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Abstract. In this article, we formulate and analyze a mathematical model 
including breastfeeding and vaccination to study the transmission dynamics of 
rotavirus epidemics. The model is divided into five compartmental classes, 
namely, the susceptible compartment 𝑆ሺ𝑡ሻ; the breastfeeding compartment 𝑀ሺ𝑡ሻ; 
the vaccinated compartment 𝑉ሺ𝑡ሻ; the infected compartment 𝐼ሺ𝑡ሻ; and the 
recovered compartment 𝑅ሺ𝑡ሻ. To understand the threshold of infection, the basic 
reproduction number relating to breastfeeding and vaccination, denoted as 𝑅௩௠, 
is computed. The results show that if 𝑅௩௠ ൏ 1, the disease-free equilibrium is 
globally asymptotically stable. Similarly, if 𝑅௩௠ ൐ 1, global asymptotic stability 
of the endemic equilibrium exists. Numerical simulations were carried out to 
support the model analysis and to examine the effects of breastfeeding and 
vaccination on rotavirus epidemics. The model fits well with real data to predict 
the infected population in real life. The analysis and numerical results of the 
model confirm that the combination of vaccination and breastfeeding is more 
effective in reducing the spread of rotavirus epidemics. 

Keywords: breastfeeding; diarrhoea; mathematical model; rotavirus; vaccination. 

1 Introduction 

Diarrhoeal diseases are a significant cause of childhood mortality and morbidity 
worldwide, accounting for around 525,000 deaths annually in children under 
five [1]. Diarrhoeal diseases usually occur from contaminated food and water 
sources. There are many causes of diarrhoeal infections such as viruses, 
bacteria, or parasites. Rotavirus is one of several viruses that are the most 
significant causes of acute diarrhoea among children worldwide [2]. Every 
infant is predicted to have at least one episode with rotavirus before the age of 
five years, with severe infections occurring between the age of 4 to 23 months 
[3]. Approximately 215,000 deaths of children are recorded annually due to 
rotavirus diarrhea, with 56% of the deaths ensuing in Sub-Saharan Africa [4]. 
Based on VP6 antigen, rotavirus is grouped into at least eight different species, 
named A to H [5]. Species A is the primary cause of rotavirus disease in 
humans (acute gastroenteritis). The transmission of the rotavirus happens 
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mainly person-to-person by respiratory droplets, contamination of objects, 
hands, water, and food with infected faeces. The spread of the rotavirus can 
occur in family homes, childcare centers and through health care workers [6].  

Regions with a large risk of rotavirus infection are Africa, Latin America, and 
Asia, where proper hygiene, sanitation, and good health care remain a 
significant problem [7]. The symptoms of rotavirus infection include fever, 
vomiting, diarrhoea and abdominal pains [8]. The incubation period of a 
rotavirus infection is usually between 24 and 72 hours. A polymerase chain 
reaction test on a faecal sample in a pathology laboratory is often used to 
diagnose rotavirus infection in patients [4]. The initial infection in children 
tends to cause the most severe symptoms. Full immunity to the rotavirus is 
often not attained by infants until after the primary infection. Subsequent 
infections tend to be less severe due to protective immunity achieved after the 
first episode of rotavirus infection.  

To prevent the threat posed by rotavirus epidemics, the World Health 
Organization in 2013 recommended the commencement of rotavirus vaccines in 
all childhood immunization plans [9]. This has led to the reduction of rotavirus 
incidence, with a higher efficacy experienced in low-mortality countries. 
However, consistent evidence from clinical trials shows a lower vaccine 
efficacy in high-mortality countries [10]. Many explanations have been raised to 
account for the difference in rotavirus vaccine efficacy between developing and 
developed countries. They include a difference in the gut microbiome, high cost 
for the implementation of vaccines, difficulties in vaccine distribution, and the 
burden of other diseases such as HIV, malaria and tuberculosis [9]. Thus, 
programs to improve rotavirus vaccine efficacy and immunogenicity in 
developing countries are currently being carried out in various research centers 
[11].  

Several researches dating back to the 1960s have documented the importance of 
breastfeeding in infants. Breast milk contains essential nutrients and antibodies 
needed by infants for their growth and survival. There are mixed results 
regarding the effective protection offered by breastfeeding to rotavirus 
infection. Oral transmission of breast milk constituents in children around the 
period of rotavirus immunization was initially thought to be a principal factor in 
reducing rotavirus vaccine efficacy [12]. However, studies carried out on 
children in South Africa and India, respectively, found no impact of 
withholding breastfeeding towards the time of rotavirus vaccination [12,13]. 
Two studies [6,14] have reported that breastfeeding offers some degree of 
protection against rotavirus infection. The anti-rotavirus effect of breastfeeding 
is attributed to lactadherin, which is a breast milk protein responsible for 
deactivating the virus that causes diarrhoea [6]. On the other hand, the study of 
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Wobudeya, et al. [15] revealed that breastfeeding does not protect against 
rotavirus gastroenteritis. 

Thus, there is a need to carry out more research to further examine the effects of 
breastfeeding on rotavirus infection prevention. Hence, in this study, we 
formulated a model to examine the effects of breastfeeding and vaccination on 
rotavirus epidemics. The remainder of this article is organized as follows. In 
Section 2, we formulate the SMVIR model. Section 3 is devoted to the 
mathematical analysis of the model. The results obtained from the model 
simulations are presented in Section 4. Finally, the conclusion drawn from this 
study is given in Section 5.  

2 Model Formulation 

Several studies have been carried out on mathematical modeling of rotavirus 
infection using vaccination. However, there has been very little research on the 
modeling of rotavirus infection using breastfeeding and vaccination. This study 
sought to address this research gap by proposing a model that combines 
breastfeeding and vaccination compartments to control rotavirus epidemics. The 
model proposed in this study was motivated by a recent study of Omondi, et al. 
[16]. In this study, the population considered were children under 5 years of age 
divided into the following five compartments: susceptible ሺ𝑆ሻ, breastfeeding 
ሺ𝑀ሻ, vaccinated ሺ𝑉ሻ, infected ሺ𝐼ሻ, and recovered ሺ𝑅ሻ, all at time 𝑡. The total 
population is denoted as: 

 ( ) ( ) ( ) ( ) ( ) ( ).P t S t M t V t I t R t      

All assumptions governing the model formulation are given as follows: 

1. The population of children below 5 years is non-constant. Thus, there is 
inflow, outflow, and death of children in all compartments. 

2. Children infected with rotavirus are considered to be both symptomatic and 
asymptomatic [17]. 

3. The recovered compartment consists of children who have been removed 
from the infected population through acquired immunity or death [18]. 

4. Children in the breastfeeding compartment can be vaccinated. 
5. Breastfeeding and vaccination reduce the risk of rotavirus infection.  

2.1 Progression of Rotavirus Infection 

The inclusion of children into the susceptible, breastfeeding, and vaccination 
compartments takes place at rates ሺ1 െ 𝜎 െ 𝜂ሻΛ, Λ𝜎 and Λ𝜂 respectively. The 
children in the susceptible compartment are subsequently vaccinated at rate 𝛾. 
Once children in the susceptible compartment have been vaccinated, they 
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migrate to the vaccinated compartment. The waning rate of the vaccine is 
denoted as 𝜔. Once the vaccine wanes off, the children in the vaccinated 
compartment lose their protective immunity and then they move to the 
susceptible compartment. The breastfeeding rate of children in the susceptible 
compartment is denoted as 𝜓. Maternal antibodies from breast milk wane off at 
rate 𝜛. Once the maternal antibodies wane off, the children return to the 
susceptible compartment. The vaccination rate of children in the breastfeeding 
compartment is denoted as 𝜑. The transmission of the virus between children in 
the susceptible and the infected compartment is denoted as 𝛽𝑆𝐼, where 𝛽 is the 
effective contact rate. The expected decrease in infection as a result of 
breastfeeding and vaccination is denoted as 𝜀 and ξ respectively, where ,�

(0,1).  The recovery rate of children infected with the rotavirus is denoted as 𝜅. 

The children leave the population through death from infection at rate 𝜏 and 
from natural death at rate 𝜇. Using all the above assumptions, we obtained the 
flowchart of the SMVIR model given in Figure 1.  

 
Figure 1 Flowchart of the interactions that exist among the different 
compartments in the model. 

2.2 Mathematical Model 

Here, we combine all assumptions. The proposed mathematical model with 
non-negative initial conditions is given by Eq. (1): 

(1 ) ( ) ,

( ) ,

( ) ,

dS
M V I S

dt
dM

S I M
dt

dV
S M I V

dt

       

     

     

         

      

      
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( ) ,

.

dI
SI MI VI I

dt
dR

I R
dt

     

 

     

 
 (1) 

The details of all parameters used in Eq. (1) are presented in Table 1. 

Table 1 Parameters defined in the model.  

Parameters Meaning Units 
(1 )     Inclusion rate into susceptible compartment People/day 

  Inclusion rate into breastfeeding compartment People/day 

  Inclusion rate into vaccinated compartment People/day 

  Breastfeeding rate of susceptible compartment day-1 

  Vaccination rate of susceptible compartment day-1 
  Vaccination rate of breastfeeding compartment day-1 

  Effective contact rate day-1 

  Waning rate of maternal antibodies from breast milk day-1 
  Waning rate of vaccine day-1 
� Reduction in the risk of infection due to maternal antibodies day-1 
  Reduction in the risk of infection due to vaccination day-1 

  Disease mortality rate day-1 
  Natural death rate day-1 
  Rate of flow into the removed class day-1 

Throughout this article, we assume that the initial conditions of the model in Eq. 
(1) are non-negative: 

 0 0 0 0 0(0) 0; (0) 0; (0) 0; (0) 0; (0) 0.S S M M V V I I R R                  (2)     

Since the model in Eq. (1) represents the population of all the state variables 
and the parameters are assumed to be positive, it will be considered as being in 
the invariant region below: 

 
5( , , , , ) : ( ) ( ) ( ) ( ) ( ) .{ }MV S M V I R S t M t V t I t R t




         (3) 

Therefore, the solutions of the model are feasible for all 𝑡 ൐ 0 if they enter and 
remain in the invariant region Ωெ௏. 

2.3 Positivity and Boundedness of the Solutions 

The model in Eq. (1) describes a human population and so it is important to 
show that it is well-posed and epidemiologically meaningful. The solutions of 
all the state variables must remain non-negative. First, we discuss the positivity 
of solutions of Eq. (1) using Theorem 2.1. 
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Theorem 2.1.  If 𝑆ሺ0ሻ ൐ 0, 𝑀ሺ0ሻ ൐ 0, 𝑉ሺ0ሻ ൐ 0, 𝐼ሺ0ሻ ൐ 0, and 𝑅ሺ0ሻ ൐ 0 then 
the solution set ሼ𝑆ሺ𝑡ሻ, 𝑀ሺ𝑡ሻ, 𝑉ሺ𝑡ሻ, 𝐼ሺ𝑡ሻ, 𝑅ሺ𝑡ሻሽ of Eq. (1) is always non-negative. 

Proof.  Considering the first equation of the model, it can be shown that 

(1 ) ( ) ( ) .
dS

M V I S I S
dt

                           

By separating the variables, 
ௗௌ

ௗ௧
 reduces to  

 ( ) .
dS

I dt
S

         

Integrating the above equation yields the solution 

 0
( )

0( ) e 0.

t
I dS

S t S
      

 
 

Hence, it is clear from the solution above that 𝑆ሺ𝑡ሻ is positive since the initial 
value 𝑆଴ and the exponential functions are always positive. The other equations 
of the model in Eq. (1) can be shown to be positive using the idea above. Hence, 
the solutions of Eq. (1) are positive for all values 𝑡 ൐ 0. Next, we show that the 
solutions of all the state variables are bounded using Theorem 2.2. 

Theorem 2.2 The non-negative solutions characterized by Theorem 2.1 are 
bounded. 

Proof. From Eq. (1), the total population at changing rate is given as 

 ( ) .
dP d

S M V I R P I
dt dt

         (4) 

In the absence of rotavirus infection, that is 𝐼 ൌ 0, Eq. (4) becomes 

 ( ) .
dP d

S M V I R P
dt dt

        (5) 

The solution of Eq. (5) is found to be 0( ) e[ ] tP
P t 

 


  , which implies that 

𝑃ሺ𝑡ሻ approaches 
ஃ

ఓ
 as 𝑡 → ∞. The term 

ஃ

ఓ
 is defined as the threshold population 

level. This indicates that the total child population grows and asymptotically 

converges to 
ஃ

ఓ
. Therefore, 

ஃ

ఓ
 is the upper bound of the total child population 

𝑃ሺ𝑡ሻ. If the initial child population starts below 
ஃ

ఓ
, then it grows over time and 

reaches the upper asymptotic value 
ஃ

ఓ
. On the other hand, if the initial population 
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starts higher than 
ஃ

ఓ
, then it decays over time and finally reaches the lower 

asymptotic value 
ஃ

ఓ
. Hence, the model in Eq. (1) is well-posed and 

epidemiologically meaningful. 

3 Model Analysis 

In model in Eq. (1) we can see that there is no term 𝑅 in the first four equations. 
Therefore, a new model without the compartment 𝑅 was considered for the 
model analysis in this study. This is given by Eq. (6) with non-negative initial 
conditions as follows: 

 

(1 ) ( ) ,

( ) ,

( ) ,

( ( )) .

dS
M V I S

dt
dM

S I M
dt

dV
S M I V

dt
dI

S M V I
dt

       

     

     

     

         

      

      

     

 (6) 

3.1 Equilibrium Points 

For analysis of the model in Eq. (6), we start by computing the equilibrium 
points associated with Eq. (6) by setting the derivatives of each compartment to 
zero as follows: 

 0.
dS dM dV dI

dt dt dt dt
     (7) 

From Eq. (7), there are several equilibrium points related to Eq. (6). Here, we 
will consider two equilibrium points associated with epidemiology: the disease-
free equilibrium point (DFE) and the endemic equilibrium point (EEP). 

3.1.1 The Disease-Free Equilibrium Point (DFE) 

The DFE state of the model in Eq. (6) is its steady-state solutions with the 
absence of rotavirus infection. In this study, the DFE state is denoted by 
𝐸଴ ൌ ሺ𝑆଴, 𝑀଴, 𝑉଴, 0ሻ, where 

 0

0

( )( ) ( )
,

[ ]
S

K

                
  
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 0

0

( ) ( )
,

[ ]
M

K

            
  

 
0

0

0

( ) ( ) ( )
,

and ( ) ( )( ) .

[ ]

[ ]

V
K

K

            

           

         


        

 (8) 

3.1.2 The Basic Reproduction Number (BRN) 

The basic reproduction number (BRN) is one of the most widely used 
epidemiological measurements to explore the likely spread of a virus in a given 
population [19]. In this study, we define the BRN of Eq. (6), denoted by 𝑅௩௠, as 
the number of secondary cases of rotavirus infection arising from one individual 
infected with the rotavirus in the presence of breastfeeding and vaccination. In 
the absence of vaccination and breastfeeding, BRN is denoted as 𝑅଴. Using the 
next-generation matrix approach [20] we can create vectors ℱ and 𝒱, where ℱ 
represents the inflow and 𝒱 denotes the outflow of infections in the 
compartments of the model in Eq. (6). This is given as follows: 

0 ( )

0   and   ( ) .

( ) ( )

S I M

S M I V

I S M V I

     
     

     

        
             
         

   

Next, we compute the Jacobian F from ℱ and V from 𝒱, respectively, to obtain 

(

0 0 0 0

0 0 0  an

0)

d .

0

I M

F V I V

I I S M V

    
    

       

     
          
         

Jacobian matrices 𝐹 and 𝑉 evaluated at 𝐸଴ yield: 

0

0

0 0 0

00 0 0

0 0 0  and .

0 00 0 ( )

M

F V V

S M V

   

   
    

   
  
     
         

Therefore, the BRN of the model in Eq. (6), denoted by 𝑅௩௠, is given as: 

 
1 0 0 0( ) )(

( )vmR FV S M V
  

   
 

   
   (9) 
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where 𝑆଴, 𝑀଴ and 𝑉଴ are presented by Eq. (8) and 𝜌ሺ𝐹𝑉ିଵሻ is the spectral 
radius of matrix 𝐹𝑉ିଵ. From Eq. (9) we can obtain the basic reproduction 
number in absence of breastfeeding and vaccination, 𝑅଴, by setting the 
parameters related to breastfeeding and vaccination in Eq. (9) to zero. Thus, by 
setting 𝜎 ൌ 𝜓 ൌ 𝜛 ൌ 𝜂 ൌ 𝛾 ൌ 𝜔 ൌ 𝜑 ൌ 0, we obtain 

 0 .
( )

R


   



 

 (10) 

In order to explore the efficacy of controls used in this study, the relationship 
between 𝑅௩௠ and 𝑅଴ can be derived by setting Eq. (10) into Eq. (9). Thus, we 
obtain 

 0 0 0
0.[ ]vmR S M V R     (11) 

Hence, we can conclude that both breastfeeding and vaccination will be 
effective in preventing rotavirus infections. Hence, 𝑅௩௠ is the required BRN for 
our model. If 𝑅௩௠ ൏ 1, then there will be no spread of the rotavirus within the 
population, however, in the case where 𝑅௩௠ ൐ 1 then the disease exists within 
the population. 

3.1.3 The Endemic Equilibrium Point (EEP) 

The EEP is the point where an infection cannot be totally eliminated from a 
population. In our study, the EEP 𝐸∗, is obtained by setting the model in Eq. (6) 
to zero. We denote the EEP as 𝐸∗ ൌ ሺ𝑆∗, 𝑀∗, 𝑉∗, 𝐼∗ሻ, where 𝑆∗ represents the 
susceptible compartment, 𝑀∗ denotes the breastfeeding compartment, 𝑉∗ 
represents the vaccinated compartment, and 𝐼∗ represents the infected 
compartment when 𝐼 ് 0.  The existence of an EEP is established in this study 
using Lemma 3.1. 

Lemma 3.1. If 𝑅௩௠ ൐ 1, then there exists a positive endemic equilibrium point. 

Proof. At endemic equilibrium point, the model in Eq. (6) becomes 

 

* * * *

* * *

* * * *

* * * * * * *

(1 ) ( ) 0,

( ) 0,

( ) 0,

( ) 0.

M V I S

S I M

S M I V

S I M I V I I

       

     

     

     

        

      

      

     

 (12) 

From Eq. (12), we obtain the following implicit solutions to the respective 
compartments,  
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* * * * *
* * *

* * *(
.

(1 )
,  and 

( ) ) )(

V M S S M
S M V

I I I

        
          

        
  

       
 

where 𝐼∗ is the solution of the following general cubic polynomial equation: 

 
*3 *2 *

1 2 3 4 0,F I F I F I F     (13) 

with 𝐹ଵ, 𝐹ଶ, 𝐹ଷ and 𝐹ସ, given as follows: 

1 ( ),F        

2 ( )( ) ,F                         

3

2 2 2

( )(

)
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Thus, from the above expressions we can see that only 𝐹ଵ is positive. Due to the 
number of terms in 𝐹ଶ and 𝐹ଷ, respectively, we cannot say with certainty that 
they are either positive or negative. However, for 𝐹ସ, its sign can be determined 
by comparing the terms in 𝐹ସ with the condition 𝑅௩௠ ൐ 1. Recall that 𝑅௩௠ is 
given in Eq. (9). The terms in the inequality 𝑅௩௠ ൐ 1 are large. Thus, 𝑅௩௠ ൐ 1 
can be rewritten in the following simplified form: 

 5 6 ,Q Q  (14) 

where 

2 2 2
5

                                      ,

[
]

Q               

       

            

       
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Q                 

              

               

         
 

Hence, from the inequality in Eq. (14), if 𝑅௩௠ ൐ 1, then 𝐹ସ ൏ 0. So, 𝐹ସ is 
negative. To find out the signs of 𝐹ଶ and 𝐹ଷ, respectively, the cubic solution 
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given in Eq. (13) is analyzed using the Descartes rule of sign change [21]. The 
result of our analysis is provided in Table 2. 

Table 2 Analysis of the cubic polynomial using the Descartes rule of sign change. 

Cases 𝐹ଵ 𝐹ଶ 𝐹ଷ 𝐹ସ 𝑅௩௠ No. of sign changes No. of positive roots 
1 + + + - 1vmR  1 1 
2 + + - - 1vmR  1 1 
3 + - + - 1vmR  3 1,3 

4 + - - - 1vmR  1 1 

From the analysis carried out in Table 2, the model in Eq. (6) has a unique 
endemic equilibrium point if 𝑹𝒗𝒎 ൐ 𝟏 and Cases 1, 2 and 4 in Table 2 are 
satisfied. Also, the model in Eq. (6) could have more than one endemic 
equilibrium point if 𝑹𝒗𝒎 ൐ 𝟏 and Case 3 is satisfied. Hence, we can conclude 
that the model in Eq. (6) will always have an endemic equilibrium point 
whenever 𝑹𝒗𝒎 ൐ 𝟏. 

3.2 Stability Analysis 

The global stability analysis of the model in Eq. (6) will be discussed in this 
section. 

3.2.1 Global Stability Analysis (GSA) of DFE 

Theorem 3.2. Using the standard comparison theorem, the DFE of the model in 
Eq. (6) is globally asymptotically stable whenever 𝑅௩௠ ൏ 1. 

Proof. From section 3.1.2 we recall that the rate of variable changes in the 
model in Eq. (6) denoting the movement of infection occurs between 
compartments 𝑀, 𝑉, and 𝐼. Rewriting these variables by following the study of 
Huo and Feng [22], we obtain 

 
1 6 2 7 3 8( ) ,

M M M MdM

dt
V V V VdV

F V N A N A N A
dt

dI I I I I
dt

    

                                                                                

 (15) 

where 𝐹 and 𝑉 are presented in section 3.1.2, respectively, 𝑁ଵ ൌ 𝑆଴ െ 𝑆, 𝑁ଶ ൌ
𝑀଴ െ 𝑀, 𝑁ଷ ൌ 𝑉଴ െ 𝑉, 
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 are non-negative 

matrices.  
 
Note that 𝑆଴, 𝑀଴, 𝑉଴ are given in Eq. (8). The region Ωெ௏ remains positive for 
all parameters in the model in Eq. (6), therefore from Eq. (15) it follows that 

 ( ) .

MdM

dt
VdV

F V
dt
dI I
dt

                             

 (16) 

Therefore,  
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 (17) 

where 𝐵ଵଵ ൌ 𝐵𝑆଴ ൅ 𝜖𝛽𝑀଴ ൅ 𝜉𝛽𝑉଴ and 𝐵ଵଶ ൌ 𝜏 ൅ 𝜅 ൅ 𝜇.  

The eigenvalues associated with Eq. (17) are 1 2( ), ( ),              

and 
0 0 0

3 ( ( )),S M V             respectively. All eigenvalues of 

Eq. (17) have negative real parts, therefore (16) is stable for 𝑅௩௠ ൏ 1.  

Hence, ሺ𝑀, 𝑉, 𝐼ሻ ൌ ሺ0,0,0ሻ as 𝑡 → ∞ by the comparison theorem [23], 
ሺ𝑆, 𝑀, 𝑉, 𝐼ሻ ൌ ሺ0,0,0,0ሻ as 𝑡 → ∞ and 𝑆 → 𝑆଴, 𝑀 → 𝑀଴, 𝑉 → 𝑉଴, 𝐼 → 0 as  
𝑡 → ∞.  Hence ሺ𝑆, 𝑀, 𝑉, 𝐼ሻ → 𝐸଴ as 𝑡 → ∞.  So, 𝐸଴ is globally asymptotically 
stable for 𝑅௩௠ ൏ 1. 

3.2.2 Global Stability Analysis (GSA) of DFE 

In this subsection, the global asymptotic stability of 𝐸∗ is discussed by using 
Lyapunov’s direct method. From the model in Eq. (6), we constructed a 
common quadratic Lyapunov function using the idea of De Leon [24]. 
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Theorem 3.3. If 𝑅௩௠ ൐ 1, then the endemic equilibrium point 𝐸∗ of model (6) 
is globally asymptotically stable in the interior of region Ωெ௏. 

Proof. First we define :{( , , , ) : , , , 0}MVW S M V I S M V I    .  

By constructing a common quadratic function using Eq. (6), we obtain:  

 
2* * * *)

1
( , , , ) ( ( ( ) (

2
) )W S M V I S S M M V V I I           (18) 

Then 𝑊 is 𝐶ଵ in the interior of Ωெ௏, where 𝐸∗denotes the global minimum of  
𝑊 on Ωெ௏ hand 𝑊ሺ𝑆∗, 𝑀∗, 𝑉∗, 𝐼∗ሻ ൌ 0. 

Differentiating  𝑊 along the solutions of the model in Eq. (6), we obtain 
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Thus, Eq. (19) becomes: 
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
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At the equilibrium point 𝐸∗, Λ in Eq. (20) becomes Λ ൌ 𝜇ሺ𝑆∗ ൅ 𝑀∗ ൅ 𝑉∗ ൅
𝐼∗ሻ ൅ ሺ𝜏 ൅ 𝜅ሻ𝐼∗.  Therefore, Eq. (20) can be rewritten as 
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From Eq. (21) we have obtained 
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Thus, Eq. (22) becomes 

 5 5 4[ ( ) ].
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A A A
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We can rewrite Eq. (23) to obtain 
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
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Also, 
డௐ

డ௧
ൌ 0 if 𝑆 ൌ 𝑆∗, 𝑀 ൌ 𝑀∗, 𝑉 ൌ 𝑉∗ and 𝐼 ൌ 𝐼∗ in Eq. (22). Therefore, the 

largest compact invariant set in ሺ𝑆, 𝑀, 𝑉, 𝐼ሻ ∈ Ωெ௏:
డௐ

డ௧
ൌ 0 is the singleton 𝐸∗, 

where 𝐸∗ is the EEP. By Lasalle’s invariance principle, 𝐸∗ is globally 
asymptotically stable in the interior of Ωெ௏. 

4 Model Analysis 

A numerical analysis was performed using the model in Eq. (6) to support our 
model analysis. The numerical simulations were carried out using the deSolve 
package [26] with the fourth-order Runge-Kutta method in RStudio 
programming software version 1.1.442. Our simulations focused on the 
following three cases: Case 1 illustrates the numerical interpretation of the 
disease-free and endemic equilibrium points; Case 2 compares breastfeeding 
against both breastfeeding and vaccination to control rotavirus epidemics; and 
Case 3 was used to find out how well the model in Eq. (6) fits with real data. To 
validate our results, we consider the initial conditions as follows: 

 
(0) 2, 000, (0) 1, 500, (0) 1, 500,  and (0) 100.S M V I   

 

The list of parameter values used in the simulations for Cases 1, 2, and 3 are 
provided in Tables 3, 4, and 5, respectively. The numerical results are discussed 
in the next subsections. 
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Table 3 Parameter values for the numerical simulations of disease-free 
equilibrium point and endemic equilibrium point. 

Parameters 
Parameter values  

for DFE 
Parameter values  

for EEP 
Reference 

Λ 6.8493 6.8493 [27] 
σ 0 0 - 
η 0 0 - 
ψ 4.9315 x 10-4 4.9315 x 10-4 [28] 
γ 1.5852 x 10-3 1.5852 x 10-3 [27] 
φ 4.2616 x 10-4 4.2616 x 10-4 [27] 
β Assumed Assumed - 
ϖ 5.4945 x 10-3 5.4945 x 10-3 [29] 
ω 1.3699 x 10-3 1.3699 x 10-3 [30] 
ε 0.62 0.62 [31] 
ξ 0.71 0.71 [27] 
τ 4.4660 x 10-4 4.4660 x 10-5 [32] 
μ 3.6529 x 10-5 3.6529 x 10-5 [27] 
κ 8.3333 x 10-2 8.3333 x 10-2 [33] 

BRN 𝑅௩௠ ൌ 0.5913 ൏ 1 𝑅௩௠ ൌ 1.0204 ൐ 1  

 

Table 4 Parameter values for the numerical simulations when only 
breastfeeding and the combination of breastfeeding and vaccination are 
employed to control rotavirus epidemics. 

Parameters 
Parameter values for 

only breastfeeding 
Parameter values for 

breastfeeding and vaccination 
Reference 

Λ 6.8493 6.8493 [27] 
σ 0 0 - 
η 0 0 - 
ψ 4.9315 x 10-4 4.9315 x 10-4 [28] 
γ 0 4.9315 x 10-5 [27] 
φ 0 4.9315 x 10-5 [27] 
β Assumed Assumed - 
ϖ 5.4945 x 10-3 5.4945 x 10-3 [29] 
ω 1.3699 x 10-3 1.3699 x 10-3 [30] 
ε 0.62 0.62 [31] 
ξ 0.62 0.62 [27] 
τ 4.4660 x 10-5 4.4660 x 10-5 [32] 
μ 3.6529 x 10-5 3.6529 x 10-5 [27] 
κ 8.3333 x 10-2 8.3333 x 10-2 [33] 

BRN 𝑅௩௠ ൌ 0.7482 ൏ 1 𝑅௩௠ ൌ 0.7392 ൏ 1  
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Table 5 Parameter values to fit the model with real data. 

Parameters 
Parameter values 
vaccination period 

Parameter values non-
vaccination period 

Units Reference 

Λ 13.6986 13.6986 People/day [27] 
σ 0.18 0.18 People/day [27] 
η 0.2669 0.2669 People/day [27] 
ψ 2.2756x10-4 2.2756x10-4 day-1 [28] 
γ 3.8191x10-4 0 day-1 [27] 
φ 0 0 day-1 - 
β Assumed Assumed - - 
ϖ 5.4945x10-3 5.4945x10-3 day-1 [29] 
ω 1.3699x10-3 1.3699x10-3 day-1 [30] 
ε 0.62 0.62 day-1 [31] 
ξ 0.71 0.71 day-1 [27] 
τ 4.4660x10-5 4.4660x10-5 day-1 [32] 
μ 3.6529x10-5 3.6529x10-5 day-1 [27] 
κ 8.3333x10-2 8.3333x10-2 day-1 [33] 

4.1 Numerical Interpretation of the DFE 

The numerical result obtained from the numerical simulation of the disease-free 
equilibrium when 𝑅௩௠ ൌ 0.5913 ൏ 1 is given in Figure 2. 

 

Figure 2 Simulation results of the disease-free equilibrium for the model in Eq. 
(6) at different initial conditions and parameter values in Table 3 when 𝑅௩௠ ൌ
0.5913 ൏ 1. 

In Figure 2, we notice a rise in the number of susceptible children in the absence 
of infection. We also note that when the number of susceptible children 
increases, the number of vaccinated and breastfeeding children increases as 
well. This could be due to the fact that in the absence of infection (i.e. I = 0) 
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there will be no children to spread the disease. This leads to a rise in the number 
of children in other compartments. 

4.2 Numerical Interpretation of the EEP 

The numerical result obtained from the numerical simulation of the endemic 
equilibrium when  𝑅௩௠ ൌ 1.0204 ൐ 1 is given in Figure 3. 

 

Figure 3 Simulation results of the endemic equilibrium for the model in Eq. (6) 
at different initial conditions and parameter values in Table 3, when 𝑅௩௠ ൌ
1.0204 ൐ 1. 

Figure 3 shows an initial rise in the number of children infected with the 
rotavirus. The infection peaks at 40 days. After the peak of infection, fewer 
children were infected, leading to a rise in the number of children in the 
susceptible, vaccinated, and breastfeeding compartments, respectively. A small 
rise in infection is noticed from about 300 days upwards. However, the number 
of infected children was not high when compared with the number of infections 
recorded in the early infection phase. Furthermore, we also notice that whenever 
there was a dip in infection there was a rise in the number of children in the 
susceptible compartment. Thus, an outbreak of rotavirus infection can spread 
quickly if it is not properly monitored or controlled. 

4.3 Effects of Breastfeeding and Vaccination on Rotavirus 
Infection 

In order to understand the effects of breastfeeding and vaccination on rotavirus 
epidemics, two scenarios were considered. The first scenario is when only 
breastfeeding is used as control for a rotavirus epidemic in a community. The 
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second scenario is the introduction of vaccination in a community that already 
employs breastfeeding to control the rotavirus. The parameter values in Table 4 
were used for the simulation. From Table 4, three parameters, namely  ψ, φ and 
γ, are of particular interest. As earlier defined in Section 2.1, ψ represents the 
breastfeeding rate of the susceptible population, φ denotes the vaccination rate 
of the breastfeeding population, and γ stands for the vaccination rate of the 
susceptible population. To examine both scenarios differently, the parameter 
values 𝜓 ൌ 4.9315 ൈ 10ିସ, 𝜑 ൌ 0 and 𝛾 ൌ 0 were used for the first scenario. 
For the second scenario, one-tenth of ψ was the value used for 𝜑 ൌ 4.9315 ൈ
10ିହand 𝛾 ൌ 4.9315 ൈ 10ିହ respectively.  

The one-tenth used to obtain the value of φ and γ was based on the assumption 
that the vaccination rate is only one-tenth of the breastfeeding rate. By 
computing the basic reproduction numbers using the parameter values in Table 
4, we found that the combination of breastfeeding and vaccination (Scenario 2) 
with  𝑅௩௠ ൌ 0.7392 is more effective to control rotavirus epidemics than only 
breastfeeding (scenario 1) with 𝑅௩௠ ൌ 0.7482. This is an indication that the 
introduction of vaccination in a community that employs breastfeeding to 
control the rotavirus yields a more positive result than by only breastfeeding. 

4.4 Comparison of Real Data and Simulated Data 

In this section, we fit the real data given in Table 6 with the model in Eq. (6). 
The data were recorded monthly and obtained from the study of 
Tharmaphornpilas, et al. [27]. The data span September 2012 to October 2014. 
In the data, the children were only vaccinated from September 2012 to June 
2013 (303 days). However, no vaccination occurred from July 2013 to October 
2014 (488 days).  

Table 6 Number of children who tested positive for rotavirus between 
September 2012 and October 2014. 

Month 
Number of infected 

children in 2012 
Number of infected 

children in 2013 
Number of infected 

children in 2014 
January - 13 24 
February - 16 20 
March - 31 5 
April - 14 4 
May - 9 2 
June - 11 0 
July - 9 0 
August - 15 0 
September 1 17 0 
October 1 15 1 
November 1 12 -
December 3 2 -
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To easily compare the real data with the simulated data, the monthly data in 
Table 6 were first interpolated into daily data. After the interpolation, we 
constructed two models from the model in Eq. (6) to accommodate both the 
aforementioned cases of vaccination and non-vaccination periods in the data. 
By using the parameter values given in Table 5 for a simulation, the result 
obtained from the model fit is given in Figure 4. 

 

Figure 4 Comparison between real and simulated data. 

From Figure 4, it can be seen that the real data have three peaks on days 213, 
396, and 521, respectively. However, for the simulated data, we were only able 
to generate one peak, on day 275, which appears to fit well with the highest 
(first) peak obtained in the real data. The reasons why we were unable to 
generate the other two peaks in the real data using the simulated data may be the 
following. Firstly, our model considered a constant vaccination rate for children 
during the vaccination period between September 2012 and June 2013. 
However, in real life this may not have been the case since the number of 
children who go for vaccination on one day is often not the same. Next, the 
children tested positive in the data were children who visited the hospital. There 
may have been a situation whereby some other children were infected but they 
did not report to the hospital. Hence, the data used in this study may have been 
under-reported. Finally, the model proposed in this study assumes that 
breastfeeding and vaccination can control rotavirus infection. However, in 
reality, the evidence for the protective ability offered by breastfeeding against 
rotavirus infection remains inconclusive. 
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5 Conclusion 

In this study, a nonlinear mathematical model was formulated and analyzed to 
examine the effects of breastfeeding and vaccination on the transmission 
dynamics of rotavirus epidemics. We have shown that the model has two 
possible equilibrium points, namely the disease-free equilibrium point and the 
endemic equilibrium point. We have computed the basic reproduction number 
denoted as 𝑅௩௠ and have further shown that if 𝑅௩௠ ൏ 1, then the infection will 
die out. However, if 𝑅௩௠ ൐ 1, then the infection will remain in the population. 
Additionally, we have shown that both the disease-free equilibrium and the 
endemic equilibrium are globally asymptotically stable under some specific 
conditions. Numerical simulations have been performed to support the analytic 
results. Also, real data were fitted to the model for predicting the infected 
population in real life. Our model showed that the combination of both 
breastfeeding and vaccination is more effective in reducing the spread of the 
rotavirus.  

Although at present lower vaccine efficacy is experienced in high-mortality 
nations, there are approaches in various rotavirus vaccine research centers to 
improve the current vaccines. Some of these approaches include modifying or 
developing new vaccine formulations, altering the schedules of existing 
rotavirus immunizations, and increasing the number of vaccine doses given to 
children [11]. Thus, we hope that when the current vaccines are improved in the 
future, developing countries will experience a higher rotavirus vaccine efficacy 
to help control rotavirus epidemics.  
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