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Abstract. The bound state solution of the Dirac equationgemeralized P&schl-

Teller and trigonometric Pdschl-Teller non-cenpatentials was obtained using
SUSY quantum mechanics and the idea of shape anaei potential. The

approximate relativistic energy spectrum was exq@ésn the closed form. The
radial and polar wave functions were obtained usaiging and lowering of

radial and polar operators. The orbital quantum Inens were found from the
polar Dirac equation, which was solved using SUS#rqum mechanics and the
idea of shape invariance.
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1 Introduction

One of the important tasks of relativistic quantamechanics is to find an
accurate and exact solution of the Dirac equatanaf certain potential. The
bound state solutions of Dirac equations for sormatral or non-central
physical potentials, which are a combination of thagnitude of repulsive
vector potential V(F) and attractive scalar potentia(T), have been

investigated intensively since they have importapplications in quantum

chemistry, nuclear physics, and high-energy physdsc equations have been
used to describe the motion of spin half partigeserned by the strong force
such that the relativistic effects are taken irdcoant.

The Dirac equations for some physical central amleentral potentials have
been investigated in the cases of spin and/or psepith symmetries by
Alhaidari, Hu, et al, Hamzavi and Rajabi, Soylet al, Onate,et al, and

Sukumar [1-6]. Spin symmetric and pseudo-spin sytrimeoncepts have been
used to investigate the aspects of deformed nueleiuclear physics. The
concept of spin symmetry has been applied to tleetsp of meson and anti-
nucleon by Ginocchio [7] and the pseudo-spin symynebncept was used by
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Ginocchio and Madland [8] to explain the quasi-adegacy of nucleon
doublets, by Alberto [9] for exotic nuclei, by Ttehier for super-deformation
in nuclei [10], and by Stuchbery [11] to establah affective nuclear shell-
model scheme. They have been solved with the NiktdJvarof (NU) method
by Zou,et al, Ikhdair and Sever, and Zhoet, al. [12-14], with the asymptotic
iteration method by Soyluet al, Debnath and Biswas [4,15], with SUSY
guantum mechanics by Onatet al and Chenet al [5,16], Romanovski
polynomials by Suparmi and Cari, Caat,al, Suparmiet al [17-19], and via
SUSY quantum mechanics with similarity transformatby Sukumar, Hall and
Yesiltas [6,20] to find the relativistic energy ailde corresponding wave
function.

Dirac equations for the case of exact spin symmettur when the difference
between the magnitude of the repulsive vector pislemith the attractive
scalar potential is zero and the sum of the magdaitf the repulsive vector and
attractive scalar potentials is equal to the gipetential. The exact pseudo-spin
symmetry occurs when the sum of the magnitude ef ripulsive vector
potential and the attractive scalar potential i®znd the difference between
the vector with scalar potential is equal to theegi potential, which is central
or non-central.

The Dirac equations for non-central potentials thave been investigated
mostly are a combination of radial shape invarigotentials, such as a
Coulomb potential or a spherical or non-sphericalnonics oscillator with
ring-shaped potentials by Hat al, Ikhdair and Sever, Zhoet al [2,13-14].
Therefore it is worth investigating the Dirac edoatfor non-central potential
for radial shape invariant potentials such as @atagkneralized Pdschl-Teller
potential. Non-central potentials are widely usedtudying quantum chemistry
such as the relativistic effect of the distorte@laus or the interaction between
ring-shaped molecules.

Dirac equations for non-central potentials are #yasolvable only for the s-
wave. For thel-wave, the solvable systems are only Coulomb, $pdder
harmonics oscillator, Morse and Kratzer potentiaig, other systems were only
solved approximately by Ikhdair and Sever, kot aigabio, and Agboola

[13, 21-22] due to the contribution of the centyililiterm, ~r 2. A suitable
approximation scheme was conventionally proposedsbgene and Aldrich
[23] that works well for hyperbolic/exponential amidjonometric potentials.

Up until now, to our knowledge, no work exists de Dirac equation with non-
central potential that is a combination of a geliwzd Pdschl-Teller potential
with a trigonometric Pdschl-Teller non-central puial. It was therefore, the
priority purpose of the present work to give appma¢e analytic solutions of
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the Dirac equation for this potential using the SUuantum mechanics
approach. This potential can be applied to studyreiativistic effect of the
complex vibration-rotation energy structure of malectron atoms.

In this paper we will attempt to solve the Diraaation for a charged particle
moving in a field governed by a generalized P63ailer potential, which is
discussed in Derezinski and Wrochna [24] and, wiittiultaneous presence of a
trigonometric Poschl-Teller non-central potential,Flugge [25], using super
symmetric quantum mechanics (SUSY QM) with the idéahape invariance
in the case of exact spin symmetry. SUSY QM waseliped based on
Witten's proposal [26], while the idea of shape anant potentials was
proposed by Gendenshtein [27]. SUSY QM is a poveonl to determine the
energy spectrum and wave function of a class gbesliravariant potentials as in
Sukumar, Duttet al, and Gangopadhyaya [6, 28-30].

The relativistic energy spectrum and wave functiares obtainable by SUSY
QM and the idea of shape invariance, because tha&c Zquation for non-
central shape invariance is separable and in the chexact spin symmetry or
pseudo-spin symmetry reduces to a one-dimensiattab8inger-like equation
with shape invariant potential. The relativisticeggy spectrum is obtained by
using SUSY QM and the idea of shape invariancelenthe wave functions are
obtained by using lowering and raising SUSY opegsats discussed in Dudt
al. and Gangopadhyaya [28-30]. SUSY QM and similariysformation have
also been used to determine the relativistic enefgsimple central potentials
by diagonalizing a pair of matrices of the upped ower components of Dirac
equations by Sukumar, Hall and Yesiltas [6, 20} Bleneralized Pdschl-Teller
potential is also called the hyperbolic Scarf Ikgugial, as in Derezinski and
Wrochna [24]. Some hyperbolic and trigonometric Hsentral potentials are
exactly solvable within the approximation of thentd#ugal term and their
bound state solutions have been reported in previgapers by Cari and
Suparmi, Suparmgt al, Saregaret al., and Ikdhair [31-37].

This paper is organized as follows. A brief revieh\SUSY QM is presented in
Section 2. Solutions of radial and polar Dirac eues are presented in Section
3.1 and 3.2. The conclusion is presented in Sedtion
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2 Review of the SUSY Quantum Mechanics Approach Using
Operator and Shape Invariance
2.1 SUSY Quantum Mechanics

According to the definition proposed by Witten [26h a SUSY quantum
system there are super charge operd@pthat commute with the Hamiltonian
Hssand are given as

[Q.H,]=0with,i=1,2,3,..N (1)
They obey the anti commutation algebra
{Q.Q}=gH, @

with H_ called SUSY Hamiltonian. Witten proposed that SUSY QM ae-

dimensional model of SUSY field theory and he stated thasithplest SUSY
QM system has N=2, where

1 p 1 p j
=—|0g—+0¢(X) | andQ, =——| g,— + 7,¢(X 3
Ql \/E( l\/% 2¢( )j Q2 \/E( 2\/% 1¢( ) ( )
where g; are the usual Pauli spin matricgs= —ihai is the usual momentum
X

operator, andg(x) is the super-potential. By inserting Eq. (3) into Eq. (2) we
get,

K d? o,
Tom dl ¢()+m¢(x) 0
ss h2 d2
0 Tom a7 + @2 (x) - \/—¢(X) (4)
(H, ©
Lo H.
with H ==7" 9" LV (9 for V(=42 (x - p'(% 5)
2m dx m
and H =—h—2d—2+v (X) for V,(X) =@*(X + L #'(R (6)
To2mdé T ’ J2m
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Here H_and H, , are SUSY partners of the Hamiltoniaks(X)and V, (X) are

the SUSY partner potentials. To simplify the determination ef enmergy
spectra and the wave functions, the new operators are inttbdsice

+

940 and A:Lix+¢(x> @)

__ h
~ 2madx J2md

with A" as raising operator, and as lowering operator. By manipulating Egs.
(5-7) we get

H_(X)= A"A, andH,(x) = AA’ (8)
It is always possible to factorize the usual Hamiltonian as
n* d?
H=H +E.=———+V + 9
= Iy (xa)+ & 9)

From Egs. (5) and (9) we get,

V)=V (xa)+ l%=¢2(x%)-%¢'( X9+ E (10)

where V(X) is the effective potential, whiled(x), the super-potential, is

determined hypothetically from Eqg. (10), which is basedhmshape of the
effective potential of the system.

2.1  Shape Invariance

It is observed here that the SUSY only gives the relationshipekatihe eigen
values and eigen functions of the two Hamiltonian partners butrdiegeld
the actual spectrum as discussed in Khare and Badhury [38prder to
determine the energy spectrum, Gendenshtein introduced the shvariance
condition [27]. Accordingly, if the pair of SUSY partner potelsti&/, (X)
defined in Egs. (5)-(6) are similar in shape and differ amhe parameters that
appear in them, they are said to be shape invariant. Moreficalggi if
V,(x a) satisfy the requirement that

V.(x3)=V(x3,)+ Ra) (11)
with

_ 2 ho,
V.(xa)=9°(x a})+%¢(xa) (12)
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vqug:¢%xqg—7%;¢KX%o (13)

where j = 0,1,2,..;a is a mapping parametey, (X, g )is associated with zero
ground state energya, = f;(g,), wheref; is a function applied times; the
remainder,R(g), isa's dependence but it is independenkpthenV ,(x, )

is said to be shape invariant. The energy eigen value of thdtblaiam H_ is
given by Gendenshtein [27] as follows

E”=> ,Ra) (14)
By using Egs. (9) and (14) we get the total enaggctra,
E,=EC+E (15)

Based on the characteristics of the lowering operdhe ground state wave
function is obtained from the condition that

Ay, =0 (16)

Subsequently, the excited wave functians’(x; a,),.....¢” (x;a,) of H_ are

obtained by using the raising operator operatetheriower wave function [36-
38], given as

WO 8)= A(xa) A(xa.... A(xa, Wy (xa (17)

which is a generalization of the operator method tfte one-dimensional
harmonic oscillator potential. The energy specte @btained from Eqgs. (10)
and (14), while the wave function is obtained fregs. (16) and (17).

3 Solution of Dirac Equation for Non-central Potentid

The Dirac equation with the scalar potenty{T) and magnitude of vector
potentialV (T) is given as in Huet al. [2]

{a.p+pM+sm}ym={ E-V(M}y (M) (18)

whereM is the relativistic mass of the particiejs the total relativistic energy,
and P is the three-dimensional momentum operatar,

(0 & (10
a—(ﬁ Oj,andlg_(o —|) (29)
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with ¢ are the three-dimensional Pauli matrices and hés2tx 2 identity
matrix. The potential in Eqg. (18) is sphericallyrsyetric potential, i.e. it does

not only depend on the radial coordinate |F| and we have takem=1, c=1.

The Dirac equation expressed in Eq. (18) is invariander spatial inversion
and therefore its eigen states have definite paiywriting the spinor as

wﬁ)=( _J= (20)

m

If we insert Egs. (19) and (20) into Eq. (18) arseé matrices multiplication, we
achieve

o.pQ(r)={-M - S(1)+ E- V(T)} {(T) (21)
o.p{ (1) ={M +S(7)+ E- V(1})Q(T) (22)

In the exact spin symmetric case, when the scatéengial is equal to the
magnitude of vector potentia(T) =V(T), then from Egs. (21) and (22) we
have

a.p
M+E

a.p M) ={-M - ()+E}{ () (23)
By applying the Pauli matrices, it is simply sho#mat if (&.p)(a.p)= 1,
then Eq. (23) becomes

p?+2V(7)(M+E){(F)=(E - M?){(F) (24)

In the non-relativistic limit, wherE-M - E,,, E.y iS the non-relativistic
energy andE+M - 2u, whereu is the non-relativistic mass, then Eq. (24)
reduces to

{Ziw(r)}ar)imar) (25)
U

Eq. (25) becomes the usual Schrédinger equatieetiingV (r) - @

If the vector potential is non-central, i.e. a comation of generalized P&schl-
Teller potential and Pdschl-Teller non-central ptité given as



212 Suparmi & Cari

Zb( a+ ;j coshtr

V(r,0) =t b* +a(a+1) _ _i(K(K—l)_'_l]Q]—l)) (26)

sinh tr sintftr r2 siféo co&f

then the Dirac equation for non-central potent@dtained from Eqgs. (24) and

(26) with vV (r) - &Zr) is expressed as

920, 1 0(g 0, 1 &
{ar(r or )Jrsine ae(s'”gag)Jr Sinzea(p?}z(r 6.9)

b? + a(a+1) 2b(a+; coshtr)
2 2 _
rE+MX sink?tr siniftr {(r6.9) @7

_ K(k-1) nn-1 —_v2{E2_ 2
(E+ M)( i cogejm’g’@_ r?(E2-M?){(r.6.9)

whereO<tr<m, b > O,a>—%, k>1,n>1, 0<@<r, and in this casé,> 0,

the t parameter has to control the width of the genmedli PGschl-Teller
potential. Eq. (27) is solved using the variablpasation method by setting

{(r,0,p) :@P(e)m(qo) and we have

d’x(n) _ 1 +Dx ) _

dr? r?
1 (28)
| b2+ a(ar) 2b(a+ coshtrj i i
(E+M)t sinketr sintftr XN+ (E- =M x(r) =0

1 9. ,0P) 1 ¢ KK-1) /7@—1))_ 29
Psineae(smgaej msirf€6¢72+(E+M)( Sifd | codd =10+1) (29)
3.1  Solution of the Radial Dirac Equation

In order to solve the radial Dirac equation in &), we use the approximation
value for the centrifugal term as in Greene andrald and in Ikdhair [13,23],
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%th(dfﬁﬁj’ for tr <<1 and d,=1/12. In the centrifugal

approximation scheme, Eq. (28) becomes

1
d°x(r) _,2 (b* +a(a+D))(E+ M)+ K(1+1) 2b(E+ M)( a+2)coshtr »
dr® sinh? tr sintftr (30)

+(E*-M?-t3(1 +1)d,)x(r)=0

By setting
(0? + a(a+1))( E+ M)+ I(1+1)= c(c+1) (31)
2b(a+%j (E+ M)= 2b'( a#%) , EZP-M2-tA(1 +1)d, =€ (32)

Eg. (30) becomes

1
2b'| a+= ht
@), 2| oot )

r)=e&x(r 33
dr? sinh?tr sinfftr Ar) = ex(r) 33)
and the effective potential in Eq. (33) is given as
2 2 [ o1
V=t c(c+1) t°2b'(a+;)coshtr (34)

sinh?tr sintftr

Eq. (33) is solved using SUSY QM and by introdudihg hypothetical super-
potential as in [26-27]

@(r) =tD cothtr +tB csttr (35)
By inserting Egs. (34) and (35) into Eq. (10) we ge

—— +t’D%+
sink?tr sinHtr sinfitr sinfir sintr

22 2p 2 2 2

t°D 2p2 4 UB° | oppye COSHEr +( t'D_, Bt coshrj:
2 2tzb'(a'+1)coshtr (59)
t°c(c+1) 2

sink tr sinttr

&

From Eqg. (36) we have



214 Suparmi & Cari

(D?+B?+ D) =(c(c+1)),(2DB + B) :—2b'(a'+%) ,
and D*? = —¢, (37)

and thus from all expressions in Eq. (37) we getilues oD, B, and &, that
have physical meaning,

2 2 38)
. J(c+;)2+J((c+;)22) - a(b(a+) -
£, =t \/(C+%)2_\/((C+%)22) St _‘; (40)

where Eq. (40) is the ground state relativisticrgpequation of the system. By
using Egs. (35), (38) and (39), the super-poteigtiabtained, given as

#(r) =t(N —%) cothtr —tK csaitr (42)

(42)

(43)

By inserting Eq. (41) into Egs. (5) and (6) we et super-partner potentials as
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2 1 _1 2
t ((N+2)(N 2)+K ) coshr

- 2 2 _1)\?
V-(ra) sink? tr 2UKN sinttr +t (N 2) (44)
3
tz((N—;)(N—)+ K?)
N 2 Cws2 (N COSHT o2
Val(ri&0) = sinhtr KE(N-1) sinftr * (N ;) (45)

By comparing the coefficient of the variables insE{44) and (45) we obtain
the mapping parameters,, a, ,....,a,given as

3 =N,3=N-1..,3=N-r (46)
By using Egs. (44) and (46) we have

(-3 v )

—2t2K(N—1)_—+t2(N_§)2 (47)

V =
(@) sinh?tr sinttr 2

From Egs. (45) and (47) it can be seen Mgfr,a,) have the same function

form asV_(r,a;) and by using the shape invariance condition in(Et), we
get

R(a) = Vi &)= V(5 @)= E(( N-2)° - ( N-2)°) (48)

By repeating the step used to determR(@,) in Eq. (48) and the steps used to
determineV_(r,a,) in Eq. (47) and by using Egs. (44-46,48) we obtain

tz((N _ij( N _gJ Kz) —2t2K(( N — 2)) coshtr

V-(1.a,)= sinh? tr W( )
+#(N-3)°

e((w-3)n-3 )
Vi(r,a) = sink? tr -2 K((N_Z)) sinitr (50)
(N3

and so

R(a)=V.(rna)-V(tra)= E(( N-2)"-( N-3)) (51)
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Using generalizations of Egs. (48) and (51) we iobta

R(a)=V.(ra4)-V(r3a)= f{( N-%-(rrl))z—( I\F%— a} (52)

Using Egs. (14), (15) and (52) we get

2 2 2
eg'):tz{(N—%) —(N——;— )}thatgiveSen:—tz(N—%—nj (53)

The relativistic energy equation obtained from Eg88) and (53) is

EZ—MZ:—tZ{(N—%— j2—|(|+1)d0} (54)
with
’(b2+a(a+1))(E+ M)+ (1+1/ 2Y
N = 2 (55)
\/((b2+a(a+1))( E+ |v|)+(|+1/2)2)2— 4 (E+ MK a+3))’

2

The relativistic energy spectrum is obtained nuoadiyi from the relativistic
energy equation in Eq. (54) with the help of thetaab software application.

In the non-relativistic limit, the relativistic ergy reduces to non-relativistic
energy as follows

E?- M?=(E+ M)(E- M)=24E,, (56)
since(E+M) - 2y and(E-M) - Ey
If we set

V= t’c(c+1) t*2b'(a'+4)coshtr B

sink? tr sinHtr
_1 t’c(c+1) t?2b'(a'+$)coshtr (57)
24 | sintttr sinktr
then
(E+M+ aar)+ 1+ - (EXMyp s aary+ 1041 (58)

2u
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and

2(E +M)(b(a+3)) - z(E“LM)z(:j(a“L%» (59)

Thus by applying Egs. (56), (58) and (59) we obthm value of N forl=0,
given as

2u

2u 2
-47 (b(a+3))
N = Z’U :a+} (60)
2 2

[(2ﬂ(b2 ra(arD) |, +1)+1j2
4

(2u®® +a(a+ 1))+I(I +l)+—1—
2u 4

Therefore the non-relativistic energy obtained friags. (54) and (60) is given
as
P 2
Ee = Z{(a )’} (61)

which is in agreement with the energy of the gdimad Pdschl-Teller potential
obtained using other methods [39].

By manipulating Egs. (7), (16), (17), and (41) weain the ground state and
first excited state wave function as follows. Bgerting Egs. (41) and (7) into
Eqg. (16), we get the radial ground state wave fanas

Xo(@g,1) = C(sinhtr)_(N_M)( tanht%) (62)
By manipulating Egs. (7), (17), (41), and (62) vesrédn
X, :((ZN — 2)tcoshtr - :K)( sintr)_(N_m)( tan%j (63)

The second excited state wave function is obtairsgty Egs. (5), (14) and (49),
and so on for third, fourth, etc.

3.2  Solution of the Angular Equation

The solution of the polar Dirac equation is obtdibg setting> = Q _in Eq.
<siné
(29), so we have
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1
fg_(E+MMM~D+ﬁ—4+(E+me—D(%{W+D%%Q:O (64)

06° sin’@ cosé

To solve Eq. (64), we set

(E+|V|)K(K—l)+mz—:11=K'(K'—l) (65)
(E+M)n(n-1)=n'07"-1) (66)
so Eq. (64) becomes a one-dimensional Dirac equaiiven as
QK=Y n'-1)| _ 4
aW*{iQMQ +(m§e}Q_{m+D+ }Q EQ (67)
_K'-D) n'-1
Ve (9)= St0 | codd (68)

where Eg. (68) shows the effective potential ofdhstem. By considering Eqgs.
(10) and (68), the corresponding super-potentigitreduced as

#(6) = Dtan@ + B cotd (69)
By inserting Eq. (69) into Eq. (10) we have
1 _ 1 [ 2 _ 2
/(('KZ 1)+/7(/7 1):D D+B _+B—Bz—D2+2DB+ E (70)
sin’ @ cosd cosd  sing

By comparing the coefficients of the variables be keft and right side in Eq.
(70) we have the super-potential given as

@(6) =n'tanf -k 'cotd (72)

and by setting the constant term on the right s@ieal to zero, we get
E\y=(7+x") (72)

By inserting Eq. (71) into Egs. (5) and (6), weadbtthe angular super-partner
potential as

V_(,6) = K;(i’;;_el) +'7;(Z§'_;)-(f7 i) (73)
V.(3,0) =D NOED )y ey (74)

sin’ @ coséd
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By shifting the parametex'- «'+1 and '~ p+1 in Eq. (73) and by
applying Eqg. (11) with Eqgs. (73-74) we obtain thapping parameters and
R(a) given as

a,=k,a=k+1,.a =«k+n;by=nb=n+1,.b,=n+n (75)
and
R(@)=V.(6: 3) = V(6 @ =(n+K") +(n'+x+2)° (76)

By shifting the parameter and' - x'+27'-n'+2 in Eq. (73) and
k' - k'+1andp' - p'+1 in EQ. (74) together with Eq. (11) we have

R(8)=V.(6: 8) - V(G @) =(~(n+x+2) +(7+ k4 4)  (77)

Thus by repeating the steps used in Egs. (76) @@yl €inally we get the
general form of R given as

R(3)=V,(6: 84) = V(6 Q) =~(7+x+2( D) + (1K + 2 (78)
By manipulating Egs. (14-15), (72), and (76-78)hage
ECQ =—(7+«") +(n+«+2n)" and E', =(i7'+ '+ 2n)° (79)

and thus the orbital quantum number obtained frogs E67) and (79) is give as
{I ( +1) +711} =(n"+ &+ 2n)* (80)

The value of that has physical meaning obtained from Eq. (8@jven as

{I +%}=\/(E +M)k(k —1)+n? +%+\/(E+ M)(/](/]—l)+—i+—§+ 2n  (81)

As in the radial part, the values of the orbitabgiwm number in the non-
relativistic limit are obtained from Eq. (81) as

| ={(k(k -1)+m? +n+2n (82)

This result is in agreement with the result obtdimeCari [39].

By using Egs. (16) and (71) we get the relativigialar ground state wave
function as

(7 (8,8,) = C(cosf ¥ (sird ¥ (83)
with
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Kk'=+/(E + M)k(k -1)+ n? +% andq':\/(E+ M)/](/7—1)+%+% (84)

By using Egs. (7), (17), and (71), we find thetfescited state wave function as
Q7(ay,0) = C{(27+1) sirf 6 (2 + 1)cod6} (caB”) (sth " (85)
The total ground state wave function is given as
Zo(r,0,9)=C(sinhtr) "™ (tankr /¥ (co8”) (sifh ) (86)

and the total first excited state wave functiomligained from combining Egs.
(63) and (85).

4 Conclusion

The Dirac equation with generalized Pdschl-Telletreptial plus Poschl-Teller
non-central potential was solved using SUSY quanto@chanics because in
the exact spin symmetric limit the radial and pdarac equations reduce to
one-dimensional Schrodinger-like equations. In dpproximation scheme of
the centrifugal term, the super-potential, theimgisnd lowering operators and
the mapping parameters were obtained from Diraatganus that have been
reduced to Schrodinger-like equations. The relsiiivienergy equation was
obtained exactly by using the super-potential draditlea of shape invariance
with the radial generalized Péschl-Teller potenasl an effective potential,
while the relativistic radial wave functions wergtained by using the lowering
and raising operators.

In the non-relativistic limit, when the differentetween relativistic energy E
and particle mass M is equal to the non-relatiwistnergy, while the sum of
relativistic energy and relativistic mass is eqt@ltwice the non-relativistic
mass, the relativistic energy reduces to the ntativistic energy of the
generalized Poschl-Teller potential with centrifudestortion correction. Fok
= 0 we obtained the non-relativistic energy of the egalized Pdschl-Teller
potential.

The relativistic polar wave function and relatiigsorbital quantum number
were found from the polar Dirac equation as in thdial part. The orbital

guantum number was considered to be an energyblaiiathe Dirac equation.

In the non-relativistic limit, the orbital quantunumber reduces to the non-
relativistic quantum number and the angular wavetions, which are obtained
by using the angular lowering and raising operat@duce to non-relativistic
angular wave functions.
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