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Abstract. The bound state solution of the Dirac equation for generalized Pöschl-
Teller and trigonometric Pöschl-Teller non-central potentials was obtained using 
SUSY quantum mechanics and the idea of shape invariance potential. The 
approximate relativistic energy spectrum was expressed in the closed form. The 
radial and polar wave functions were obtained using raising and lowering of 
radial and polar operators. The orbital quantum numbers were found from the 
polar Dirac equation, which was solved using SUSY quantum mechanics and the 
idea of shape invariance. 
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1 Introduction 

One of the important tasks of relativistic quantum mechanics is to find an 
accurate and exact solution of the Dirac equation for a certain potential. The 
bound state solutions of Dirac equations for some central or non-central 
physical potentials, which are a combination of the magnitude of repulsive 
vector potential )(rV

v

 and attractive scalar potential ( )S r
v

, have been 
investigated intensively since they have important applications in quantum 
chemistry, nuclear physics, and high-energy physics. Dirac equations have been 
used to describe the motion of spin half particles governed by the strong force 
such that the relativistic effects are taken into account.  

The Dirac equations for some physical central and non-central potentials have 
been investigated in the cases of spin and/or pseudo-spin symmetries by 
Alhaidari, Hu, et al., Hamzavi and Rajabi, Soylu, et al., Onate, et al., and 
Sukumar [1-6]. Spin symmetric and pseudo-spin symmetric concepts have been 
used to investigate the aspects of deformed nuclei in nuclear physics. The 
concept of spin symmetry has been applied to the spectra of meson and anti-
nucleon by Ginocchio [7] and the pseudo-spin symmetry concept was used by 
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Ginocchio and Madland [8] to explain the quasi-degeneracy of nucleon 
doublets, by Alberto [9] for exotic nuclei, by Troltenier for super-deformation 
in nuclei [10], and by Stuchbery [11] to establish an affective nuclear shell-
model scheme. They have been solved with the Nikiforov-Uvarof (NU) method 
by Zou, et al., Ikhdair and Sever, and Zhou, et al. [12-14], with the asymptotic 
iteration method by Soylu, et al., Debnath and Biswas [4,15], with SUSY 
quantum mechanics by Onate, et al. and Chen, et al. [5,16], Romanovski 
polynomials by Suparmi and Cari, Cari, et al., Suparmi, et al. [17-19], and via 
SUSY quantum mechanics with similarity transformation by Sukumar, Hall and 
Yesiltas [6,20] to find the relativistic energy and the corresponding wave 
function. 

Dirac equations for the case of exact spin symmetric occur when the difference 
between the magnitude of the repulsive vector potential with the attractive 
scalar potential is zero and the sum of the magnitude of the repulsive vector and 
attractive scalar potentials is equal to the given potential. The exact pseudo-spin 
symmetry occurs when the sum of the magnitude of the repulsive vector 
potential and the attractive scalar potential is zero and the difference between 
the vector with scalar potential is equal to the given potential, which is central 
or non-central. 

The Dirac equations for non-central potentials that have been investigated 
mostly are a combination of radial shape invariant potentials, such as a 
Coulomb potential or a spherical or non-spherical harmonics oscillator with 
ring-shaped potentials by Hu, et al., Ikhdair and Sever, Zhou, et al. [2,13-14]. 
Therefore it is worth investigating the Dirac equation for non-central potential 
for radial shape invariant potentials such as a radial generalized Pöschl-Teller 
potential. Non-central potentials are widely used in studying quantum chemistry 
such as the relativistic effect of the distorted nucleus or the interaction between 
ring-shaped molecules. 

Dirac equations for non-central potentials are exactly solvable only for the s-
wave. For the l-wave, the solvable systems are only Coulomb, spherical 
harmonics oscillator, Morse and Kratzer potentials, but other systems were only 
solved approximately by Ikhdair and Sever, Ikot and Akpabio, and Agboola 

[13, 21-22] due to the contribution of the centrifugal term, 2~ −r . A suitable 
approximation scheme was conventionally proposed by Greene and Aldrich 
[23] that works well for hyperbolic/exponential and trigonometric potentials. 

Up until now, to our knowledge, no work exists on the Dirac equation with non-
central potential that is a combination of a generalized Pöschl-Teller potential 
with a trigonometric Pöschl-Teller non-central potential. It was therefore, the 
priority purpose of the present work to give approximate analytic solutions of 
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the Dirac equation for this potential using the SUSY quantum mechanics 
approach. This potential can be applied to study the relativistic effect of the 
complex vibration-rotation energy structure of multi-electron atoms. 

In this paper we will attempt to solve the Dirac equation for a charged particle 
moving in a field governed by a generalized Pöschl-Teller potential, which is 
discussed in Derezinski and Wrochna [24] and, with simultaneous presence of a 
trigonometric Pöschl-Teller non-central potential, in Flugge [25], using super 
symmetric quantum mechanics (SUSY QM) with the idea of shape invariance 
in the case of exact spin symmetry. SUSY QM was developed based on 
Witten’s proposal [26], while the idea of shape invariant potentials was 
proposed by Gendenshtein [27]. SUSY QM is a powerful tool to determine the 
energy spectrum and wave function of a class of shape invariant potentials as in 
Sukumar, Dutt, et al., and Gangopadhyaya [6, 28-30].  

The relativistic energy spectrum and wave functions are obtainable by SUSY 
QM and the idea of shape invariance, because the Dirac equation for non-
central shape invariance is separable and in the case of exact spin symmetry or 
pseudo-spin symmetry reduces to a one-dimensional Schrödinger-like equation 
with shape invariant potential. The relativistic energy spectrum is obtained by 
using SUSY QM and the idea of shape invariance, while the wave functions are 
obtained by using lowering and raising SUSY operators as discussed in Dutt, et 
al. and Gangopadhyaya [28-30]. SUSY QM and similarity transformation have 
also been used to determine the relativistic energy of simple central potentials 
by diagonalizing a pair of matrices of the upper and lower components of Dirac 
equations by Sukumar, Hall and Yesiltas [6, 20]. The generalized Pöschl-Teller 
potential is also called the hyperbolic Scarf II potential, as in Derezinski and 
Wrochna [24]. Some hyperbolic and trigonometric non-central potentials are 
exactly solvable within the approximation of the centrifugal term and their 
bound state solutions have been reported in previous papers by Cari and 
Suparmi, Suparmi, et al., Saregar, et al., and Ikdhair [31-37].  

This paper is organized as follows. A brief review of SUSY QM is presented in 
Section 2. Solutions of radial and polar Dirac equations are presented in Section 
3.1 and 3.2. The conclusion is presented in Section 4.  
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2 Review of the SUSY Quantum Mechanics Approach Using 
Operator and Shape Invariance 

2.1 SUSY Quantum Mechanics  

According to the definition proposed by Witten [26], in a SUSY quantum 
system there are super charge operators Qi that commute with the Hamiltonian 
Hss and are given as 

 [ ], 0i ssQ H =  with, i = 1, 2, 3, …N (1) 

They obey the anti commutation algebra  

 { },i j ij ssQ Q Hδ=
 

(2) 

with ssH  called SUSY Hamiltonian. Witten proposed that SUSY QM is a one-
dimensional model of SUSY field theory and he stated that the simplest SUSY 
QM system has N=2, where 

 1 1 2

1
( )

2 2

p
Q x

m
σ σ ϕ = + 
   

and 2 2 1

1
( )

2 2

p
Q x

m
σ σ ϕ = + 
 

 (3) 

where iσ  are the usual Pauli spin matrices, p i
x

∂= −
∂

h  is the usual momentum 

operator, and )(xφ is the super-potential. By inserting Eq. (3) into Eq. (2) we 
get, 

2 2
2

2

2 2
2

2

( ) '( ) 0
2 2

0 ( ) '( )
2 2

0

0

ss

d
x x

m dx m
H

d
x x

m dx m

H

H

ϕ ϕ

ϕ ϕ

+

−

 
− + + 

 =
 

− + − 
 

 
=  
 

h h

h h
 (4) 

with  
2 2

2
( )

2

d
H V x

m dx− −= − +h
  for  2( ) ( ) '( )

2
V x x x

m
ϕ ϕ− = − h

 (5) 

and  
2 2

2
( )

2

d
H V x

m dx+ += − +h
 for 2( ) ( ) '( )

2
V x x x

m
ϕ ϕ+ = + h

 (6) 
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Here H− and H+ , are SUSY partners of the Hamiltonians, ( )V x− and ( )V x+  are 
the SUSY partner potentials. To simplify the determination of the energy 
spectra and the wave functions, the new operators are introduced as 

 
( )

2

d
A x

dxm
ϕ+ = − +h

  
and ( )

2

d
A x

dxm
ϕ= +h

 
(7) 

with A+
 as raising operator, and A  as lowering operator. By manipulating Eqs. 

(5-7) we get 

 ( )H x A A+
− = , and ( )H x AA+

+ =  (8) 

It is always possible to factorize the usual Hamiltonian as 

 
2 2

0 0 02
( ; )

2

d
H H E V x a E

m dx− −= + = − + +h
 (9) 

From Eqs. (5) and (9) we get, 

 2
0 0 0 0 0( ) ( ; ) ( ; ) '( ; )

2
V x V x a E x a x a E

m
ϕ ϕ−= + = − +h

 (10) 

where ( )V x  is the effective potential, while ( )xϕ , the super-potential, is 
determined hypothetically from Eq. (10), which is based on the shape of the 
effective potential of the system. 

2.1 Shape Invariance 

It is observed here that the SUSY only gives the relationship between the eigen 
values and eigen functions of the two Hamiltonian partners but does not yield 
the actual spectrum as discussed in Khare and Badhury [38]. In order to 
determine the energy spectrum, Gendenshtein introduced the shape invariance 
condition [27]. Accordingly, if the pair of SUSY partner potentials ( )V x±  
defined in Eqs. (5)-(6) are similar in shape and differ only in the parameters that 
appear in them, they are said to be shape invariant. More specifically, if 

0( , )V x a±  satisfy the requirement that 

 1 1( ; ) ( ; ) ( )j j jV x a V x a R a+ − + += +  (11) 

with 

 2( ; ) ( ; ) '( ; )
2

j j jV x a x a x a
m

ϕ ϕ+ = + h
 (12) 
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2
1 1 1( ; ) ( ; ) '( ; )

2
j j jV x a x a x a

m
ϕ ϕ− + + += − h

 (13) 

where  j = 0,1,2,..; a is a mapping parameter; 0( , )V x a− is associated with zero 

ground state energy; 0( )j ja f a= , where fj is a function applied j times; the 

remainder, ( )jR a , is a’s dependence but it is independent of x; then 0( , )V x a±  

is said to be shape invariant. The energy eigen value of the Hamiltonian H−  is 
given by Gendenshtein [27] as follows 

 ( )

1
( )

n

n kk
E R a−

=
=∑  (14) 

By using Eqs. (9) and (14) we get the total energy spectra,  

 
( )

0n nE E E−= +  (15) 

Based on the characteristics of the lowering operator, the ground state wave 
function is obtained from the condition that 

 ( )
0 0Aψ − =  (16) 

Subsequently, the excited wave functions ( ) ( )
1 0 0( ; ),...... ( ; )nx a x aψ ψ− −

 of H −  are 
obtained by using the raising operator operated on the lower wave function [36-
38], given as 

 ( ) ( )
0 0 1 1 0( ; ) ( ; ) ( . ).... ( , ) ( ; )n n nx a A x a A x a A x a x aψ ψ− + + + −

−≈  (17) 

which is a generalization of the operator method for the one-dimensional 
harmonic oscillator potential. The energy spectra are obtained from Eqs. (10) 
and (14), while the wave function is obtained from Eqs. (16) and (17). 

3 Solution of Dirac Equation for Non-central Potential 

The Dirac equation with the scalar potential ( )S r
v

 and magnitude of vector 

potential ( )V r
v

 is given as in Hu, et al. [2] 

 { } { }. ( ( )) ( ) ( ) ( )p M S r r E V r rα β ψ ψ+ + = −v v v v v v

 (18) 

where M is the relativistic mass of the particle, E is the total relativistic energy, 
and p

v

 is the three-dimensional momentum operator,i− ∇  

 
0

0

σ
α

σ
 

=  
 

v

v

v

, and 
0

0

I

I
β  

=  −   
(19) 



 Bound State Solution of Dirac Equation Using SUSY QM 211 
 

with σv  are the three-dimensional Pauli matrices and I is the 2 × 2 identity 
matrix. The potential in Eq. (18) is spherically symmetric potential, i.e. it does 
not only depend on the radial coordinate rr

v= , and we have taken 1=h , c=1.  

The Dirac equation expressed in Eq. (18) is invariant under spatial inversion 
and therefore its eigen states have definite parity. By writing the spinor as 

 

( )
( )

( )
( , )

( )
( )

( , )

lnK
jm

lnK
jm

F r
Yr rr

r G r
i Y

r

θ φζ
ψ

θ φ

 
  

= =   Ω     
 

v

v

v

 

(20) 

If we insert Eqs. (19) and (20) into Eq. (18) and use matrices multiplication, we 
achieve 

 { }. ( ) ( ) ( ) ( )p r M S r E V r rσ ζΩ = − − + −v v v v v v

 (21) 

 { }. ( ) ( ) ( ) ( )p r M S r E V r rσ ζ = + + − Ωv v v v v v

 (22) 

In the exact spin symmetric case, when the scalar potential is equal to the 
magnitude of vector potential ( ) ( )S r V r=v v

, then from Eqs. (21) and (22) we 
have 

 { }.
. ( ) 2 ( ) ( )

p
p r M V r E r

M E

σσ ζ ζ= − − +
+

v v

v v v v v

 (23) 

By applying the Pauli matrices, it is simply shown that if ( )( ) 2. .p p pσ σ =v v v v

, 

then Eq. (23) becomes 

 ( )( ) ( )2 2 22 ( ) ( )p V r M E r E M rζ ζ+ + = −v v v

 (24) 

In the non-relativistic limit, where NRE M E− → , NRE  is the non-relativistic 
energy and 2E M µ+ → , whereµ  is the non-relativistic mass, then Eq. (24) 
reduces to  

 
2

2 ( ) ( ) ( )
2 NR

p
V r r E rζ ζ

µ
 

+ = 
 

v v v

 (25) 

Eq. (25) becomes the usual Schrödinger equation by setting 
( )

( )
2

V r
V r →

v

v

. 

If the vector potential is non-central, i.e. a combination of generalized Pöschl-
Teller potential and Pöschl-Teller non-central potential given as 
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2
2

2 2 2 2 2

1
2 cosh

( 1) 1 ( 1) ( 1)2
( , )

sinh sinh sin cos

b a tr
b a a

V r t
tr tr r

κ κ η ηθ
θ θ

  +  + + − −   = − − + 
   
 
   

(26) 

then the Dirac equation for non-central potentials obtained from Eqs. (24) and 

(26) with 
( )

( )
2

V r
V r →v  is expressed as 

 

( )

( )

( ) ( )

2
2

2 2

2
2 2

2 2

2 2 2
2 2

1 1
sin , ,

sin sin

1
2 cosh

( 1) 2
( ) , ,

sinh sinh

( 1) ( 1)
( , , ) ( , , )

sin cos

r r
r r

b a tr
b a a

r E M t r
tr tr

E M r r E M r

θ ζ θ φ
θ θ θ θ φ

ζ θ φ

κ κ η η ζ θ φ ζ θ φ
θ θ

 ∂ ∂ ∂ ∂ ∂   + +    ∂ ∂ ∂ ∂ ∂    

  +  + +   − + −
 
 
 

− − − + + = − − 
 

 (27) 

where 0 tr π≤ ≤ , b > 0,
1

2
a > − , 1κ > , 1η > , 0 θ π≤ ≤ , and in this case, t > 0, 

the t parameter has to control the width of the generalized Pöschl-Teller 
potential. Eq. (27) is solved using the variable separation method by setting 

( )
( , , ) ( ) ( )

r
r P

r

χζ θ φ θ φ= Φ
 
and we have 

2

2 2

2
2 2 2

2 2

( ) ( 1) ( )

1
2 cosh

( 1) 2
( ) ( ) ( ) ( ) 0

sinh sinh

d r l l r

dr r

b a tr
b a a

E M t r E M r
tr tr

χ χ

χ χ

+− −

  +  + +   + − + − =
 
 
 

 (28) 

( )
2

2 2 2 2

1 1 ( 1) ( 1)
sin ( 1)

sin sin sin cos

P
E M l l

P

κ κ η ηθ
θ θ θ θ φ θ θ

∂ ∂ ∂ Φ − −   − − + + + = +   ∂ ∂ Φ ∂     
(29) 

3.1  Solution of the Radial Dirac Equation 

In order to solve the radial Dirac equation in Eq. (28), we use the approximation 
value for the centrifugal term as in Greene and Aldirch, and in Ikdhair [13,23],
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2
02 2

1 1

sinh
t d

r tr
 ≅ + 
 

, for 1<<tr  and 12/10 =d . In the centrifugal 

approximation scheme, Eq. (28) becomes 

( )( )22
2

2 2 2

2 2 2
0

1
2 ( ) cosh( 1) ( 1)( ) 2

( )
sinh sinh

( ( 1) ) ( ) 0

b E M a trb a a E M l ld r
t r

dr tr tr

E M t l l d r

χ χ

χ

  + +  + + + + +   − −
 
 
 

+ − − + =

 (30) 

By setting 

 ( )( )2 ( 1) ( 1) ( 1)b a a E M l l c c+ + + + + = +  (31) 

 
1 1

2 ( ) 2 ' '
2 2

b a E M b a
   + + = +   
   

, 2 2 2
0( 1)E M t l l d ε− − + =  (32) 

Eq. (30) becomes  

 
2

2
2 2 2

1
2 ' ' cosh

( ) ( 1) 2
( ) ( )

sinh sinh

b a tr
d r c c

t r r
dr tr tr

χ χ εχ

  +  +   − + − =
 
 
 

 (33) 

and the effective potential in Eq. (33) is given as 

 

22 1
2

2 2

2 '( ' )cosh( 1)

sinh sinh

t b a trt c c
V

tr tr

++= −
 

(34) 

Eq. (33) is solved using SUSY QM and by introducing the hypothetical super-
potential as in [26-27] 

 ( ) coth cscr tD tr tB htrϕ = +  (35) 

By inserting Eqs. (34) and (35) into Eq. (10) we get 

2 2 2 2 2 2
2 2 2

2 2 2 2 2

2
2

02 2

cosh cosh
2

sinh sinh sinh sinh sinh

1
2 '( ' )cosh( 1) 2

sinh sinh

t D t B tr t D Bt tr
t D BDt

tr tr tr tr tr

t b a trt c c

tr tr
ε

 
+ + + + + = 

 

++ − −

 (36) 

From Eq. (36) we have 
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 ( ) ( )2 2 ( 1)D B D c c+ + = + , ( ) 1
2 2 '( ' )

2
DB B b a+ = − +  , 

 and 2 2
0D t ε= −  (37) 

and thus from all expressions in Eq. (37) we get the values of D, B, and 0ε  that 

have physical meaning, 

 

 
( ) ( )( ) ( )( )

2 22 21 1 1
2 2 24 ' ' 1

2 2

c c b a
D

 
 + − + − +
 = −
 
 
 

 (38) 

 
( ) ( )( ) ( )( )

2 22 21 1 1
2 2 24 ' '

2

c c b a
B

 
 + + + − +
 = −
 
 
   

(39) 

 
( ) ( )( ) ( )( )

2
2 22 21 1 1

2 2 2
2

0

4 ' ' 1

2 2

c c b a
tε

 
 + − + − +
 = − −
 
 
 

 (40) 

where Eq. (40) is the ground state relativistic energy equation of the system. By 
using Eqs. (35), (38) and (39), the super-potential is obtained, given as 

 
1

( ) ( )coth csc
2

r t N tr tK htrϕ = − −  (41) 

with,  
( ) ( )( ) ( )( )

2 22 21 1 1
2 2 24 ' '

2

c c b a
N

 
 + − + − +
 =
 
 
 

 (42) 

 
( ) ( ) ( )( )22 41 1 1

2 2 24 ' '

2

c c b a
K

+ + + − +
=  (43) 

By inserting Eq. (41) into Eqs. (5) and (6) we get the super-partner potentials as 
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( ) )

( )
2 21

2
22 2 1

0 22 2

1
( )

cosh2
( , ) 2

sinh sinh

t N N K
tr

V r a t KN t N
tr tr−

 + − +
= − + −

 
(44) 

 

( )
( ) ( )

2 21
2

22 2 1
0 22 2

3
( ) )

cosh2
( , ) 1

sinh sinh

t N N K
tr

V r a Kt N t N
tr tr+

 − − +
= − − + −

 
(45)

 
By comparing the coefficient of the variables in Eqs. (44) and (45) we obtain 
the mapping parameters naaa ....,,, 10 given as 

 0 1, 1,...., na N a N a N n= = − = −  (46) 

By using Eqs. (44) and (46) we have 

)
( ) ( )

2 2

22 2 3
1 22 2

1 3
2 2 cosh

( , ) 2 1
sinh sinh

t N N K
tr

V r a t K N t N
tr tr−

   − − +  
  = − − + −  (47) 

From Eqs. (45) and (47) it can be seen that ),( 0arV+  have the same function 

form as ),( 1arV−  and by using the shape invariance condition in Eq. (11), we 
get 

 ( ) ( )( )2 22 31
1 0 1 2 2( ) ( ; ) ( ; )R a V r a V r a t N N+ −= − = − − −  (48) 

By repeating the step used to determine )( 1aR  in Eq. (48) and the steps used to 

determine ),( 1arV− in Eq. (47) and by using Eqs. (44-46,48) we obtain 

 

( )( )
( )

2 2

2
2 2 2

22 5
2

3 5
2 2 cosh

( , ) 2 2
sinh sinh

t N N K
tr

V r a t K N
tr tr

t N

−

   − − +   
   = − −

+ −

 (49) 

 

( )( )
( )

2 2

2
1 2 2

22 3
2

3 5
2 2 cosh

( , ) 2 2
sinh sinh

t N N K
tr

V r a t K N
tr tr

t N

+

   − − +   
   = − −

+ −

 (50) 

and so 

 ( ) ( )( )2 22 3 5
2 1 2 2 2( ) ( , ) ( , )R a V r a V tr a t N N+ −= − = − − −  (51) 
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Using generalizations of Eqs. (48) and (51) we obtain 

 

2
2 21

1 2

1
( ) ( ; ) ( ; ) ( ( 1))

2n n nR a V r a V r a t N n N n+ − −

   = − = − − − − − −  
   

 (52) 

Using Eqs. (14), (15) and (52) we get  

 
2 2

( ) 2 1 1

2 2n t N N nε −
     = − − − −    
       

that gives 
2

2 1

2n t N nε  = − − − 
   

(53)
 

The relativistic energy equation obtained from Eqs. (32) and (53) is 

 

2
2 2 2

0

1
( 1)

2
E M t N n l l d

   − = − − − − +  
     

(54) 

with 

( )( )

( )( )( ) ( )( )

2 2

2 22 2 1
2

( 1) ( 1 / 2)

2

( 1) ( 1 / 2) 4 ( )

2

b a a E M l

N
b a a E M l E M b a

 + + + + +
 
 
 =
 + + + + + − + +
 − 
 

 

(55) 

The relativistic energy spectrum is obtained numerically from the relativistic 
energy equation in Eq. (54) with the help of the Math-Lab software application.

 In the non-relativistic limit, the relativistic energy reduces to non-relativistic 
energy as follows 

 2 2 ( )( ) 2 NRE M E M E M Eµ− = + − =       (56) 

 since ( ) 2E M µ+ →  and ( ) NRE M E− →   

 If we set 

 

22 1
2

2 2

2 '( ' ) cosh( 1)

sinh sinh

t b a trt c c
V

tr tr

++= − →
  

                              

22 1
2

2 2

2 '( ' ) cosh1 ( 1)

2 sinh sinh

t b a trt c c
V

tr trµ
 ++= − 
 

 (57) 

then 
2(( )( ( 1)) ( 1)E M b a a l l+ + + + + → 2( )

( )( ( 1)) ( 1)
2

E M
b a a l l

µ
+ + + + +  (58) 
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and 

 ( )( )1
22( )E M b a+ + →

1
2( )( ( ))

2
2

E M b a

µ
+ +

 (59)
 

Thus by applying Eqs. (56), (58) and (59) we obtain the value of N for l=0 , 
given as 

( )( )

22

2

2
1
2

(2 ( ( 1)) 1
( 1)

(2 ( ( 1)) 1 2 4( 1)
2 4 2

4
2 1

2 2

b a a
l l

b a a
l l

b a

N a

µ
µ µ

µ µ
µ

 + + + + + + +  + + + −

− +
= = +   (60) 

Therefore the non-relativistic energy obtained from Eqs. (54) and (60) is given 
as 

 ( ){ }
2

2

2NR

t
E a n

µ
= − −

 
(61) 

which is in agreement with the energy of the generalized Pöschl-Teller potential 
obtained using other methods [39].  

By manipulating Eqs. (7), (16), (17), and (41) we obtain the ground state and 
first excited state wave function as follows. By inserting Eqs. (41) and (7) into 
Eq. (16), we get the radial ground state wave function as 

 ( ) ( 1/2)

0 0( , ) sinh tanh
2

K
N tr

a r C trχ − −  =  
 

 (62) 

By manipulating Eqs. (7), (17), (41), and (62) we have 

 
( )( )( ) ( 1/2)

1 2 2 cosh 2 sinh tanh
2

K
N tr

N t tr K trχ − −  = − −  
   

(63) 

The second excited state wave function is obtained using Eqs. (5), (14) and (49), 
and so on for third, fourth, etc. 

3.2  Solution of the Angular Equation 

The solution of the polar Dirac equation is obtained by setting
sin

Q
P

θ
= in Eq. 

(29), so we have 
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2
2

2 2 2

1
( ) ( 1) ( ) ( 1) 14 ( 1) 0

sin cos 4

E M mQ E M
Q l l Q

κ κ η η
θ θ θ

 + − + − ∂ + −  − + + + + =   ∂   
 

 (64) 

To solve Eq. (64), we set 

 2 1
( ) ( 1) '( ' 1)

4
E M mκ κ κ κ+ − + − = −

 
(65) 

 ( ) ( 1) '( ' 1)E M η η η η+ − = −  (66) 

so Eq. (64) becomes a one-dimensional Dirac equation, given as 

 
2

2 2 2

'( ' 1) '( ' 1) 1
( 1) '

sin cos 4

Q
Q l l Q E Q

κ κ η η
θ θ θ

∂ − −   − + + = + + =   ∂      
(67) 

 
2 2

'( ' 1) '( ' 1)
( )

sin cosefV
κ κ η ηθ

θ θ
− −= +

 
(68) 

where Eq. (68) shows the effective potential of the system. By considering Eqs. 
(10) and (68), the corresponding super-potential is introduced as 

 ( ) tan cotD Bϕ θ θ θ= +  (69) 

By inserting Eq. (69) into Eq. (10) we have 

 

2 2
2 2

02 2 2 2

'( ' 1) '( ' 1)
2 '

sin cos cos sin

D D B B
B D DB E

κ κ η η
θ θ θ θ
− − − ++ = + − − + +  (70) 

By comparing the coefficients of the variables on the left and right side in Eq. 
(70) we have the super-potential given as 

 ( ) ' tan 'cotϕ θ η θ κ θ= −  (71) 

and by setting the constant term on the right side equal to zero, we get 

 ( )2

0' ' 'E η κ= +  (72) 

By inserting Eq. (71) into Eqs. (5) and (6), we obtain the angular super-partner 
potential as 

 
( )2

0 2 2

'( ' 1) '( ' 1)
( , ) ' '

sin cos
V a

κ κ η ηθ η κ
θ θ−
− −= + − +  (73) 

 ( )2

0 2 2

'( ' 1) '( ' 1)
( , ) ' '

sin cos
V a

κ κ η ηθ η κ
θ θ+
+ += + − +

 
(74) 
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By shifting the parameter 1'' +→ κκ  and 1'' +→ ηη  in Eq. (73) and by 
applying Eq. (11) with Eqs. (73-74) we obtain the mapping parameters and 

)( 1aR given as 

 0 1, 1a aκ κ= = + ,... na nκ= + ; 0 1, 1b bη η= = + ,..., nb nη= +  (75) 

and 

 ( ) ( )2 2

1 0 1( ) ( ; ) ( ; ) ' ' ' ' 2R a V a V aθ θ η κ η κ+ −= − = − + + + +  (76) 

By shifting the parameter and ' ' 2κ κ→ + ' ' 2η η→ +  in Eq. (73) and 

' ' 1κ κ→ +  and ' ' 1η η→ +  in Eq. (74) together with Eq. (11) we have 

 ( ) ( )( )2 2

2 1 2( ) ( ; ) ( ; ) ' ' 2 ' ' 4R a V a V aθ θ η κ η κ+ −= − = − + + + + +  (77) 

Thus by repeating the steps used in Eqs. (76) and (77), finally we get the 
general form of R given as 

 ( ) ( )2 2

1( ) ( ; ) ( ; ) ' ' 2( 1) ' ' 2n n nR a V a V a n nθ θ η κ η κ+ − −= − = − + + − + + + (78) 

By manipulating Eqs. (14-15), (72), and (76-78) we have 

 ( ) ( )2 2( )' ' ' ' ' 2nE nη κ η κ− = − + + + +  and ( )2
' ' ' 2nE nη κ= + +  (79) 

and thus the orbital quantum number obtained from Eqs. (67) and (79) is give as 

 
1

( 1)
4

l l
 + + 
 

( )2
' ' 2nη κ= + +  (80) 

The value of l that has physical meaning obtained from Eq. (80) is given as 

21 1 1 1
( ) ( 1) ( )( ( 1) 2

2 2 4 2
l E M m E M nκ κ η η + = + − + + + + − + + + 
   

(81) 

As in the radial part, the values of the orbital quantum number in the non-
relativistic limit are obtained from Eq. (81) as  

 
2( ( 1) 2l m nκ κ η= − + + +  (82) 

This result is in agreement with the result obtained in Cari [39]. 
 
By using Eqs. (16) and (71) we get the relativistic polar ground state wave 
function as 

 ( ) ' '
0 0( , ) (cos ) (sin )Q a C η κθ θ θ− =  (83) 

with 
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2 1
' ( ) ( 1)

2
E M mκ κ κ= + − + +

 
and 

1 1
' ( ) ( 1)

4 2
E Mη η η= + − + +  (84) 

By using Eqs. (7), (17), and (71), we find the first excited state wave function as 

 
( ){ }( ) 2 2 ' '

1 0( , ) 2 ' 1 sin (2 ' 1) cos (cos ) (sin )Q a C η κθ η θ κ θ θ θ− = + − +  (85) 

The total ground state wave function is given as 

 ( ) ( )( 1/2) ' ' 1/2
0( , , ) sinh tanh / 2 (cos ) (sin )

N
r C tr tr

κ η κζ θ φ θ θ− + −=  (86) 

and the total first excited state wave function is obtained from combining Eqs. 
(63) and (85). 

4 Conclusion 

The Dirac equation with generalized Pöschl-Teller potential plus Pöschl-Teller 
non-central potential was solved using SUSY quantum mechanics because in 
the exact spin symmetric limit the radial and polar Dirac equations reduce to 
one-dimensional Schrödinger-like equations. In the approximation scheme of 
the centrifugal term, the super-potential, the raising and lowering operators and 
the mapping parameters were obtained from Dirac equations that have been 
reduced to Schrödinger-like equations. The relativistic energy equation was 
obtained exactly by using the super-potential and the idea of shape invariance 
with the radial generalized Pöschl-Teller potential as an effective potential, 
while the relativistic radial wave functions were obtained by using the lowering 
and raising operators. 

In the non-relativistic limit, when the difference between relativistic energy E 
and particle mass M is equal to the non-relativistic energy, while the sum of 
relativistic energy and relativistic mass is equal to twice the non-relativistic 
mass, the relativistic energy reduces to the non-relativistic energy of the 
generalized Pöschl-Teller potential with centrifugal distortion correction. For l 
= 0 we obtained the non-relativistic energy of the generalized Pöschl-Teller 
potential.  

The relativistic polar wave function and relativistic orbital quantum number 
were found from the polar Dirac equation as in the radial part. The orbital 
quantum number was considered to be an energy variable in the Dirac equation. 
In the non-relativistic limit, the orbital quantum number reduces to the non-
relativistic quantum number and the angular wave functions, which are obtained 
by using the angular lowering and raising operators, reduce to non-relativistic 
angular wave functions. 
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