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Abstract. A class of stochastic processes with memory within the framework of 
the Hida calculus was studied. It was proved that the Donsker delta functionals 
of the processes are Hida distributions. Furthermore, the probability density 
function of the processes and the chaos decomposition of the Donsker delta 
functional were derived. As an application, the existence of the renormalized 
local times in an arbitrary dimension of the Riemann-Liouville fractional 
Brownian motion as a white noise generalized function was proved. 
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1 Introduction 

In many disciplines, such as physics, biology, complex systems, and financial 
mathematics, one often needs to study phenomena that contain uncertainty 
(randomness) as well as memory from the past, see for example [1-5]. Since 
Brownian motion is Markovian, it is not suitable for modeling stochastic 
systems with short- or long-range dependence. Fractional Brownian motion has 
become a popular tool in the modeling of random systems with memory. It has 
the properties of being Gaussian, non-Markovian, non-Martingale, statistically 
persistent, and self-similar, among others. For a comprehensive account on 
fractional Brownian motion the reader is referred to [3] and [6], and the 
references therein. Bernido and Carpio-Bernido [1] studied a general class of 
stochastic processes with memory beyond fractional Brownian motion. In 
particular, they evaluated the probability density function and discussed the 
corresponding modified diffusion equation for different types of memory 
behavior. It is mentioned in that paper that tools from the Hida calculus (white 
noise analysis) were used. The present paper offers a more detailed treatment of 
some results in [1] via the Hida calculus. Moreover, our results were obtained in 
a more general setting of 𝑑-dimensional Euclidean space. In addition, we 
derived the chaos decomposition of the Donsker delta functional. Application to 
the local times of Riemann-Liouville fractional Brownian motion is also 
discussed. 
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The main object of this paper is the continuous time stochastic process X ൌ
ሺX୲ሻ୲ஹ଴ of the form 

          𝑋௧ ൌ 𝑥଴ ൅ ׬ 𝑚ሺ𝑡 െ 𝑠ሻ𝑔ሺ𝑠ሻ𝑑𝐵௦     
௧

଴  (1) 

where 𝑚ሺ𝑡 െ 𝑠ሻ, 𝑔 are measurable functions from ሾ0, ∞) to 𝑅, 𝐵 ൌ ሺ𝐵௧ሻ௧ஹ଴ is a 
standard Brownian motion, and 𝑥଴ ≔ 𝑋଴ almost surely is the initial value of the 
process. This corresponds to the process 𝑥 in Eq. (1) in [1]. The function 
𝑚ሺ𝑡 െ 𝑠ሻ and 𝑔 are called the memory function and the weight function of the 
process, respectively. Intuitively, they are used to modulate the Gaussian white 
noise, 𝑑𝐵௦, which in turn affects the history of the process 𝑋. The stochastic 
integral in Eq. (1) is interpreted as the Wiener integral with respect to the 
Brownian motion. We require that 𝑚ሺ𝑡 െ⋅ሻ ∈ 𝐿௟௢௖

ଶ ሺሾ0, ∞ሻሻ, that is ׬ |𝑚ሺ𝑡 െ஺
𝑠ሻ𝑔ሺ𝑠ሻ| 𝑑𝑠 ൏ ∞ for any compact set 𝐴 ⊂ ሾ0, ∞ሻ so that the Wiener integral is 
well-defined. 

2 Basics of the Hida Calculus 

In this section we recall some basic notions and results from the Hida calculus. 
For a thorough discussion see for example [7-9]. Let ሺ𝑆ௗ

ᇱ ሺ𝑅ሻ, 𝐶, 𝜇ሻ be the 𝑅ௗ-
valued white noise space, i.e. 𝑆ௗ

ᇱ ሺ𝑅ሻ is the space of 𝑅ௗ-valued tempered 
distributions, 𝐶 is the cylindrical 𝜎-algebra in 𝑆ௗ

ᇱ ሺ𝑅ሻ, and the existence of the 
white noise measure 𝜇 is guaranteed by the Bochner-Minlos theorem via  

׬  expሺ𝑖〈𝜔ሬሬ⃗ , 𝜂〉ሻ𝑑𝜇ሺ𝜔ሬሬ⃗ ሻௌ೏
ᇲ ሺோሻ ൌ exp൫െభ

మ
|ఎሬሬ⃗ |బ

మ൯  

for all 𝑅ௗ-valued Schwartz test functions 𝜂 ∈ 𝑆ௗሺ𝑅ሻ. Here |⋅|଴ denotes the usual 
norm in the real Hilbert space of all 𝑅ௗ-valued Lebesgue square-integrable 
functions 𝐿ௗ

ଶ ሺ𝑅ሻ. The dual pairing 〈⋅,⋅〉 on 𝑆ௗ
ᇱ ሺ𝑅ሻ ൈ 𝑆ௗሺ𝑅ሻ is considered as the 

bilinear extension of the inner product on  𝐿ௗ
ଶ ሺ𝑅ሻ. It is known that in the white 

noise analysis setting a version of the 𝑑-dimensional Brownian motion 𝐵 is 
represented by the stochastic vector ሺ𝐵௧ሻ௧ஹ଴ with 

 𝐵௧ ≔ ൫〈⋅, 1ሾ଴,௧ሻ〉, ⋯ , 〈⋅, 1ሾ଴,௧ሻ〉൯  

where 1஺ denotes the indicator function on a set 𝐴. 

The Hilbert space 𝐿ଶሺ𝜇ሻ ≔ 𝐿ଶሺ𝑆ௗ
ᇱ ሺ𝑅ሻ, 𝐶, 𝜇ሻ is unitary isomorphic to the 

multiple tensor product of the Fock space of a symmetric square-integrable 
function: 

 𝐿ଶሺ𝜇ሻ ൌ෥ ቀ⊕௞ୀ଴
ஶ 𝐿෠ଶ൫𝑅௞, 𝑘! 𝑑௞𝑥൯ቁ

⊗ௗ
  

Then, one chaos decomposition of any 𝐹 ∈ 𝐿ଶሺ𝜇ሻ is obtained: 
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           𝐹ሺ𝜔ଵ, ⋯ , 𝜔ௗሻ ൌ ∑ 〈: 𝜔ଵ
⊗௡భ:⊗ ⋯ ⊗: 𝜔ௗ

⊗௡೏: 𝑓ሺ௡భ,⋯,௡೏ሻ〉ሺ௡భ,⋯,௡೏ሻ∈ேబ
೏  (2) 

The term 𝑓ሺ௡భ,⋯,௡೏ሻ is called the kernel functions of the 𝑛-th chaos and is an 

element of the Fock space. Here: 𝜔⊗௡ : denotes the 𝑛-th Wick power of 
𝜔 ∈ 𝑆ଵ

ᇱሺ𝑅ሻ.  By introducing the symbols 

 𝒏 ≔ ሺ𝑛ଵ, … , 𝑛ௗሻ ∈ 𝑁଴
ௗ,    𝑛 ≔ ∑ 𝑛௝

ௗ
௝ୀଵ ,    𝒏! ≔ ∏ 𝑛௝! ௗ

௝ୀଵ , 

Eq. (2) can be simplified to 

 𝐹ሺ𝜔ሬሬ⃗ ሻ ൌ ∑ 〈: 𝜔ሬሬ⃗ ⊗௡ : 𝑓𝒏〉,   ௡∈ேబ
೏ 𝜔ሬሬ⃗ ∈ 𝑆ௗ

ᇱ ሺ𝑅ሻ. 

Next, we consider a Gel’fand triple around the Hilbert space 𝐿ଶሺ𝜇ሻ, namely 
ሺ𝑆ሻ ⊂ 𝐿ଶሺ𝜇ሻ ⊂ ሺ𝑆ሻᇱ. 

Here ሺ𝑆ሻ is called the space of Hida test functions and can be constructed by 
taking the intersection of a collection of Hilbert subspaces of 𝐿ଶሺ𝜇ሻ. It is a 
nuclear countably Hilbert space and equipped with a projective limit topology. 
The Hida distribution space ሺ𝑆ሻᇱ is defined as a topological dual space of ሺ𝑆ሻ. 

For 𝜂 ∈ 𝑆ௗሺ𝑅ሻ and the corresponding Wick exponential:  

 :expሺ〈⋅, 𝜂  〉ሻ ∷ൌ exp ቀ〈⋅, 𝜂〉 െ
ଵ

ଶ
|𝜂|଴

ଶቁ , 

we define the S-transform of Φ ∈ ሺ𝑆ሻᇱ by 

 ሺ𝑆Φሻሺ𝜂ሻ ≔ 〈〈Φ, : expሺ〈⋅, 𝜂  〉ሻ: 〉〉,  for all 𝜂 ∈ 𝑆ௗሺ𝑅ሻ (3) 

Here 〈〈⋅,⋅〉〉 denotes the dual pairing of ሺ𝑆ሻᇱ and ሺ𝑆ሻ. The multilinear expansion 
of Eq. (3) can be extended to the chaos decomposition of Φ ∈ ሺ𝑆ሻᇱ with 
distribution-valued kernels 𝐹𝒏 , such that 〈〈Φ, 𝜑〉〉 ൌ ∑ 𝒏! 〈𝐹𝒏, 𝜑𝒏〉 𝒏∈𝑵𝟎

𝒅 for every 

Hida test function 𝜑 ∈ ሺ𝑆ሻ with kernel functions 𝜑𝒏. Now we give an 
integration theorem of a family of Hida distributions.  

Theorem 2.1 [10] Let ሺΩ, 𝐹, 𝜈ሻ be a measure space and 𝜉 ↦ Φక  be a function 
from Ω to ሺ𝑆ሻ′. If  

(1) The function 𝜉 ↦ ൫𝑆Φక൯ሺ𝜂ሻ is measurable for all 𝜂 ∈ 𝑆ௗሺ𝑅ሻ, and 

(2) There exist 𝐶ଵሺ𝜉ሻ ∈ 𝐿ଵሺΩ, 𝜈ሻ, 𝐶ଶሺ𝜉ሻ ∈ 𝐿ஶሺΩ, 𝜈ሻ, and a continuous norm 
‖⋅‖ on 𝑆ௗሺ𝑅ሻ such that ห൫𝑆Φక൯ሺ𝑧𝜂ሬሬሬሬ⃗ ሻ ห ൑ 𝐶ଵሺ𝜉ሻ expሺ𝐶ଶሺ𝜉ሻ|𝑧|ଶ‖𝜂‖ଶሻ, for all 
𝜂 ∈ ሺ𝑆ሻ and complex number 𝑧, then Φక  is Bochner integrable with respect 
to some Hilbertian norm topologizing ሺ𝑆ሻᇱ. Moreover, ׬ Φక𝑑𝜈ሺ𝜉ሻ ∈ ሺ𝑆ሻ′ஐ , 
and for any 𝜂 ∈ ሺ𝑆ሻ it holds 
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𝑆 ቆන Φక𝑑𝜈ሺ𝜉ሻ
ஐ

ቇ ሺ𝜂ሻ ൌ න ൫SΦక൯ሺ𝜂ሻ𝑑𝜈ሺ𝜉ሻ
ஐ

. 

3 Main Results 

Let the index set 𝐼 be either a compact interval ሾ0, 𝑇ሿ, 0 ൏ 𝑇 ൏ ∞ or the 
nonnegative half line ሾ0, ∞ሻ. In the frame of the Hida calculus the 𝑑-
dimensional stochastic process with memory 𝑋 starting at 𝑥⃗଴ ൌ ൫𝑥଴

ଵ, ⋯ , 𝑥଴
ௗ൯ ∈

𝑅ௗ is represented by the stochastic process ሺ𝑋௧ሻ௧∈ூ with 

𝑋௧  ≔ 𝑥⃗଴ ൅ 〈⋅, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗ 〉 

                   ൌ ൫𝑥଴
ଵ ൅ 〈⋅, 𝑚ଵሺ𝑡 െ⋅ሻ𝑔ଵ〉, ⋯ , 𝑥଴

ௗ ൅ 〈𝑚ௗሺ𝑡 െ⋅ሻ𝑔ௗ〉൯  

where 𝑚ଵሺ𝑡 െ⋅ሻ, … , 𝑚ௗሺ𝑡 െ⋅ሻ, 𝑔ଵ, … , 𝑔ௗ are measurable functions from 𝐼 into 𝑅 
such that 𝑚௝ሺ𝑡 െ⋅ሻ𝑔 ∈ 𝐿௟௢௖

ଶ ሺ𝐼ሻ for all 𝑗 ൌ 1, … , 𝑑. It can be shown that ሺ𝑋௧ሻ௧∈ூ 
is a Gaussian process with mean vector 𝑥⃗଴ and covariance matrix 𝑀 ൌ
൫𝑚௜௝൯

௜,௝ୀଵ,…,ௗ
 with  

 𝑚௜௝ ൌ ൫𝑚௜ሺ𝑡 െ⋅ሻ𝑔௜, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝൯
௅మሺூሻ

 

In the following, by ห 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴
 we mean ห 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห

௅మሺூሻ
. Henceforth, we 

will work with a continuous version of 𝑋, which exists due to the Kolmogorov-
Chentsov theorem. 

In several applications, such as in the area of probability theory, quantum 
mechanics, and polymer physics, one needs to fix a stochastic process at some 
spatial point, see for example [11-13]. This motivates us to study the Donsker 
delta functional of the process 𝑋. Informally, it is defined as the composition of 
the Dirac delta function 𝛿௖⃗ ∈ 𝑆ᇱሺ𝑅ௗሻ with a 𝑑-dimensional stochastic process 
with memory ሺ𝑋௧ሻ௧∈ூ, that is 𝛿௖⃗ሺ𝑋௧ሻ. We will make sense of this object as a 
Hida distribution via the Fourier-transform representation of the Dirac delta 
function. 

Theorem 3.1 Let 𝑋 ൌ ሺ𝑋௧ሻ௧∈ூ be a 𝑑-dimensional stochastic process with 
memory and 𝑐଴ ൌ ሺ𝑐଴, ⋯ , 𝑐ௗሻ ∈ 𝑅ௗ. The Donsker delta functional 

 𝛿௖⃗ሺ𝑋௧ሻ ≔ ൫భ
మ
൯

ௗ
׬ exp ቀ𝑖𝜆ሺ𝑥⃗଴ ൅ 〈⋅, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗〉 െ 𝑐ሻቁ  𝑑𝜆ோ೏  

is a Hida distribution. Moreover, its S-transform is of the form 

𝑆𝛿௖⃗ሺ𝑋௧ሻሺ𝜂ሻ 
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ൌ

⎝

⎛ෑ
1

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ
⎠

⎞ exp ቌെ
1
2

෍
൫〈𝜂௝, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝〉 ൅ 𝑥଴

௝ െ 𝑐௝൯
ଶ

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ

ቍ 

for all 𝜂 ∈ 𝑆ௗሺ𝑅ሻ. 
 

Proof. We will show that ׬ exp ቀ𝑖𝜆ሺ𝑥⃗଴ ൅ 〈⋅, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗〉 െ 𝑐ሻቁ  𝑑𝜆ோ೏ ∈ ሺ𝑆ሻᇱ. 

For simplicity we use the following notations: 𝜆 ሬሬ⃗ 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗ ≔ ∑ 𝜆௝𝑚௝ሺ𝑡 െௗ
௝ୀଵ

⋅ሻ𝑔௝, 𝜆〈𝜂, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗〉 ൌ 〈𝜂, 𝜆 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗〉 ≔ ∑ 𝜆௝𝜂௝𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝,ௗ
௝ୀଵ  and 

ห𝜆ห
ଶ

|𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ|଴
ଶ ≔ ∑ 𝜆௝

ଶห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ
.ௗ

௝ୀଵ  For 𝜆 ∈ 𝑅ௗ let us define a mapping 

𝐹ఒሬሬ⃗ : 𝑆ௗሺ𝑅ሻ → 𝑅 by 

 𝐹ఒሬሬ⃗ ሺ𝜂ሻ ≔ 𝑆 exp ቀ𝑖𝜆ሺ𝑥⃗଴ ൅ 〈⋅, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗〉 െ 𝑐ሻቁ ሺ𝜂ሻ. 

Then, 

𝐹ఒሬሬ⃗ ሺ𝜂ሻ 

 ൌ 〈〈exp ቀ𝑖𝜆ሺ𝑥⃗଴ ൅ 〈⋅, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗〉 െ 𝑐ሻቁ , ∶ expሺ〈⋅,  𝜂 ሬሬሬሬ⃗ 〉ሻ :〉〉 

 ൌ exp൫െభ
మ

|ఎሬሬ⃗ |బ
మ൯ ׬ exp ቀ𝑖𝜆ሺ𝑥⃗଴ െ 𝑐ሻቁ exp൫〈𝜔ሬሬ⃗ , 𝑖𝜆𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗ ൅ௌ೏

ᇲ ሺோሻ

𝜂〉൯ 𝑑𝜇ሺ𝜔ሬሬ⃗ ሻ 

ൌ exp ቀെଵ
ଶ

|ఎሬሬ⃗ |బ
మቁ exp ቀ𝑖𝜆ሺ𝑥⃗଴ െ 𝑐ሻቁ exp ቀଵ

ଶ
ቚ௜ఒሬሬ⃗ ௠ሬሬሬ⃗ ሺ௧ି⋅ሻ௚ሬ⃗ ାఎሬሬ⃗ ቚ

బ

మ
ቁ 

ൌ exp ቀെଵ
ଶ

ቚఒሬሬ⃗ ቚ
మ

|𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗|଴
ଶቁ exp ቀ𝑖𝜆ሺ〈𝜂, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗〉 ൅ 𝑥⃗଴ െ 𝑐ሻቁ . 

The function 𝜆 ↦ 𝐹ఒሬሬ⃗ ሺ𝜂ሻ is measurable with respect to the Lebesgue measure 

𝑑𝜆. Moreover, for 𝜂 ∈ 𝑆ௗሺ𝑅ሻ and 𝑧 ∈ 𝐶 we have 

ห𝐹ఒሬሬ⃗ ሺ𝑧𝜂ሻห ൑ exp ቀെଵ
ଶ

ቚఒሬሬ⃗ ቚ
బ

మ
|𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗|଴

ଶቁ exp൫ห𝜆ห|𝑧||𝜂, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗|൯ 

                             ൑ exp ቀെభ
ర

ቚఒሬሬ⃗ ቚ
బ

మ
|𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗|଴

ଶቁ exp ቀ
|௭|మ|ఎሬሬ⃗ ,௠ሬሬሬ⃗ ሺ௧ି⋅ሻ௚ሬ⃗ |మ

|௠ሬሬሬ⃗ ሺ௧ି⋅ሻ௚ሬ⃗ |బ
మ ቁ  

                             ൑ exp ቀെభ
ర

ቚఒሬሬ⃗ ቚ
బ

మ
|𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗|଴

ଶቁ expሺ|𝑧|ଶ|𝜂|଴
ଶሻ 

The first factor is an integrable function of 𝜆 and the second factor is a constant 
with respect to 𝜆 . Theorem 2.1 delivers that 𝛿௖⃗ሺ𝑋௧ሻ ∈ ሺ𝑆ሻᇱ. To obtain the S-
transform we integrate 𝐹ఒሬሬ⃗ ሺ𝜂ሻ over 𝑅ௗ and use the Gaussian integral formula 

  𝑆𝛿௖⃗ሺ𝑋௧ሻሺ𝜂ሻ 
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 ൌ ቀ ଵ

ଶగ
ቁ

ௗ
׬ 𝑆 exp ቀ𝑖𝜆ሺ𝑥⃗଴ ൅ 〈⋅, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗〉 െ 𝑐 ሻቁ ሺ𝜂ሻ 𝑑𝜆 ோ೏  

ൌ ቀ ଵ

ଶగ
ቁ

ௗ
׬ exp ቀെభ

మ
ቚఒሬሬ⃗ ቚ

మ
|𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗|଴

ଶቁ exp ቀ𝑖𝜆ሺ〈𝜂, 𝑚ሬሬ⃗ ሺ𝑡 െ⋅ሻ𝑔⃗〉 ൅ 𝑥⃗଴ െ 𝑐ሻቁୖౚ 𝑑𝜆 

ൌ ෑ
1

2𝜋
න exp ൬െଵ

ଶ
ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห

଴

ଶ
𝜆௝

ଶ

ோ

ௗ

௝ୀଵ

൅ 𝑖𝜆௝൫〈𝜂௝, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝〉 ൅ 𝑥଴
௝ െ 𝑐௝൯൰  𝑑𝜆௝ 

ൌ ቌෑ
1

√2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ௗ

௝ୀଵ

ቍ exp ቌെ
1
2

෍
ቀ൫〈𝜂௝, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝〉 ൅ 𝑥଴

௝ െ 𝑐௝൯ቁ
ଶ

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ

ቍ 

This finishes the proof. 

Corollary 3.2. The transition probability function of a particle in a system 
described by a 𝑑-dimensional stochastic process with memory 𝑋 ൌ ሺ𝑋௧ሻ௧∈ூ to 
move from 𝑥⃗଴ ∈ 𝑅ௗ to an endpoint 𝑥்⃗ ∈ 𝑅ௗ at a later time 𝑡 ൌ 𝑇 is given by 

𝑝ሺ𝑥⃗଴, 0; 𝑥்⃗, 𝑇ሻ

ൌ

⎝

⎛ෑ
1

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ
⎠

⎞ exp ൮െ
1
2

෍ ቌ
𝑥଴

௝ െ 𝑥்
௝

ห𝑚௝ሺ𝑇 െ⋅ሻ𝑔௝ห
଴

ቍ

ௗ

௝ୀଵ

ଶ

൲ 

Proof. The generalized expectation of the Donsker delta functional can be 
obtained from Theorem 3.1 by evaluating the value of the S-transform at 𝜂 ൌ 0ሬ⃗ : 
𝐸ఓ൫𝛿௖⃗ሺ𝑋௧ሻ൯ ൌ 𝑆𝛿௖⃗ሺ𝑋௧ሻ൫0ሬ⃗ ൯ 

ൌ

⎝

⎛ෑ
1

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ
⎠

⎞ exp ቌെ
1
2

෍
൫𝑥଴

௝ െ 𝑥்
௝ ൯

ଶ

ห𝑚௝ሺ𝑇 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ

ቍ. 

The transition probability function 𝑝ሺ𝑥⃗଴, 0; 𝑥்⃗, 𝑇ሻ now follows immediately 
from the last expression by fixing the endtime 𝑡 ൌ 𝑇 with endpoint 𝑐 ൌ 𝑥்⃗.  

Note that in the case of a one-dimensional system and 𝐼 ൌ ሾ0, 𝑇ሿ we recover the 
object (8) in [1].  
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Example 3.3.  

1. 𝑑-dimensional Riemann-Liouville fractional Brownian motion with Hurst 

index 𝐻 ∈ ൫భ
మ
, 1൯. In this case,  𝑚௝ሺ𝑡 െ 𝑠ሻ ൌ

ሺ௧ି௦ሻಹష
భ
మ

୻൫ுାభ
మ൯

  and 𝑔௝ሺ𝑠ሻ ൌ 1, which 

gives  

ห𝑚௝ሺ𝑇 െ⋅ሻ𝑔௝ห
௅మሾ଴,்ሿ

ଶ
ൌ න ቌ

ሺ𝑡 െ 𝑠ሻுି
ଵ
ଶ

Γ൫𝐻 ൅ ଵ
ଶ൯

ቍ
்

଴

ଶ

𝑑𝑠 ൌ
𝑇ଶு

2𝐻Γ൫𝐻 ൅ ଵ
ଶ൯

ଶ, 

where Γ is the usual gamma function. The probability density function is 

𝑝ሺ𝑥⃗଴, 0; 𝑥்⃗, 𝑇ሻ ൌ ൭
𝐻Γ൫𝐻 ൅ ଵ

ଶ൯
ଶ

𝜋𝑇ଶு ൱

ௗ
ଶ

exp ൭െ
𝐻Γ൫𝐻 ൅ ଵ

ଶ൯
ଶ

𝑇ଶு |𝑥⃗଴ െ 𝑥்⃗|ଶ൱ , 

where  |𝑥⃗଴ െ 𝑥்⃗| is the Euclidean distance in 𝑅ௗ between 𝑥⃗଴ and 𝑥்⃗. 
 
2. 𝑑-dimensional exponentially-modified Brownian motion. Here, 𝑚௝ሺ𝑡 െ

𝑠ሻ ൌ ሺ𝑡 െ 𝑠ሻ
ഋషభ

మ , ℜሺ𝜇ሻ ൐ 0  and 𝑔௝ሺ𝑠ሻ ൌ
ଵ

௦
ഋశభ

మ
exp ቀെ

ఉ

ଶ௦
ቁ. Then, by using 

formula 3.471(3) in [14] we have 

ห𝑚௝ሺ𝑇 െ⋅ሻ𝑔௝ห
௅మሾ଴,்ሿ

ଶ
ൌ න

ሺ𝑇 െ 𝑠ሻఓିଵ exp ൬െ
𝛽
𝑠൰

𝑠ఓାଵ

்

଴
𝑑𝑠 ൌ 𝛽ିఓ𝑇ఓିଵΓሺ𝜇ሻ. 

The probability density function is 

𝑝ሺ𝑥⃗଴, 0; 𝑥்⃗, 𝑇ሻ ൌ ൮
𝛽ఓ exp ൬

𝛽
𝑇൰

2𝜋𝑇ఓିଵΓሺ𝜇ሻ
൲

ௗ
ଶ

exp ൮െ
𝛽ఓ exp ൬

𝛽
𝑇൰

2𝑇ఓିଵΓሺ𝜇ሻ
|𝑥⃗଴ െ 𝑥்⃗|ଶ൲ . 

For a more complete example of a stochastic processes with memory (with 
various memory and weight functions) we refer to [1]. 

We can also deduce the chaos decomposition of the Donsker delta functional. 

Corollary 3.4. It holds that 

𝛿௖⃗ሺ𝑋௧ሻ ൌ ෍ 〈: 𝜔ሬሬ⃗ ⊗𝒏: , 𝐹𝒏〉

𝒏∈ேబ
೏

, 

where the 𝒏-kernel, 𝒏 ∈ 𝑁଴
ௗ, is given by  

𝐹𝒏ሺ𝑢ଵ, ⋯ , 𝑢௡ሻ 
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ൌ ൮ෑ 𝑝
ห௠ೕሺ௧ି⋅ሻ௚ೕห

బ

మ

ௗ

௝ୀଵ

൫𝑥଴
௝ െ 𝑐௝൯൲

1
𝒏!

ሺെ1ሻ௡ 

             ൈ

⎝

⎜
⎛

ෑ

⎝

⎛ෑ 𝐻௡ೕ

⎝

⎛ 𝑥଴
௝ െ 𝑐௝

ට2ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

⎠

⎞
ௗ

௝ୀଵ

𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝

ට2ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

⎠

⎞
௡

௜ୀଵ

ሺ𝑢௜ሻ

⎠

⎟
⎞

. 

Here 𝑝ఙమሺ𝑥ሻ ≔
ଵ

√ଶగఙమ exp ቀെ
௫మ

ଶఙమቁ denotes the heat kernel and 𝐻௡ denotes the 

Hermite polynomial of order 𝑛 defined by the Rodrigues formula 

 𝐻௡ሺ𝑥ሻ ൌ ሺെ1ሻ௡ expሺ𝑥ଶሻ ௗ೙

ௗ௫೙ expሺെ𝑥ଶሻ. 

Proof. From Theorem 3.1 and the generating function formula for the Hermite 
polynomial we have 

𝑆𝛿௖⃗ሺ𝑋௧ሻሺ𝜂ሻ 

ൌ ൬
1

2𝜋
൰

ௗ
ଶ

ቌෑ
1

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ௗ

௝ୀଵ

ቍ exp ቌെ
1
2

෍
ቀ൫〈𝜂௝, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝〉 ൅ 𝑥଴

௝ െ 𝑐௝൯ቁ
ଶ

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ

ቍ 

ൌ ൬
1

2𝜋
൰

ௗ
ଶ

ቌෑ
1

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ௗ

௝ୀଵ

exp ቌെ
1
2

෍
൫𝑥଴

௝ െ 𝑐௝൯
ଶ

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ

ቍቍ 

ൈ ෑ exp ቌെ
〈𝜂௝, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝〉ଶ

2ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ െ
൫𝑥଴

௝ െ 𝑐௝൯
ଶ

〈𝜂௝, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝〉

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ ቍ

ௗ

௝ୀଵ

 

ൌ

⎝

⎛ෑ
1

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ

exp ቌെ
1
2

൫𝑥଴
௝ െ 𝑐௝൯

ଶ

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶቍ

⎠

⎞ 

ൈ ෑ

⎝

⎛෍
1
𝑛!

𝐻௡

⎝

⎛െ
𝑥଴

௝ െ 𝑐௝

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

⎠

⎞
ஶ

௡ୀଵ
⎝

⎛
〈𝜂௝, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝〉

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

⎠

⎞

௡

⎠

⎞
ௗ

௝ୀଵ
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ൌ ൮ෑ 𝑝
ห௠ೕሺ௧ି⋅ሻ௚ೕห

బ

మ

ௗ

௝ୀଵ

൫𝑥଴
௝ െ 𝑐௝൯൲ 

ൈ ෍ሺെ1ሻ௡

ஶ

௡ୀ଴

෍
1
𝒏!

௡భା⋯ା௡೏ୀ௡

ෑ 𝐻௡ೕ

⎝

⎛ 𝑥଴
௝ െ 𝑐௝

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

⎠

⎞ 〈𝜂௝,
𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ
〉௡ೕ

ௗ

௝ୀଵ

 

By comparing with the general form of the chaos decomposition we arrive at 
the desired expression for the kernel functions. 

The local times of a 𝑑-dimensional stochastic process with memory 𝑋 at point 
𝑐 ∈ 𝑅ௗ over a compact interval ሾ0, 𝑇ሿ, 0 ൏ 𝑇 ൏ ∞ is defined informally via the 
Tanaka formula (see e.g. Section 8.6 of [15]): 

׬         𝛿௖⃗ሺ𝑋௧ሻ 𝑑𝑡 
்

଴  (4) 

Expression (4) is used heuristically to measure the amount of time the trajectory 
of 𝑋 spends at a given point 𝑐 ∈ 𝑅ௗ within the time horizon ሾ0, 𝑇ሿ. A priori, 
Expression (4) is mathematically meaningless. From the point of view of the 
Hida calculus, local time is nothing else but integration of the Donsker delta 
functional over the time horizon. The idea of studying local times using the 
Hida calculus was initiated, at least, in the work of Watanabe [16]. We will 
prove that the integral of the truncated version of the Donsker delta functional is 
well-defined as a Hida distribution. However, it is not possible to establish the 
result for the general stochastic process with memory since the computation 
later on very much depends on the explicit expression of the variance of the 
process. In other words, the study of local time has to be done for specific 
memory and weight functions. In the following we will prove an existence 
result for the local times at the origin of a 𝑑-dimensional Riemann-Liouville 
fractional Brownian motion ሺ𝑋௧ሻ௧∈ሾ଴,்ሿ with Hurst index 𝐻 ∈ ൫భ

మ
, 1൯. Recall that 

the process is given by 

𝑋௧ ൌ 𝑥⃗଴ ൅ න
ሺ𝑡 െ 𝑠ሻுି

ଵ
ଶ

Γ ቀ𝐻 ൅
1
2ቁ

 𝑑𝐵௦ ,
௧

଴
 

or in the white-noise representation: 

𝑋௧ ൌ 𝑥⃗଴ ൅ 〈⋅,
ሺ𝑡 െ 𝑠ሻுି

ଵ
ଶ

Γ ቀ𝐻 ൅
1
2ቁ

〉 ൌ ቌ𝑥଴
ଵ ൅ 〈⋅,

ሺ𝑡 െ 𝑠ሻுି
ଵ
ଶ

Γ ቀ𝐻 ൅
1
2ቁ

〉 , ⋯ , 𝑥଴
ௗ ൅ 〈⋅,

ሺ𝑡 െ 𝑠ሻுି
ଵ
ଶ

Γ ቀ𝐻 ൅
1
2ቁ

〉ቍ. 
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From the last expression it is understood that for independent 𝑑-tuples of white 
noise 𝜔ሬሬ⃗ ൌ ሺ𝜔ଵ, ⋯ , 𝜔ௗሻ ∈ 𝑆ௗ

ᇱ ሺ𝑅ሻ the following holds:  

𝑋௧ሺ 𝜔ሬሬ⃗ ሻ ൌ ቌ𝑥଴
ଵ ൅ 〈𝜔ଵ,

ሺ𝑡 െ 𝑠ሻுି
ଵ
ଶ

Γ ቀ𝐻 ൅
1
2ቁ

〉 , ⋯ , 𝑥଴
ௗ ൅ 〈𝜔ௗ,

ሺ𝑡 െ 𝑠ሻுି
ଵ
ଶ

Γ ቀ𝐻 ൅
1
2ቁ

〉ቍ. 

Now we define the truncated Donsker’s delta functional 𝛿௖⃗
ሺேሻሺ𝑋௧ሻ ∈ ሺ𝑆ሻᇱ via its 

S-transform. For any 𝜂 ∈ 𝑆ௗሺ𝑅ሻ 

𝑆𝛿௖⃗
ሺேሻሺ𝑋௧ሻሺ𝜂ሻ ≔

⎝

⎛ෑ
1

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ
⎠

⎞ 

ൈ  expሺ୒ሻ ቌെ
1
2

෍
ቀ൫〈𝜂௝, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝〉 ൅ 𝑥଴

௝ െ 𝑐௝൯ቁ
ଶ

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ

ቍ, 

where the truncated exponential function exp ሺ୒ሻ is given by 

expሺ୒ሻሺ𝑥ሻ ≔ ෍
𝑥௡

𝑛!

ஶ

௡ୀே

. 

Since the S-transform characterizes the Hida distribution, the above definition is 
well-defined. 

Theorem 3.5. Let 𝑋 ൌ ሺ𝑋௧ሻ௧∈ሾ଴,்ሿ be a 𝑑-dimensional Riemann-Liouville 

fractional Brownian motion with Hurst index 𝐻 ∈ ൫భ
మ
, 1൯ starting at 0ሬ⃗ ∈ 𝑅ௗ. For 

any integers 𝑑 ൒ 1 and 𝑁 ൒ 0 satisfying 𝑑𝐻 ൅ 2𝑁ሺ𝐻 െ 1ሻ ൏ 1 the truncated 
local time at the origin 

𝐿௑
ሺேሻሺ𝑇ሻ ≔ න 𝛿

଴ሬሬ⃗
ሺேሻሺ𝑋௧ሻ 𝑑𝑡

்

଴
 

is a Hida distribution. 

Proof. From the definition of the truncated Donsker delta functional we have 

that 𝑆𝛿
଴ሬሬ⃗
ሺேሻሺ𝑋௧ሻሺ𝜂ሻ is a measurable function of 𝑡 for every 𝜂 ∈ 𝑆ௗሺ𝑅ሻ. Moreover, 

for every 𝑧 ∈ 𝐶 and 𝜂 ∈ 𝑆ௗሺ𝑅ሻ, using Theorem 3.1, we obtain 

 𝑆𝛿
଴ሬሬ⃗
ሺேሻሺ𝑋௧ሻሺ𝑧𝜂ሻ 
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൑

⎝

⎛ෑ
1

ට2𝜋ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ
⎠

⎞ expሺ୒ሻ ቌ
1
2

|𝑧|ଶ ෍
〈𝜂௝, 𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝〉ଶ

ห𝑚௝ሺ𝑡 െ⋅ሻ𝑔௝ห
଴

ଶ

ௗ

௝ୀଵ

ቍ 

൑ ൬
1

2𝜋
൰

ௗ
ଶ

ቌෑ
√2𝐻Γ ቀ𝐻 ൅

1
2ቁ

𝑡ு

ௗ

௝ୀଵ

ቍ 

                    ൈ expሺ୒ሻ ൮|𝑧|ଶ
2𝐻Γ ቀ𝐻 ൅

1
2ቁ

ଶ

𝑡ଶு ෍ ቮන 𝜂௝ሺ𝑠ሻ
ሺ𝑡 െ 𝑠ሻுି

ଵ
ଶ

Γ ቀ𝐻 ൅
1
2ቁ

𝑑𝑠
௧

଴
ቮ

ଶௗ

௝ୀଵ

൲ 

൑ ൮
𝐻Γ ቀ𝐻 ൅

1
2ቁ

ଶ

𝜋
൲

ௗ
ଶ

1
𝑡ௗு expሺ୒ሻ ቌ

2𝐻Tଶୌିଵ|𝑧|ଶ

𝑡ଶு ෍ ቆන sup
ୱ∈ୖ

ห𝜂௝ሺ𝑠ሻห
௧

଴
ቇ

ଶௗ

௝ୀଵ

ቍ 

൑ ൮
𝐻Γ ቀ𝐻 ൅

1
2ቁ

ଶ

𝜋
൲

ௗ
ଶ

1
𝑡ௗு expሺ୒ሻ൫2𝐻Tଶୌିଵ𝑡ଶିଶு|𝑧|ଶ‖𝜂‖∗

ଶ൯ 

൑ ൭
ு୻ቀுା

భ
మ

ቁ
మ

గ
൱

೏
మ

𝑡ଶேሺଵିுሻିௗு exp൫2𝐻Tଶୌିଵ|𝑧|ଶ‖𝜂‖∗
ଶ൯, 

where  ‖⋅‖∗ is a continuous norm on 𝑆ௗሺ𝑅ሻ defined by 

‖𝜂‖∗
ଶ ≔ ෍ ൬sup

ୱ∈ୖ
ห𝜂௝ሺ𝑠ሻห൰

ଶ
.

ௗ

௝ୀଵ

 

Note that 𝑡ଶேሺଵିுሻିௗு is 𝑑𝑡 െintegrable on ሾ0, 𝑇ሿ if and only if 2𝑁ሺ1 െ 𝐻ሻ െ
𝑑𝐻 ൐ െ1. Finally, the conclusion follows from Theorem 2.1.  

Theorem 3.5 asserts that for one-dimensional Riemann-Liouville fractional 
Brownian motion the local time at zero is well-defined as a Hida distribution. 
For 𝑑 ൒ 2 local times at zero become well-defined only after renormalization, 
i.e. by omission of the divergent terms that occur in the low-order terms in the 
truncated Donsker delta functional. For example, for 𝑑 ൌ 2 or 𝑑 ൌ 3 it is 
sufficient to take 𝑁 ൌ 1, which means we only need to throw away the first 

lower term to have 𝐿௑
ሺேሻሺ𝑇ሻ ∈ ሺ𝑆ሻᇱ. The effectiveness of the renormalization 
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method comes from the fact that the kernels of increasing order in the chaos 
decomposition are less singular in the sense of Lebesgue integrable functions. 

4 Conclusion 

This research developed a Hida calculus approach to a class of stochastic 
processes with memory in a general setting of 𝑑-dimensional space. In 
particular, we considered Donsker’s delta functional of such processes together 
with the probability density functions and their chaos decompositions. We 
applied our results to the study of local time at zero of a 𝑑-dimensional 
Riemann-Liouville fractional Brownian motion. 
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