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Abstract. A class of stochastic processes with memory within the framework of
the Hida calculus was studied. It was proved that the Donsker delta functionals
of the processes are Hida distributions. Furthermore, the probability density
function of the processes and the chaos decomposition of the Donsker delta
functional were derived. As an application, the existence of the renormalized
local times in an arbitrary dimension of the Riemann-Liouville fractional
Brownian motion as a white noise generalized function was proved.
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1 Introduction

In many disciplines, such as physics, biology, complex systems, and financial
mathematics, one often needs to study phenomena that contain uncertainty
(randomness) as well as memory from the past, see for example [1-5]. Since
Brownian motion is Markovian, it is not suitable for modeling stochastic
systems with short- or long-range dependence. Fractional Brownian motion has
become a popular tool in the modeling of random systems with memory. It has
the properties of being Gaussian, non-Markovian, non-Martingale, statistically
persistent, and self-similar, among others. For a comprehensive account on
fractional Brownian motion the reader is referred to [3] and [6], and the
references therein. Bernido and Carpio-Bernido [1] studied a general class of
stochastic processes with memory beyond fractional Brownian motion. In
particular, they evaluated the probability density function and discussed the
corresponding modified diffusion equation for different types of memory
behavior. It is mentioned in that paper that tools from the Hida calculus (white
noise analysis) were used. The present paper offers a more detailed treatment of
some results in [1] via the Hida calculus. Moreover, our results were obtained in
a more general setting of d-dimensional Euclidean space. In addition, we
derived the chaos decomposition of the Donsker delta functional. Application to
the local times of Riemann-Liouville fractional Brownian motion is also
discussed.
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The main object of this paper is the continuous time stochastic process X =
(X0 ts0 of the form

X, = xo + fy m(t — 5)g(s)dB; (1)

where m(t — s), g are measurable functions from [0,0) to R, B = (B;)¢so is @
standard Brownian motion, and X, = X, almost surely is the initial value of the
process. This corresponds to the process xin Eq. (1) in [1]. The function
m(t —s) and g are called the memory function and the weight function of the
process, respectively. Intuitively, they are used to modulate the Gaussian white
noise, dB,, which in turn affects the history of the process X. The stochastic
integral in Eq. (1) is interpreted as the Wiener integral with respect to the
Brownian motion. We require that m(t —-) € L%,.([0, ©)), that is fAlm(t -
s)g(s)| ds < oo for any compact set A < [0, ) so that the Wiener integral is
well-defined.

2 Basics of the Hida Calculus

In this section we recall some basic notions and results from the Hida calculus.
For a thorough discussion see for example [7-9]. Let (S;(R),C, 1) be the R%-
valued white noise space, i.e. S;(R) is the space of R%-valued tempered
distributions, C is the cylindrical o-algebra in S;(R), and the existence of the
white noise measure u is guaranteed by the Bochner-Minlos theorem via

Is1ry €XP (@, TN (@) = exp (=)

for all R%-valued Schwartz test functions 7j € S, (R). Here ||, denotes the usual
norm in the real Hilbert space of all R%-valued Lebesgue square-integrable
functions L (R). The dual pairing (-,-) on S;(R) X S;(R) is considered as the
bilinear extension of the inner product on L2 (R).It is known that in the white
noise analysis setting a version of the d-dimensional Brownian motion B is
represented by the stochastic vector (B;)¢so with

Be = ((, o) 1pony))

where 1, denotes the indicator function on a set A.

The Hilbert space L?(u) := L?>(S;(R),C,u)is unitary isomorphic to the
multiple tensor product of the Fock space of a symmetric square-integrable
function:

L2(p) = (ea,;";o L*(R¥, k! dkx))®d

Then, one chaos decomposition of any F € L?(u) is obtained:
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F(wq, -, wq) = Z(nl,-u,nd)ENg (: w?n1:® Q) w;@nd: f(n1,'“,nd)) (2)

The term f(n -ng) 18 called the kernel functions of the n-th chaos and is an

element of the Fock space. Here: 0®"

w € S{(R). By introducing the symbols

: denotes the n-th Wick power of

n:=(ny,..,ng) EN& n:= Z}i=1 n;, nl:= Hil:l n;!,
Eq. (2) can be simplified to

F(@) = Zpenal: 3" : o), @ € Sy(R).
Next, we consider a Gel’fand triple around the Hilbert space L?(u), namely
($) c L2 (w) < (5)"

Here (S) is called the space of Hida test functions and can be constructed by
taking the intersection of a collection of Hilbert subspaces of L?(u). It is a
nuclear countably Hilbert space and equipped with a projective limit topology.
The Hida distribution space (S)’ is defined as a topological dual space of (S).

For 1j € S;(R) and the corresponding Wick exponential:
- - 1,5
exp((,7j )) 2= exp (1) =3 17i13),
we define the S-transform of ® € (S)’ by

(SP)(@) = (P, :exp((-, 7 N:)), forall7j € S4(R) 3)

Here ({-,-)) denotes the dual pairing of (S)’ and (S). The multilinear expansion
of Eq. (3) can be extended to the chaos decomposition of @ € (S)" with
distribution-valued kernels F, , such that ((®, @)) = . N n! (F,, @,) for every

Hida test function ¢ € (§) with kernel functions ¢,. Now we give an
integration theorem of a family of Hida distributions.

Theorem 2.1 [10] Let (Q, F,v) be a measure space and § = ®; be a function
from Q to (S)". If

(1) The function & = (S®¢)(7}) is measurable for all 7j € S4(R), and

(2) There exist C;(¢) € L1(Q,v), C,(§) € L*(Q,v), and a continuous norm
11 on S4(R) such that | (S ) @) | < €,(&) exp(C, ()2 2IlI?), for all
11 € (S) and complex number z, then ®; is Bochner integrable with respect
to some Hilbertian norm topologizing (S)’. Moreover, fQ ®:dv(§) € (S)',
and for any 77 € (S) it holds
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S(f CngV(f)) () = f (S@¢)dv(D).
Q Q

3 Main Results

Let the index set I be either a compact interval [0,T], 0 < T < o or the
nonnegative half line [0,00). In the frame of the Hida calculus the d-
dimensional stochastic process with memory X starting at X, = (x%, ---,xg) €
R4 is represented by the stochastic process (X;)¢c; with

Xy =X+ (,m(t—)g)
= (xé + ("ml(t _')gl>l '“!x(c)l + (md(t _)gd))

where m; (t —), ..., myz(t —*), g4, ..., g4 are measurable functions from I into R
such that m;(t —)g € L3,.(D) for all j = 1,...,d. It can be shown that (X;).¢;
is a Gaussian process with mean vector X, and covariance matrix M =

(mij)i, j=1,..d with

mij = (mi (t _')gi; m] (t _)g])LZ(I)

In the following, by | m;(t —-)gj|0 we mean | m;(t —-)gj| Henceforth, we

L2
will work with a continuous version of X, which exists due to the Kolmogorov-
Chentsov theorem.

In several applications, such as in the area of probability theory, quantum
mechanics, and polymer physics, one needs to fix a stochastic process at some
spatial point, see for example [11-13]. This motivates us to study the Donsker
delta functional of the process X. Informally, it is defined as the composition of
the Dirac delta function &z € S'(R?) with a d-dimensional stochastic process
with memory (X;).e;, that is 6z(X;). We will make sense of this object as a
Hida distribution via the Fourier-transform representation of the Dirac delta
function.

Theorem 3.1 Let X = (X;):¢; be a d-dimensional stochastic process with
memory and ¢, = (cg,**+,c4) € R%. The Donsker delta functional

d f gy — - - g
5e(X) = (1) fraexp (iAo + (7t =) — ©)) di
is a Hida distribution. Moreover, its S-transform is of the form

§6:(Xp) ()
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d d i 2
1 1 ((n],m](t —)g])+xé —Cj)
= exp| —=
24
j=1

2
j=1 \/2n|mj(t —~)gj|(2, [my & =g,

for all 7j € S4(R).

Proof. We will show that [, exp (iZ(fo + (-, m(t —)g) — 8)) di e (S)'.
For simplicity we use the following notations: A m(t —)g = Zj-l=1/1jmj(t -
Vgj AW —)g) = G, AmE —)G) = Ty Amymy(t —)g;,  and
|/T|2|r7i(t =3 = Z?zlxlﬂmj(t —-)g]-|2. For 1 € R let us define a mapping
F5:54(R) > R by

F3(7) = S exp (i + (- 7(t —)g) — O)) ().
Then,

F5 ()

= ((exp (AR + (- i(t =)g) — )+ exp((- T )
exp(—%lﬁl%) fsé(R) exp (iZ(}‘ZO — 5)) exp((a, iAm(t —-)g +
7)) du(@)
exp (—%|ﬁ|g) exp (ii(ic’o - E)) exp (%|iim(t—-)§+?j|[2))

—

exp (—%mz |mi(t —)g’|(2)) exp (iZ((ﬁ,m(t —§) + % — 5))

The function A Fz(ﬁ) is measurable with respect to the Lebesgue measure
dA. Moreover, for 7 € Sz(R) and z € C we have

| (zi)| < exp (=3[ 17 (t =)g13) exp(|] 12117, 7t —) 1)

213 534\ A2
< exp (~3fI7iCc ~)gi13) exp (L IC0L)

< exp (2] Ii(t —)313) exp(lzI2 il3)

The first factor is an integrable function of A and the second factor is a constant

with respect to 1. Theorem 2.1 delivers that Sz(X;) € (S)'. To obtain the S-
transform we integrate F5 () over R% and use the Gaussian integral formula

§6:(X) (M)
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I
—=
NlH

_1 . — . 2 2
7T.Lexp( E|m](t )g]|oﬂj

j=1
. 2
1—[ 1 d (((Uj.mj(t —)g;)+ x(J) - Cj))
j=1V 2m|m; (¢ _')gf|0 2 =1 |m; (¢ _')gjl(z)

This finishes the proof.

Corollary 3.2. The transition probability function of a particle in a system
described by a d-dimensional stochastic process with memory X = (X;);¢; to
move from ¥, € R? to an endpoint ¥ € R? at a later time t = T is given by

p(j_eOl 0; J-C)Tl T)
2

d d - ,
1—[ 1 1 Z x) — x7
= exp| —= o 7T
2

Proof. The generalized expectation of the Donsker delta functional can be
obtained from Theorem 3.1 by evaluating the value of the S-transform at 7 = 0:

Eu(‘SE(Xt)) = SSE(Xt)(a)
_ li[ 1 Z (xo - xT)
j=1 J2n|mj(t —-)gj|(2) 1 [my (T — )91

The transition probability function p(X,,0; %7, T) now follows immediately
from the last expression by fixing the endtime t = T with endpoint ¢ = Xr.

Note that in the case of a one-dimensional system and I = [0, T] we recover the
object (8) in [1].
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Example 3.3.

1. d-dimensional Riemann-Liouville fractional Brownian motion with Hurst
) ) )2 )
index H € (%, 1). In this case, m;(t —s) = (F(;)+% and g;(s) = 1, which
gives

H-1 2
T -5 2H
2 (t—s)' 2 T
m;(T —)g; =f —— | ds=———,
| J J|L2[0,T] o F(H+%) 2HF(H+%)2

where I is the usual gamma function. The probability density function is
d

HT(H +5%\? HU(H+Y°
—r | exp| ——— 1% — Xrl? |,

p(%o, 0; X7, T) = < TT2H T2H

where |%¥, — X7| is the Euclidean distance in R% between X, and X7.

2. d-dimensional exponentially-modified Brownian motion. Here, m;(t —
u-1
)=(t—5)7, R >0 and g;(s) =—rexp(—L). Then, by using
s 2
formula 3.471(3) in [14] we have

X fT (T —s)* Lexp (— g)

|m; (T =g = S

- = R—uTH-1
LZ [O,T] 0 ds ﬁ T F(.u) .

The probability density function is

pren)
2nTH1T (1)

pros(l)

p(%o, 0; X7, T) = T 2T ()

exp %o — %r|?

For a more complete example of a stochastic processes with memory (with
various memory and weight functions) we refer to [1].

We can also deduce the chaos decomposition of the Donsker delta functional.
Corollary 3.4. It holds that

8:(X) = ) (B,
neng

where the n-kernel, n € N&, is given by

Fn(uL "':un)
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d

. 1

J _ . __(—_1\n
lemj(t—')gjlz (XO C]) n! -1
j=1

/ Y meon )
it 1(11 \Jz|m,<t o fime ) '}

Here py2(x) = \/;_exp( 2xa ) denotes the heat kernel and H,, denotes the

Hermite polynomial of order n defined by the Rodrigues formula

Hp(x) = (=D" eXp(xz) eXp( x?).

Proof. From Theorem 3.1 and the generating function formula for the Hermite
polynomial we have

§6:(X) ()
({2 e ey
21 |m](t )94, 24y |mj(t—-)gj|2
a
2

1 (xo _CJ)
1_[|m](t )g Z|m}(t—)g}

Jlg

_ (nj,m;(t _')gj)z B (Xé - Cj) (nj,m;(t —)g;)

X
. |
ﬂ‘ | Q
¢
e}
o

2[m; (£ =g, [m; (e =g,
d - 2
1_[ exp 1 (x—¢)
2 2
e =T
n
Xﬁ ilH B xé = ¢ (mj,m(t—-g;)
n "
j=1 \n=1 \/Zﬂlmj(t —)g1|(2) \/2n|mj(t —)g1|(2)
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d

_ J_ ..

= lemj(t—~)gj|2(x° )
J=1

J

< 1 2 / Xy —c¢ m;(t —)
S WRTND YR | () . R A
' 2 2
=0 npiAng=n =1 \\/2ﬂ|mj(t —)9;l; \/2”|mj(t —9;l,
By comparing with the general form of the chaos decomposition we arrive at
the desired expression for the kernel functions.

The local times of a d-dimensional stochastic process with memory X at point
¢ € R4 over a compact interval [0,T],0 < T < o is defined informally via the
Tanaka formula (see e.g. Section 8.6 of [15]):

[T 860X, dt @)

Expression (4) is used heuristically to measure the amount of time the trajectory
of X spends at a given point ¢ € R% within the time horizon [0,T]. A priori,
Expression (4) is mathematically meaningless. From the point of view of the
Hida calculus, local time is nothing else but integration of the Donsker delta
functional over the time horizon. The idea of studying local times using the
Hida calculus was initiated, at least, in the work of Watanabe [16]. We will
prove that the integral of the truncated version of the Donsker delta functional is
well-defined as a Hida distribution. However, it is not possible to establish the
result for the general stochastic process with memory since the computation
later on very much depends on the explicit expression of the variance of the
process. In other words, the study of local time has to be done for specific
memory and weight functions. In the following we will prove an existence
result for the local times at the origin of a d-dimensional Riemann-Liouville
fractional Brownian motion (X;)¢efo,r) With Hurst index H € (%, 1). Recall that

the process is given by

H-i
L [fe—9)"2
Xt=x0+j —1st,
o I(H+3)
or in the white-noise representation:
1 1 1
L, =92 (t-9)"2 (t—s)"2
Xp =Xo + (‘,—1) = x5 + (‘,—1);"',3681 + (',—1) .
r(H+3) r(H+3) r(H+3)

)"
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From the last expression it is understood that for independent d-tuples of white
noise @ = (w4, , wq) € Sz (R) the following holds:

(t - s)”‘% (t - s)H‘%
X (&) = | x5 +{w,——7), %6 +{wa——) |
r(H+3) r(n+5)

Now we define the truncated Donsker’s delta functional 5CEN) (X;) € (S) via its
S-transform. For any 77 € S;(R)

568 (X)) = / ﬁ ! \
C \,-21 \/2”|mf(t —')91|2/

& (g my (£ =g + x4 - Cj))Z

1 |m; (¢ _')gj|(2)

1
X exp(N) —E

J

)

where the truncated exponential function exp(yy is given by

exp(n) (x) = Z e
n=N

Since the S-transform characterizes the Hida distribution, the above definition is
well-defined.

Theorem 3.5. Let X = (X¢)tepor) be a d-dimensional Riemann-Liouville

fractional Brownian motion with Hurst index H € (%, 1) starting at 0 € R, For

any integers d > 1 and N > 0 satisfying dH + 2N(H — 1) < 1 the truncated
local time at the origin

T
10 = [ 600 de
0
is a Hida distribution.

Proof. From the definition of the truncated Donsker delta functional we have
that S Sé,N) (X,) (1) is a measurable function of t for every 1j € S;(R). Moreover,
for every z € C and 1j € S;(R), using Theorem 3.1, we obtain

S8 (%) (z7)
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d d
1 1O mpmi(t—)g;)?
< = | &Py §|Z| Z 3
= \/ 2|y (¢ =g, = Iy =gl
d 1
<(1 7 ({4 V2HT (H +5)
- 27‘[) 1_[ tH
j=1
2
2HT ( d NG $)H~
X ex |z|? ————2— dS
P t2H 1N
j=1 (H+3)
) a
114\ 2 d
HU(H+7) \ 1 2HT?H-1|z)2 t 2
S|\——— | caEe&Pm| (=g Z f Sup|77j(5)|
T t t ]=1 0 seR
1\%\ 2
HF(H+7) 1 2H-1,2-2H|,|2||3]|2
S| ——== | Zrexpay(2HT?H 12721 |7|2|75]|2)

N

T

2
Hr(H+2
S( ( z)) tZN(l—H)—dH eXp(ZHTZH_1|Z|2||ﬁ||f),

where |||, is a continuous norm on S;(R) defined by
d

LIEEDY (ssgg|n,-<s>|)2 |

Note that t2NA~H)=dH s gt —integrable on [0, T] if and only if 2N (1 — H) —
dH > —1. Finally, the conclusion follows from Theorem 2.1.

Theorem 3.5 asserts that for one-dimensional Riemann-Liouville fractional
Brownian motion the local time at zero is well-defined as a Hida distribution.
For d > 2 local times at zero become well-defined only after renormalization,
i.e. by omission of the divergent terms that occur in the low-order terms in the
truncated Donsker delta functional. For example, for d =2 or d = 3 it is
sufficient to take N = 1, which means we only need to throw away the first

lower term to have LS(N) (T) € (S)'. The effectiveness of the renormalization
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method comes from the fact that the kernels of increasing order in the chaos
decomposition are less singular in the sense of Lebesgue integrable functions.

4 Conclusion

This research developed a Hida calculus approach to a class of stochastic
processes with memory in a general setting of d-dimensional space. In
particular, we considered Donsker’s delta functional of such processes together
with the probability density functions and their chaos decompositions. We
applied our results to the study of local time at zero of a d-dimensional
Riemann-Liouville fractional Brownian motion.
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