([2]𝑝,𝑞−1)]

2 +
(𝑐2−𝑑2)𝑈1(𝑡)

2[3]𝑝,𝑞
𝑘 ([3]𝑝,𝑞−1)[1+𝛾([3]𝑝,𝑞−1)]

  .   (39) 

Taking the coefficient inequalities for 𝑐1, 𝑐2, 𝑑1and 𝑑2 from Eq. (24) and 

making use of Eq. (11) in Eq. (39) we get the estimate for |𝑎3| as stated in Eq. 

(17). This proves the Theorem 2.1. 

Letting 𝑝 →  1 and q→ 1− in Theorem 2.1, we get the result for the class 

𝑅∑,1,1−1
𝑘 (𝛾, 𝑡) ≡  𝑀∑

𝑘(𝛾, 𝐿(𝑧, 𝑡)) due to Guney et al. [22] as follows: 

Corollary 2.2 (see [22]): Let 𝑓 ∈  𝑀∑
𝑘(𝛾, 𝐿(𝑧, 𝑡)). Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|[2(1+2𝛾)3𝑘−(𝛾(𝛾+5)+2)22𝑘]4𝑡2+22𝑘(1+𝛾)2|
 

and 

 |𝑎3| ≤
4𝑡2

(1+𝛾)222𝑘
+

𝑡

(1+2𝛾)3𝑘
  . 

Letting 𝛾 = 0 in Theorem 2.1, the following result for the function class 

𝑅∑,𝑝,𝑞
𝑘 (0, 𝑡) ≡ 𝑁∑,𝑝,𝑞

𝑘 (𝑡) is obtained. 

Corollary 2.3. If 𝑓 ∈ 𝑁∑,𝑝,𝑞
𝑘 (𝑡), then 

 |𝑎2| ≤
2𝑡√2𝑡

√|[([3]𝑝,𝑞−1)[3]𝑝,𝑞
𝑘 −([2]𝑝,𝑞−1)[2]𝑝,𝑞

2𝑘+1]4𝑡2+([2]𝑝,𝑞−1)
2[2]𝑝,𝑞

2𝑘 |

 

and 

 |𝑎3| ≤
2𝑡

[3]𝑝,𝑞
𝑘 ([3]𝑝,𝑞−1)

+
4𝑡2

[2]𝑝,𝑞
2𝑘 ([2]𝑝,𝑞−1)

2 . 

Letting 𝑝 → 1 and 𝑞 → 1− in the above corollary, we get the following result 

for the class 𝑅∑,1,1−
𝑘 (0, 𝑡) ≡ 𝑁∑

𝑘(𝑡). 
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Corollary 2.4. Let 𝑓 ∈ 𝑁∑
𝑘(𝑡). Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|(3𝑘−22𝑘)8𝑡2+22𝑘|
, 

and 

 |𝑎3| ≤
𝑡

3𝑘
+
4𝑡2

22𝑘
 . 

Putting 𝛾 = 1 in Theorem 2.1, the result for the class 𝑅∑,𝑝,𝑞
𝑘 (1, 𝑡) ≡ 𝑈∑.𝑝.𝑞

𝑘 (𝑡) is 

as follows: 

Corollary 2.5. Let 𝑓 ∈ 𝑈∑,𝑝,𝑞
𝑘 (𝑡). Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|[([3]𝑝,𝑞−1)[3]𝑝,𝑞
𝑘+1−([2]𝑝,𝑞−1)[2]𝑝,𝑞

2𝑘+3]4𝑡2+[2]𝑝,𝑞
2𝑘+2([2]𝑝,𝑞−1)

2|

, 

and 

 |𝑎3| ≤
4𝑡2

[2]𝑝,𝑞
2𝑘+2([2]𝑝,𝑞−1)

2 +
2𝑡

([3]𝑝,𝑞−1)[3]𝑝,𝑞
𝑘+1 . 

Taking 𝑝 → 1, 𝑞 → 1−and 𝛾 = 1 in the above theorem, the result for the class 

𝑅∑,1,1−
𝑘 (1, 𝑡) ≡ 𝐾∑

𝑘(𝐿(𝑧, 𝑡)) is obtained. 

Corollary 2.6 (see [22]): If 𝑓 ∈ 𝐾∑
𝑘(𝐿(𝑧, 𝑡)) , then 

 |𝑎2| ≤
𝑡√2𝑡

√|[3𝑘+1−22(𝑘+1)]2𝑡2+22𝑘|

, 

and 

 |𝑎3| ≤
𝑡2

22𝑘
+

𝑡

3𝑘+1
  . 

Theorem 2.1 for k=0 gives 

Corollary 2.7. Let the function 𝑓 ∈ 𝑉∑,𝑝,𝑞(𝛾, 𝑡)(≡ 𝑅∑,𝑝,𝑞
0 (𝛾, 𝑡)). Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|4𝑀1𝑡
2+𝑀2|

, 

and 

 |𝑎3| ≤
4𝑡2

(1+𝛾([2]𝑝,𝑞−1))
2([2]𝑝,𝑞−1)

2 +
2𝑡

(1+𝛾([3]𝑝,𝑞−1))([3]𝑝,𝑞−1)
, 
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where 

 𝑀1 = (1 + 𝛾([3]𝑝,𝑞 − 1))([3]𝑝,𝑞 − 1) − ([2]𝑝,𝑞 − 1){1 + 𝛾([2]𝑝,𝑞
2 −

1) + ([2]𝑝,𝑞 − 1)(1 + 𝛾([2]𝑝,𝑞 − 1))
2}, 

and 

 𝑀2 = (1 + 𝛾([2]𝑝,𝑞 − 1))
2([2]𝑝,𝑞 − 1)

2. 

Letting 𝑝 → 1 and 𝑞 → 1−in the above result, we get 

Corollary 2.8. Let 𝑓 ∈ 𝑉∑(𝛾, 𝑡)(≡ 𝑅∑,1,1−
0 (𝛾, 𝑡)). Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|(1+𝛾)2−(𝛾+𝛾2)4𝑡2|
,
 

and 

 |𝑎3| ≤
4𝑡2

(1+𝛾)2
+

𝑡

1+2𝛾
.
 

Putting 𝛾 = 0 in the above corollary gives the following. 

Corollary 2.9. Let 𝑓 ∈ 𝑉∑(𝑡)(≡ 𝑉∑(0, 𝑡). Then 

 |𝑎2| ≤ 2𝑡√2𝑡, 
and  

 |𝑎3| ≤ 𝑡 + 4𝑡
2.

 

Putting 𝛾 = 1 in Corollary 2.8 gives: 

Corollary 2.10. Let 𝑓 ∈ 𝑄∑(𝑡)(≡ 𝑉∑(1, 𝑡)).  For 𝑡 ≠
1

√2
, we have 

 |𝑎2| ≤
𝑡√2𝑡

√|1−2𝑡2|
,
 

and 

 |𝑎3| ≤ 𝑡
2 +

𝑡

3
.
 

Theorem 2.11. Let 𝑓 ∈ 𝑇∑,𝑝,𝑞
𝑘 (𝛽, 𝑡).Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|[[3]𝑝,𝑞
𝑘 (1+2𝛽)−[2]𝑝,𝑞

𝑘 (1+𝛽)2]4𝑡2+[2]𝑝,𝑞
2𝑘 (1+𝛽)2|

, (40) 
 

 and 
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 |𝑎3| ≤
2𝑡

(1+2𝛽)[3]𝑝,𝑞
𝑘 +

4𝑡2

(1+𝛽)2[2]𝑝,𝑞
2𝑘  . (41)

 

 Proof:  Let 𝑓 ∈ 𝑇∑,𝑝,𝑞
𝑘 (𝛽, 𝑡). Proceeding as before, we have 

 (1 + 𝛽)[2]𝑝,𝑞
𝑘 𝑎2 = 𝑈1(𝑡)𝑐1, (42) 

 (1 + 2𝛽)[3]𝑝,𝑞
𝑘 𝑎3 = 𝑈1(𝑡)𝑐2 + 𝑈2(𝑡)𝑐1

2 (43) 

and 

 −(1 + 𝛽)[2]𝑝,𝑞
𝑘 𝑎2 = 𝑈1(𝑡)𝑑1, (44) 

 (1 + 2𝛽)(2𝑎2
2 − 𝑎3)[3]𝑝,𝑞

𝑘 = 𝑈1(𝑡)𝑑2 + 𝑈2(𝑡)𝑑1
2, (45) 

It follows from Eq. (42) and Eq. (44) that 

 𝑐1 = −𝑑1, (46)  

 2(1 + 𝛽)2[2]𝑝,𝑞
2𝑘 𝑎2

2 = 𝑈1
2(𝑡)(𝑐1

2 + 𝑑1
2). (47)  

Similarly, from Eq. (43) and Eq. (45) we have: 

 2(1 + 2𝛽)[3]𝑝,𝑞
𝑘 𝑎2

2 = 𝑈1(𝑡)(𝑐2 + 𝑑2) + 𝑈2(𝑡)(𝑐1
2 + 𝑑1

2). (48)
 

Using Eq. (47) in Eq. (48) and simplifying we get: 

 𝑎2
2 =

(𝑐2+𝑑2)𝑈1
2(𝑡)

2[(1+2𝛽)[3]𝑝,𝑞
𝑘 𝑈1

2(𝑡)−(1+𝛽)2[2]𝑝,𝑞
2𝑘 𝑈2(𝑡)]

. (49) 

Putting the values of 𝑈1(𝑡), 𝑈2(𝑡) from Eq. (11) and using Eq. (24) in Eq. (49) 

we get the desire estimate for |𝑎2| as given by Eq. (40). 

Subtracting Eq. (45) from Eq. (43) and making use of Eq. (46) and Eq. (47) in 

the resulting equation and simplifying, we get: 

 𝑎3 =
(𝑐2−𝑑2)𝑈1(𝑡)

2(1+2𝛽)[3]𝑝,𝑞
𝑘 +

(𝑐2
2−𝑑2

2)𝑈1
2(𝑡)

2(1+2𝛽)2[3]𝑝,𝑞
2𝑘   (50) 

Using Eq. (11) and Eq. (24) in Eq. (50) we get the bounds for |a3|. The proof of 

Theorem 2.11 is completed. 

Taking 𝑞 → 1−, 𝑝 → 1 in Theorem 2.11, the result for the class 𝑇∑,1,1−
𝑘 (𝛽, 𝑡)(≡

𝐹∑
𝑘(𝛽, 𝐿(𝑧, 𝑡)) is obtained. 

Corollary 2.12. Let 𝑓 ∈ ∑ given by Eq. (3) be in the class 𝐹∑
𝑘(𝛽, 𝐿(𝑧, 𝑡)). Then 
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 |𝑎2| ≤
2𝑡√2𝑡

√|[(1+2𝛽)3𝑘−(1+𝛽)222𝑘]4𝑡2+(1+𝛽)222𝑘|
, 

 
and 

 |𝑎3| ≤
2𝑡

(1+2𝛽)3𝑘
+

4𝑡2

(1+𝛽)222𝑘
. 

Putting 𝛽 = 0 in Corollary 2.12 we get the result for the function class 

𝑇∑,1,1−
𝑘 (0, 𝑡) ≡ 𝐹∑

𝑘(𝐿(𝑧, 𝑡))  as follows: 

Corollary 2.13 (see [22]): Let 𝑓 ∈ 𝐹∑
𝑘(𝐿(𝑧, 𝑡)). Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|[3𝑘−22𝑘]4𝑡2+22𝑘|
, 

and 

 |𝑎3| ≤
2𝑡

3𝑘
+
4𝑡2

22𝑘
  . 

Corollary 2.13 for 𝛽 = 1 yields the result for the class 𝑇∑,1,1−
𝑘 (1, 𝑡) ≡

𝐻∑
𝑘(𝐿(𝑧, 𝑡)) as below. 

Corollary 2.14. Let 𝑓 ∈ 𝐻∑
𝑘(𝐿(𝑧, 𝑡)). Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|[3𝑘+1−22(𝑘+1)]4𝑡2+22(𝑘+1)|

, 

and 

 |𝑎3| ≤
2𝑡

3𝑘+1
+

𝑡2

22𝑘
. 

Corollary 2.12 for 𝑘 = 0 gives the result for the class 𝑇∑,1,1−
0 (𝛽, 𝑡) ≡

𝐹∑(𝛽, 𝐿(𝑧, 𝑡)) as below. 

Corollary 2. 15. Let 𝑓 ∈ 𝐹∑(𝛽, 𝐿(𝑧, 𝑡)). Then 

 |𝑎2| ≤
2𝑡√2𝑡

√|(𝛽+1)2−4𝛽2𝑡2|
, 

and 

 |𝑎3| ≤
2𝑡

1+2𝛽
+

4𝑡2

(1+𝛽)2
. 
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Putting 𝛽 = 0 in Corollary 2.15 gives the result for the function 

class 𝑇∑,1,1−
0 (0, 𝑡) ≡ 𝑇∑(𝑡). 

Corollary 2. 16. Let 𝑓 ∈ 𝑇∑(𝑡). Then 

 |𝑎2| ≤ 2𝑡√2𝑡, 
and 

 |𝑎3| ≤ 2𝑡 + 4𝑡
2. 

Letting 𝛽 = 1 in Corollary 2.15, we get the result for the class 𝐹∑(1, 𝐿(𝑧, 𝑡)) ≡

𝐹∑(𝐿(𝑧, 𝑡)). 

Corollary 2.17. Let 𝑓 ∈ 𝐹∑(𝐿(𝑧, 𝑡)). Then 

 |𝑎2| ≤
𝑡√2𝑡

√1−𝑡2
, 

and 

 |𝑎3| ≤ 𝑡
2 +

2

3
𝑡  . 

3 Fekete-Szego Inequalities 

In the following section, we obtain the Fekete-Szego problems for the function 

class 𝑅∑,𝑝,𝑞
𝑘 (𝛾, 𝑡) and 𝑇∑,𝑝,𝑞

𝑘 (𝛽, 𝑡) as follows: 

Theorem 3.1. Let 𝑓 ∈ 𝑅∑,𝑝,𝑞
𝑘 (𝛾, 𝑡). Then 

|𝑎3 − 𝜂𝑎2
2| ≤

{
 
 

 
 2𝑡

([3]𝑝,𝑞−1)[3]𝑝,𝑞
𝑘 (1+𝛾([3]𝑝,𝑞−1))

     |𝜂 − 1| ≤ |
𝐴2
4𝑡2

+𝑀3

𝑀5
|

8𝑡3|1−𝜂|

|[𝑀3]4𝑡
2+𝐴2|

                                   |𝜂 − 1| ≥ |
𝐴4
4𝑡2

+𝑀3

𝑀5
|,

 (51) 

where 

 𝑀3 = 𝑀5 −𝑀4 − 𝐴2,  (52) 

 𝑀4 = ([2]𝑝,𝑞 − 1)[2]𝑝,𝑞
2𝑘 (1 + 𝛾([2]𝑝,𝑞

2 − 1))  (53) 

 𝑀5 = ([3]𝑝,𝑞 − 1)[3]𝑝,𝑞
𝑘 (1 + 𝛾([3]𝑝,𝑞 − 1))  (54) 

and A2  is defined in Eq. (19). 

Proof: It follows from Eq. (32) and Eq. (34) that 
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𝑎3 − 𝜂𝑎2
2 = (1 − 𝜂)

(𝑐2+𝑑2)𝑈1
2(𝑡)

2[(𝑀5−𝑀4)𝑈1
2(𝑡)−𝐴2𝑈2(𝑡)]

+
(𝑐2−𝑑2)𝑈1(𝑡)

2𝑀5
  

 = 𝑈1(𝑡) [(𝑔(𝜂) +
1

2𝑀5
) 𝑐2 + (𝑔(𝜂) −

1

2𝑀5
) 𝑑2], (55)

 

where 

 𝑔(𝜂) =
(1−𝜂)𝑈1

2(𝑡)

2[(𝑀5−𝑀4)𝑈1
2(𝑡)−𝐴2𝑈2(𝑡)]

. (56)
  

Taking the values of 𝑈1(𝑡) and 𝑈2(𝑡) from Eq. (11) and substituting it in Eq. 

(56) we conclude that 

|𝑎3 − 𝜂𝑎2
2| ≤ {

2𝑡

𝑀5
              0 ≤ |𝑔(𝜂)| ≤

1

2𝑀5

4𝑡|𝑔(𝜂)|          |𝑔(𝜂)| ≥
1

2𝑀5
.
  (57) 

The estimate Eq. (51) follows from Eq. (57). The proof of Theorem 3.1 is thus 

completed. 

Taking 𝑝 → 1 and 𝑞 → 1− in Theorem 3.1 yields: 

Corollary 3.2. Let 𝑓 ∈ 𝑀∑
𝑘(𝛾, 𝐿(𝑧, 𝑡))(≡ 𝑅∑,1,1−

𝑘 (𝛾, 𝑡)). Then 

 |𝑎3 − 𝜂𝑎2
2| ≤

{
  
 

  
 1

3𝑘(1+2𝛾)
, |𝜂 − 1| ≤

|
(1+𝛾)222𝑘

4𝑡2
+2(1+2𝛾)3𝑘−(𝛾2+5𝛾+2)22𝑘|

2(1+2𝛾)3𝑘

8|1−𝜂|𝑡3

|(2(1+2𝛾)3𝑘−(𝛾2+5𝛾+2)22𝑘)4𝑡2+(1+𝛾)222𝑘|
,

|𝜂 − 1| ≥
|
(1+𝛾)222𝑘

4𝑡2
+2(1+2𝛾)3𝑘−(𝛾2+5𝛾+2)22𝑘|

2(1+2𝛾)3𝑘

  

Theorem 3.1 for 𝜂 = 1 gives the following: 

Corollary 3.3. Let 𝑓 ∈ 𝑅∑,𝑝,𝑞
𝑘 (𝛾, 𝑡) . We have 

 |𝑎3 − 𝑎2
2| ≤

2𝑡

𝑀5
.
 

Letting  𝜂 = 1 in Corollary 3.2 we have: 

Corollary 3.4 (see [22]):  Let 𝑓 ∈ 𝑀∑
𝑘(𝛾, 𝐿(𝑧, 𝑡)). We have 

 |𝑎3 − 𝑎2
2| ≤

𝑡

(1+2𝛾)3𝑘
. 
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Theorem 3.1 for 𝛾 = 0 gives 

Corollary 3.5. Let 𝑓 ∈ 𝑁∑,𝑝,𝑞
𝑘 (𝑡)(≡ 𝑅∑,𝑝,𝑞

𝑘 (0, 𝑡). Then 

 |𝑎3 − 𝜂𝑎2
2| ≤ 

 

{
 
 
 

 
 
 2𝑡

[3]𝑝,𝑞
𝑘 ([3]𝑝,𝑞−1)

, |𝜂 − 1| ≤
|
[2]𝑝,𝑞
2𝑘 ([2]𝑝,𝑞−1)

2

4𝑡2
+[3]𝑝,𝑞

𝑘 ([3]𝑝,𝑞−1)−[2]𝑝,𝑞
2𝑘+1([2]𝑝,𝑞−1)|

[3]𝑝,𝑞
𝑘 ([3]𝑝,𝑞−1)

8𝑡3|1−𝜂|

|[[3]𝑝,𝑞
𝑘 ([3]𝑝,𝑞−1)−[2]𝑝,𝑞

2𝑘+1([2]𝑝,𝑞−1)]4𝑡
2+[2]𝑝,𝑞

2𝑘 ([2]𝑝,𝑞−1)
2|
,

|𝜂 − 1 ≥
|
[2]𝑝,𝑞
2𝑘 ([2]𝑝,𝑞−1)

2

4𝑡2
+[3]𝑝,𝑞

𝑘 ([3]𝑝,𝑞−1)−[2]𝑝,𝑞
2𝑘+1([2]𝑝,𝑞−1)|

[3]𝑝,𝑞
𝑘 ([3]𝑝,𝑞−1)

  

Taking 𝑝 → 1 and 𝑞 → 1− in Corollary 3.5, the result for the class 𝑁∑
𝑘(𝑡) ≡

𝑁∑,1,1−
𝑘 (𝑡) is obtained. 

Corollary 3.6. Let 𝑓 ∈ 𝑁∑
𝑘(𝑡). Then for any real number 𝜂, 

 |𝑎3 − 𝜂𝑎2
2| ≤

{
 
 

 
 𝑡

3𝑘
                              |𝜂 − 1| ≤ |

22𝑘

8𝑡2
+3𝑘−22𝑘

3𝑘
|

8𝑡3|1−𝜂|

|(3𝑘−22𝑘)8𝑡2+22𝑘|
     |𝜂 − 1| ≥ |

22𝑘

8𝑡2
+3𝑘−22𝑘

3𝑘
|

  

Taking 𝜂 = 1 and 𝑘 = 0 in Corollary 3.6 we get the estimate for the class 

𝑁∑(𝑡) ≡ 𝑁∑
0(𝑡). 

Corollary 3.7. Let 𝑓 ∈ ∑   given by Eq. (3) be in the class 𝑁∑(𝑡). Then 

 |𝑎3 − 𝑎2
2| ≤ 𝑡. 

Theorem 3.8. Let 𝑓 ∈ ∑ given by Eq. (3) be in the class 𝑇∑,𝑝,𝑞
𝑘 (𝛽, 𝑡). Then for 

any 𝜂 ∈ 𝑅, we have: 
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 |𝑎3 − 𝜂𝑎2
2| ≤

{
 
 
 

 
 
 2𝑡

(1+2𝛽)[3]𝑝,𝑞
𝑘 ,     |𝜂 − 1| ≤

(1+2𝛽)[3]𝑝,𝑞
𝑘 −(1+𝛽)2[2]𝑝,𝑞

𝑘 +
(1+𝛽)2[2]𝑝,𝑞

2𝑘

4𝑡2

(1+2𝛽)[3]𝑝,𝑞
𝑘

8|1−𝜂|𝑡3

|((1+2𝛽)[3]𝑝,𝑞
𝑘 −(1+𝛽)2[2]𝑝,𝑞

2𝑘 )4𝑡2+(1+𝛽)2[2]𝑝,𝑞
𝑘 |
,

|𝜂 − 1| ≥
(1+2𝛽)[3]𝑝,𝑞

𝑘 −(1+𝛽)2[2]𝑝,𝑞
𝑘 +

(1+𝛽)2[2]𝑝,𝑞
2𝑘

4𝑡2

(1+2𝛽)[3]𝑝,𝑞
𝑘 .

  

Proof: From Eq. (43) and Eq. (45) we have: 

𝑎3 − 𝜂𝑎2
2 = (1 − 𝜂)

𝑈1
3(𝑡)(𝑐2+𝑑2)

2[(1+2𝛽)[3]𝑝,𝑞
𝑘 𝑈1

2(𝑡)−(1+𝛽)2[2]𝑝,𝑞
2𝑘 𝑈2(𝑡)]

+
𝑈1(𝑡)(𝑐2−𝑑2)

2(1+2𝛽)[3]𝑝,𝑞
𝑘   

  = 𝑈1(𝑡) {[𝑠(𝜂) +
1

2(1+2𝛽)[3]𝑝,𝑞
𝑘 ] 𝑐2 + [𝑠(𝜂) −

1

2(1+2𝛽)[3]𝑝,𝑞
𝑘 ] 𝑑2}, (58) 

where 

 𝑠(𝜂) =
(1−𝜂)𝑈1

2(𝑡)

2[(1+2𝛽)[3]𝑝,𝑞
𝑘 𝑈1

2(𝑡)−(1+𝛽)2[2]𝑝,𝑞
2𝑘 𝑈2(𝑡)]

. (59)
 

In view of (11), we obtain: 

 |𝑎3 − 𝜂𝑎2
2| ≤ {

2𝑡

(1+2𝛽)[3]𝑝,𝑞
𝑘     0 ≤ |𝑠(𝜂)| ≤

1

2(1+2𝛽)[3]𝑝,𝑞
𝑘

4𝑡|𝑠(𝜂)|               |𝑠(𝜂)| ≥
1

2(1+2𝛽)[3]𝑝,𝑞
𝑘 .

  (60) 

The estimates of Theorem 3.8 follow from Eq. (60). This completes the proof. 

Remark 3.9. Many corollaries will be generated by varying parameters 

involved in Theorem 3.8. 

4 Conclusion 

A good amount of literature is available for the first few coefficients and the 

Fekete-Szego problem for different subclasses of univalent and bi-univalent 

analytic functions by making use of the class of Caratheodory functions. In the 

present investigation, the authors have introduced newly constructed bi-

univalent analytic function classes 𝑅∑,𝑝,𝑞
𝑘 (𝛾, 𝑡) and 𝑇∑,𝑝,𝑞

𝑘 (𝛽, 𝑡) associated with 

the Chebyshev polynomials by using the Salagean (p,q)-differential operator 

and obtained initial coefficients and Fekete-Szego problems for the above 

mentioned classes. The generalization of some of the previous results studied by 

various researchers was obtained. The sigmoid function and Faber polynomial 

can be used to derive similar results for the classes studied. 
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