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ON NON-LINEAR FINITE STATE DIGITAL CHANNEL CODING

by : Hermawan Kresno Dipojono *

ABSTRACT

A discrete-time digital channel coding, in which the encoder and decoder are both time-inva-
riant finite state machines, is investigated. The channel is assumed to be memoryless. Two
measures of performance are considered: the probability of error and the minimum free
distance. Greater emphasis is placed on the minimmem free distance since it is easier to eva-
luate than the probability of error criterion, and for small channel crossover probability it
is a very good indicator of system performance, it is defined as the Hamming distance
between two possible output sequences that correspond to distinct state sequences of the
same length that are identical at both the start and finish. An algorithm to calculate the
distance between such possible output sequences was developed; it also identifies all such
pairs of output sequence. Another algorithm, based on the finite state machine properties
of the encoder, was found to generate the finite state decoder, Finally, after having found
the pairs of encoder-decoder finite state machines, we simulated the communication system.

SARI

Suatu kode saluran digital dengan waktu tercacah yang mempunyai pasangan encoder-deco-
der berupa mesin berkeadaan terhingga dan invarian waktu akan diteliti. Saluran dianggap
tanpa daya ingat. Digunakan dua buah ukuran kinerja yaitu probabilitas kesalahan dan jarak
bebas minimum. Penggunaan jarak bebas minimum lebih ditekankan karena lebih mudah
dievaluasi dibandingkan probabilitas kesalahan. Untuk probabilitas kesalahan saluran yang
kecil, jarak itu merupakan indikator yang sangat baik bagi kinerja sistem; ia didefinisikan
sebagai jarak Hamming minimum antara dua buzh kemungkinan sekuen keluaran yang
berupa sekuen keadaan yang unik dengan panjang dan keadaan yang sama, baik di awal
maupun di akhir sekuen, Sebuah algoritma untuk menghitung jarak antara sekuen kelnaran
yang sedemikian itu telah pula dikembangkan; algoritma tersebut juga mampu mengidentifi-
kasi semua pasangan sekuen keluaran itu. Sebuah algoritma lainnya, didasarkan pada sifat-
sifat encoder sebagai mesin dengan keadaan berhingga, yang mampu menyusun decoder
dengan keadaan berhingga, telsh pula ditemukan. Akhirnya, setelah menemukan berbagai

pasangan encoder-decoder yang berupa mesin dengan keadaan berhingga, sistem komunikasi
digital disimulasikan.

* Jurusan Teknik Fisika, Institut Teknologi Bandung
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1 INTRODUCTION

A particular kind of digital communication system has, as its objective, a chan-
nel coding. The main idea behind any channel coding scheme is to add some
redundant bits to the information sequence so that it has the capability to
combat channel noise; the cost of implementing such a system and the rate of
information transmission should also be considered. The channel encoder trans-
forms the information sequence X into a discrete encoded sequence D which is
called a codeword, i.e. the information sequence with the additional redundant
bits. This discrete encoded sequence D is input to the communication channel
which outputs a sequence C. The channel decoder then transforms the received
sequence C into a binary sequence Y called the estimate information sequence.
Ideally, ¥ will be a delayed replica of the information sequence X although the
noise may cause some decoding errors. This is the type of digital communica-
tion system we are concerned with in this paper.

Most of the research on the channel codes has been on classes of linear codes.
The hastc purpose of codes is to correct errors caused by noisy communication
channels, and for this purpose linear codes have many practical advantages.
However, the class of non-linear codes is larger than that of linear codes. Conse-
quently, if we want to obtain the largest possible number of codewords with
a given property, we should consider non-linear codes. The intent of this paper
is to investigate the class of non-linear finite staté codes, i.e. codes generated
by non-linear finite state encoders, by analyzing the state transition diagram of
the codes, i.e. the topological, rather than algebraic, structure. There are two
types of channel codes in common use today: block codes and convolutional
codes. 'IBlock codes were the earliest type of codes to be investigated, and re-
main the subject of the overwhelming bulk of the coding literature. On the
other hand, the performance of convolutional codes has proved to be equal, or
superior, to that of comparable block codes in nearly every type of practical
application. This anomaly, wherein convolutional codes are easy to implement
but relatively unstudied, is due largely to the difficulty of analyzing convolu-
tional codes. Note that every convolutional code is a finite state code; however,
not every finite state code is a convolutional code. Here we examine the siruc-
ture’ of relatively good codes to understand what makes them better than
others, i.e. in terms of closed paths that diverge from and remerge with the
same state and the input-output labelling. The results we obtain are far from
solving the general problem; however, they do contribute to a better under-
standing of such codes.

Convolutional codes were first introduced by Elias {1] in 1955 as an alter-
native to block codes. The Viterbi algorithm {2] was proposed in 1967 as an
alternative to the then existing sequential and threshold decoding techniques.
This algorithm is a recursive optimal solution to the problem of estimating the
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state seguence of discrete time finite-state Markov process in memoryless noise,
Many problems in digital communications can be cast in this form [4].

A complete treatment of convolutional codes, and one of the most enligh-
tening, first appeared in a series of papers by Forney [5,6]. In [5] Forney
defined a convolutional encoder as any constant linear sequential circuit. The
associated code is the set of atl output sequences resulting from any set of all
input sequences. He emphasized the algebraic structure of the convolutional
codes in his first paper. In the second one [6], the topological structure was
emphasized. Here, convolutional codes were characterized by a trellis structure.
Maximum likelihood decoding was characterized as finding the shortest path
through the code trellis; an efficient solution for which is the Viterbi algorithm.

The key concept in the performance analysisof the Viterbi algorithm is the
concept of an error event. A first ttme error event occurs when the true state
sequence .S is first excluded by the state sequence actually chosen by the Viter-
bi algorithm S. By using this concept, Viterbi [3] derived a bound on the pro-
bability of decoding error using the Viteroi algorithm for convolutional codes
and memoryless channels. A simple function, the minimum free distance, was
found to be a good indicator of the bit error probability performance. The
minimum free distance became the most important distance measure for convo-
lutional codes. The best achievable minimum free distance for a convolutional
code with a given rate and encoder memory has not been deterimined exactly.
Most code constructions for convolutional codes have been done by computer
search. This has prevented the construction of good long codes, since most
computer search techniques are time consuming and limited to relatively short
constraint lengths. Larsen [7], Paaske (8], and Johanesson [9] published
results of a computer construction technique for non-catastrophic codes with
maximal minimum free distance for rates 1/4, 1/3, 1/2, 2/3, and 3/4. Upper
and lower bounds on the minimum free distance for the best convolutional
code have also been obtained by using a random coding approach by Paaske
i8] and Costello [10]. An efficient algorithm for finding the minimum free
distance based on the state transition diagram of the code has been developed
by Bahlet al. [11] and modified by Larsen [12]. This algorithm searches
through the state transition diagram of the encoder for the minimum free dis-
tance; the diagram is considered as a weighted directed graph whose nodes are
the states of the encoder and whose branches are the allowable state transi-
tions. The use of a bidirectional search made this algorithm considerabiy more
efficient than any previously known algorithm,

Most of the results stated above (except [6,11,12,]) were derived by using
the algebraic structure; in addition, all these results are restricted to the class
of linear codes. Methods to design the best non-linear time invariant finite state
codes, by using the topological structure, have not been reported to our know-
ledge.
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To deal with this difficult problem, in section 2 we adopt the model developed
by Gaarder and Slepian [13]. They developed a finite state model for a digital
transmission system. Their objective was to find a pair of transmitter-receiver
finite state machines, which would optimize a given criterion function for
source coding. However, we use this model for channel coding rather than
source coding. In our context the objective would be to find a pair of encoder-
decoder finite state machines, which would guarantee a similar result to that of
maximum likelihood decoding. An advantage of this model lies in the fact that
this modelis powerful for analyzing both linear and non-linear finite state codes.

To judge the system performance we will use two measures: probability of
error and mimimum free distance. To deal with the first measure, in section 3
we derive a general bound on the bit error probability based upon the error
event probability at a particular node; the bit error probability can be appro-
ximated by a relatively simple function of a generalized minimum free distance.
The bound on bit error probability for convolutional codes is a simplified form
of this general bound. This bound leads us to investigate the second performan-
ce measure, minimum free distance, in section 4; in particular, we investigate
what factors make a finite state encoder have a large minimum free distance.
In section 5 we will discuss the catastrophic property; how the catastrophic
property can be identified from the state transition diagram of the encoder will
be our concern. For simplicity we restrict ourselves to finite state encoders
with one closed communicating class. In section 6 we will use a general bidi-
rectional search algorithm to deal with closed paths identification and the
minimum free distance calculation. In section 7 the problem treated is the
approximation of the Viterbi algorithm by a finite state machine. A general
treatment of this problem did not exist previously. Based on this approxima-
tion we will construct our decoder machine. However, the results cannot be
extended to general channels because the path metrics are not integers. Finally,
two computer simulation results will be shown in section 8; each has rate
1/2. Since the number of decoder states grown rapidly only the decoder states
of the first example is shown.

2 THE SYSTEM MODEL

Figure 1 shows the general finite state digital communication system. There is
a digital source which has statistically independent, identically distributed out-
puts and a channel encoder and decoder, both of which are time invariant finite
state machines. The channel linking them is assumed to be memoryless and
time invariant. Furthermore, the entire system is discrete and operates in dis-
crete time. That is, all the system variables take values in finite or countably in-
finite sets and changes occur only at fixed instants in time.
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Thus, at time n the digital source generates an output sequence, say X, X,

.. .. Here, each X; is drawn from a set of source symbols X = (1, 2, . . SNy
The channel encoder accepts the sequence X,, X,. X5, ... as an input and
produces as an output the sequence D,, D,, D;,....Forn=1,2,3,...the
output 0 at time » takes values from II) =(1,2,... Np) We represent the
channel encoder as a time invariant finite state machine with Ny states, i.e.
£=(1.2,.. ., Ng). LetS, €8 be the channel encoder state at time n. We write
Spe1 =0 (X, S,) (1)
D,=86(X,,S,) (2)

where the functions o (. ,.)and § (., .) constitute a description of the encoder.
Obviously these functions can also be described by a transition table or tran-
sition diagram.

—--—— DN ~——— C ——— Y

Digita-
Saurce

S(.. 0 me n(.,.)r—

p (., ) belay j
R

P‘ni-l

Figure 1. Thegeneral finite state digital communication system

The output of the channel encoder, i.e. the encoded message sequence, D, , D,

. . Is input to the communication channel which outputs the sequence C,, C,,
... at a fixed rate. Each C, is a noisy version of D, and takes values in a given
set ¢=(1,2,...,N¢).

Similarly, we represent the decoder as a time invariant finite state machine with
Ny states,ie. B =(1,2,3,...,Ng). The decoder accepts the sequence C, C,,

- as an input and produces as its output the sequence Y,.Y,, ... Each Ya
forr =1, 2, ... takes values from the set ¥,

Let R, be the decoder state at time n. We write
Rn+l =p(cn!Rn) (3)
Y, =n(Cq Ry). (4)

By defining the channel encoder-decoder as time invariant finite state machines
one can prove that :

1. When the X, is a sequence of an independent identically distributed random
variable, then (S,. R} is a first order Markov chain for a noiseless channel
(C, = D,) or an additive channel: C, = D + N, where + denotes a mod. N¢
addition and NV, is an independent identically distributed random variable.
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2.(Dy, 8y, Ry, Y,) is a first order Markov chain for a noiseless channel
(C, = D,) or an additive channel: (', = D, + N, where + denotes a mod. N
addition and N_ is a sequence of independent identically distributed random
variables. These are shown in Appendix A and B,

We now pose the problem we want to investigate:

Given the channel output sequence C,, Cy, C3, . . ., the channel matrix, the
finite state digital channel encoder, find the finite state digital channel decoder
such that the output sequence of this machine, i. e. ¥,,Y,. Y5, ... is an esti-
mate of X,;, X, X3, . . . which is close to that of a maximum-likelihood
decoder.

Maximum-likelihood decoding for finite state codes can be realized with the
Viterbi algorithm. However, since the number of decoder states have to be
finite, a truncated version of the Viterbi algorithm will be used to solve the
above problem. In general, the best way to approximate the Viterbi algorithm
with a finite number of the decoder states remains an unresolved problem. We
restrict ourselves to a specific case. These difficulties will be more evident in
the next section.

3 PROBABILITY OF ERROR

Since both the complexity and the operation of the finite state encoder and
decoder depend only on the number of states, code rate, and channel parame-
ters, the block length of the code is irrelevant. Furthermore, the bit error per-
formance is primarily a function of relative distances among signals, which may
be determined from the code state diagram, whose structure and complexity
depend strongly on the constraint length but not on the block length. In additi-
on, block error probability is not a reasonabie performance measure, particular-
ly when, as is often the case, an entire message is encoded by the finite state
encoder as a single block, whereas in block coding the same message would be
encoded into many smaller blocks. Ultimately, the most useful measure is bit
error probability P, which is the expected number of bit errors per bit decoded.

While our ultimate goal is to upper bound Py, we initially consider a more rea-
dily determined performance measure, a first error event probability at time i,
which we denote P; (i). Let us recall that first error event at time { occurs when
the true state sequence, S, is first excluded at time § by the state sequence
actually chosen by the Viterbi algorithm S equivalently one can say that a first
error event occurs at time i if the Viterbi path and the correct path are dif-
ferent for the first time at time { + 1. For further analysis it is convenient
to expand the state transition diagram of the encoder in the time domain, that
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is, to represent each time with a separate state diagram; the resulting structure
is called a trellis diagram. In the trellis we can now define that the error event
occurs at time i if the Viterbi and the correct path are the same at time i but
they are different at time i + 1. Figure 2 shows a situation when a first error
event occurs at time ¢ in the trellis. By definition we get:

Pr (i} = Pr|the Viterbi path and the correct path, in the trellis, are the same at
time { but different at time i+ 17]. (5)

Viterbj path

JOS==E20
\_/ correct path

time i i+1 i+2
Figure 2 An example of a first error event at time §

Although the Viterbi path and the correct path are different at time / + 1,
they remerge at some time, at least when the decoder is forced to arrive at
a known final state to make the decision. Let these two paths remerge at time
i + m. Since all possible Viterbi paths of length { + m or more can cause a first
error event at time i, the first error event probability at time i, P¢ (i), can be
overbounded. by the union bound, by the sum of the error probabilities of
cach of these paths. Obviously Eq. (5) can be rewritten:

Poi) = Pr[)[nJ { the Viterbi path and the correct path, in the trellis, are the same
at time J but different at time / + 1 and remerge at timei +m} |. (6)
Py < % Pr [the Viterbi path and the correct path, in the trellis, are the
same at time i but different at time i + 1 and remerge at time i + m ] .

Figure 3 shows some possible Viterbi paths that diverge from the correct path
at time 7 and remerge at time 7 + #1 for some value of m7, known as the incorrect

subset for time f. For this to occur, the correct path metric increments over the
unmerged segment, that is over the time span betweeni and i + m. must be less
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than those of the incorrect path. Let S and S denote the correct and the Viterbi
paths, respectively: given that § = S, is the correct path then Eq. (6) can now
be rewritten:

Peil§=5,) fk %?Ak]_ Pri{ M (S — Mi(S) > My, 1 (S) — M8 (D
where M (S) is the metric of the § path at time j and A, is the incorrect
subset of $ =5, for time i, that is, all possible incorrect paths that diverge from
the correct path § =S, at time i, By noticing that this bound is independent of
i, one finds that it holds for all i. Since M,  (§,) — M, (S,) is simply the
metric increment of §, over the time span between i and i + m then the first
error event probability at any time, given that S =S, is the correct path, is’
simply upper-bounded by:

Pf(ité'k)%gk gAk Priam (S, 5] (8)
where AM (Sk , 5y ) 1s the difference between the metric increment of:S\k and §,
over the unmerged segment. and A, is the incorrect subset of S = Sy . Clearly
the first error event at any time is upper-bounded by:

< PriS=5,1, T  PrlAM(S,.5)). (9)

K S €4y =

The final Viterbi path can diverge and remerge with the correct path any num-
ber of times, that is, it can contain any number of error events, Figure 4 shows
a situation where multipte error events occur. After the first error event has
accurred, the two paths to be compared will both be incorrect paths, one of
which will be a previous error event. This is illustrated in Figure 5, where it is
assumed that some segments of the correct path_§ have been excluded for the
first time at time { by an incorrect path S, , and assumed that there is another
incorrect path §, that diverges from § at time j. However, since at time j they
both have the same metric, then whether some segments of § will be excluded

\\/\

Viterbi path
/7
/o

correct path

Figure 4 A situation where multiple error events occur
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correct path

Figure 5 A comparison of two error events
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again at time j by 32 depends only on their metric increment over the time
span between j and j + 2. If the metric increment Over the unmerged segment,
that is over the fime span between j andj + 2. for S; exceeds that of some
segments of .S then .S will be excluded by 52 at tlITlej and we say the second
error cvent has occurred at time §, Let P, (f) denote the probability that some
segments of .S over the time span bctwcen] andj + 2 is excluded by Sz at tlme
j. Now, after the second error event has occurred, the Viterbi path contams S
some segments of ,S over the time span between { + 3 and j, and 52 The pro-
bability for this to occur, that is, the error event probability at time j, can be
gp[)roximated by P(Ej-) = P; x P, {j). Obviously, if § has not been excluded by
&, at time ¢ then P, (/) is simply ¢qual to P, (f), a first error event probability at
time j. We conclude from this exposition that the error event probability at
time J, P(Ej), is upper-bounded by :

P(E) < P, () (10)

However, singe it l1old§ for all time. we will use the error cvent probability at
any time P(F) rather than for a particular time P(Ej ). In addition, we restrict
ourselves to finite state codes with one closed communicating class. Let us now
evaluate the upper-bound on the crror event probability at any time, P(E).

From Eqs. {9) and {10) one can find:

PE)< T PrIS=S,] =  PrlOMS,. S (an
k Sy € 4y o

Let ﬁk and [}, be the corresponding code sequences of the Viterbi path Sk and
the correct path S, respectively. Each term of the summation over A, in (11)
is the pairwise error probability for two code sequences over the unmerged
segment. For a binary input channel this is readily upper-bounded by a func-
tion of the distance between code sequences over this segment. For, if the total
Hamming distance between code sequences D, and D, (over their unmerged
segment) is ¢ (Dk D) =d, for the binary symmetric channel, the pairwise error
probability is bounded by [ 3]

Py < expld ln &‘3 (Po (¢ py (€))0-3] (12)

where 2;(¢) is the conditional {(channel transition) probability of output ¢ given
that the input was (7 = 0,1). Thus, given that there are a(d) incorrect paths
witich are at Hamming distance d from the correct path over the unmerged seg-
ment, we obtain

oo P
P(E) < i) Pris=5,1 dgd Prerror caused by any one of a(d(D,, D)

min

incorrect path at distance d(ék. Dl
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PIE) < X Pris=s5;] = a(d(Dy . D)) 78 B 20 (13)
d=

4 min

a(d(Dy. D))= %,Akk’
o 15Dy =Dy # Dy —Dyr, K < k for all &
Kk {O;otherwise

[
where Z=2Z (py{c)p, (c))o'“ , dmin 15 the minimum distance of any path from

the correct path and A, guarantees that the same configuration on the un-
merged segment will not be counggd twice by a(d), with this P(£ 15 = 0)= P(F).
Henceforth now we will write d(Dy, D, ) as d.

If the channel transition probability is small, Z will be very small; thus one can

[+
approximate z z¢ by z4 min Consequently the summation over all k is

d=d pin
approximately the summation over & such that ¢ = ;. Hence we get

PUEY~ 3 PriS=S] aldy,, ) 24 5 S, € 4 (14)

min
where A, is the set of all possible _:S_:k and S, for all k such thatd = o ;.
Assume that atl S, are equally probable and have length £ over the unmerged

segment, then Pr{S =5 | :—ég . Let &, be the minimum length of all unmer-

ged segments which produces d ;, - We now find:

PEY< (1/(2°min ) g(q_ .y 7z%min (15)

The Viterbi algorithm requires that a final decision on the most probable code
path be made by forcing the coder into a known state., However, one can
choose any state as the final state. For simplicity we choose the final state
equal to the initia) state. The distance between the correct and incorrect paths
is then simply equal to the distance between two distinet equal length closed
paths which we call the free distance and d pyin 18 the minimum free distance,
diee- Now we get the final form by rewriting the Eq. (15):

P(EY< (1)@ miny) q(d ) 28t (16)

where a(d;,.)} can be evaluated trom Ly ¢ which is the sct of all possible
closed paths of length &' that begin with and end with 1 if the minimum distan-
ce between closed paths in Ly " is equal to dy .
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For an illustrative example let the encoder be as shown in Figure 6. Let us

choose the initial and final state I equal to state 1. By using the computational
results shown in Table 4 we get:

Lig=18.8....,8} = {1333321. 1333221, ...,1222212}. From Table
5 we find that there are pairs of correct and incorrect paths with the distance

-~

over the unmerged segment equal to 3. Clearly the unmerged segment with
minimum length will be contained in the following pairs of closed paths:

(5. 55 ) (87, 820 (853.54)(5. 55 ) (85 850085 56 ). (S5, 813 ), (5.5 (S, . Sp4).
(‘57' ASBJ (§7’ _Sls)’ ('SS‘ —Slﬁ)’ ['S‘)’ §|.0)‘ (‘SIOF §11)‘ (‘Sll' 5[2)‘ (‘.S_‘llv .515)1
(812, Sie ) (813, 814) (S1a. 816 ) S5 546

But when we look at the ummerged segment it is apparent that there are only
three distinct unmerged segments with minimum length £, = 2; (132, 122),
(212, 222), and (332, 322): obviously a(dy,) = 3. If the channel crossover
probability is p, one finds

053

PIEYS(1/H) ) (0™ (1 - p)™™ ),

Forp= 10" % one can easily get P(1) << 3.0x 10

/00

1/10

Figure 6 Anencoder with three states and dy , = 3

Turning now to the biterror probability. we note that the expected number of
bit errors. caused by any incorrect path which diverges from the correct path,
can be bounded by weighting cach term of the union bound by the number of
hit errors which occurs on that incorrect path. This number is the number of
Yn # Xyover the unmerged segments wlere ,?n and X, are the information digits
corresponding to the incorrect and correct path. respectively. Thus the bound
on the expected number of bit errors caused by an incorrect path is:

Ph:[:’[)zblé%i)r[gz,_sk]ZdZia(f!,z‘)Zd (17)
1
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where a(d, i) is the numberﬁof paths diverging from the correct path at distance
d and with the number of X # X, over the unmerged segments is equal to i, For
the same condition we can substitute (16) into (17) and yield:

Py < (/2™ £ a(dyy, i) 257 (18)

For an illustrative example let us use the previous example. It is easy to see that
i = 1 for all the unmerged segments and hence £, = P(E)< 3.0 x 1074 It will
be shown in the computational result that for the same encoder and p our
simulation get the relative frequency of the error bit which isequal to 1.0x 10~ *

4 MINIMUM FREE DISTANCE

The most important measure for finite state codes is the minimum free distance
diree - This is largely due to the relation between this distance and the bit error
probability according to Eq. (18). In general, the minimum free distance is
defined as the minimum Hamming distance between distinct output paths
corresponding te state paths of the same length that begin and end with the
same state:

e =Min {d(D, D", X' #F X" and X' X" e L} (19)
L=, YL, g d@, D=3 D D

1
where D'and D" are the codewords that correspond to the information sequen-
ces X' and X", respectively, i runs over £ branches; and L; g is the set of infor-
mation sequences produced by traversing closed state paths of length £ that
diverge from and remerge with the state L.

For a linear code the distance between any two codewords is equal to the
weight of another codeword. Hence, for a convolutional code, the minimum
free distance is the minimum weight of a codeword produced by a non-zero
information sequence. Then for the class of linear codes, Eq. (19) is simplified
to:

diree = Min (d(0, D"y, X" # 0and X" € L) (20)
L=ULy g and d(0.D")=Z 10~ D;")
i

where D" is the codeword corresponding to the information sequence X', and
LO,Q is the set of information sequences produced by traversing closed state
path of length R that diverge from and remerge with the all-zero state,

Since i in Eq. (19)and (20) runs over £ branches, then in terms of graph struc-
ture, it seems that an encoder with a greater minimum ¢ should have a bigger
minimum free distance. Figure 7 gives an illustrative example of this structural
observation. We expect that M, will have a bigger minimum free distance than
M, since the minimum £ in M, is 3 while in M, it is only 2. Those closed state
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paths with minimum £ in M, are Lys = (1111, 1241), L3 = (2412, 2342),
Ly3 = (3333, 3423), and Ly =(4124, 4234) while those closed state paths
with minimum £ in M, are Ly5=(111,121) and Ly, =1(222,212).

Figure 7 Two encoders with different minimum lengths of closed paths

However, maximum minimum € is not the only condition to ensure a good
encoder in terms of its graph. Even an encoder, say My, with its minimum €
is greater than that of M, say. may result in a smaller minimum frec distance
if there are more branches incommon to the closed state paths in Ly glorM,
than for M, . Figure 8 will clarify this immediately.

The encoder M, has the minimum ¢ equal to 4 while in M, itis only 3. Those
sets of closed state paths with € cqual to 4 in M, arc Lyg=(1111, 12341},
Lyg={22222,23412), L34 =(33333,34123). and Ly, =(44444 41234); and
for M, those sets of closed state paths with minimum £ = 3 are Ly3=(1111,
F241) Ly 5 =(2412.2342), L33 =103333.3423). and L4 3 = (4124, 4234). But
there are many branches incommon for the longer pairs of closed state paths in
M. Let us examine a set of closed state paths, with length 5, that diverges
from and remerges with state 1, that is £ 15 = (112341, 122341, Itis clear that
there are three branches, out of 5. coincide in L, of My and this certainly
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reduces the minimum free distance. This circumstance does not occur in M, so
that one can expect that M, will have a bigger minimum free distance than M.
However, the largest value of € needed to ensure that one encoder is better than
another is still unresolved.

A good labelling should produce maximum minimum free distance white not
allowing catastrophic properties; in addition, it also could lead back to the ini-
tial state for a fixed input sequence. For alinear finite state encoder {(with the
all zerg state ag the initial state) the all zero inpot leads back to the initial state.
S0 obviously given a good graph with a large minimum ¢ and a minimum num-
ber of branches coinciding in L g another problem remains: the labelling of
the branches.

The task of finding methods to design optimal and practical encoders in terms
of the state transition diagram appears to be inherently very ditficult. Here we
provide a computer program to enumerate and identify ail closed paths, and
having found thesc closed paths the distances will be calculated for a given en-
coder. All details of this graph enumerator will he discussed in the next scction.

5 CATASTROFPHIC PROPERTY

A finite state cncoder is catastrophic if a finite number of channel errors cause
an infinite number of decoding errors. This undesirable circumstance may
happen if there are at least two infinite information sequences X and X' that
can be cncoded into D and D', respectively, such that

d(D, D'y <5 and(X, X' )= (1)

where d(Y, £} denotes the Hamming distance between ¥ and Z. If the channel

noise changes D' into D). by simply changing a finite number of digits of 1",
then X' will be estimated as X that is infinitely distant from 4.

For a linear code it 1s well known that the state transition diagram of @ catas-
trophic code contains a loop of zero weight other than the sclf-loop around the
all zero state. An example of a linear catastrophic encoder in terms of its state
transition diagram is shown in Figure 9. The state transition diagram in Figure
9 contains two cycles. i e. 00 00 and 11 11, that are eenerated by different
input sequences but have the same output scquences. This certainly will pro-
duce catastrophic codes. The following example will clarify this catastrophic
property. Let X = Q000000 ... and so £ = 00000000 ... Obviousl
A = 0111111 .. . with £ = 000110100000000 . . . in which d(D. [)') <«
for d(X, X') =ee. Consequently, if the channel noise changes the three non zero
digits of D' then X' will be estimated as X that is infinitely distant from y".
Hence this is a catastrophic code. o
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0/00

00

0/01 ,

Figure @ An example of a linear catastrophic finite state encoder with four states

Figure 10 shows an example of a non-linear finite state encoder, in terms of
the state transition diagram, that will produce a catastrophic code. The state
transition diagram in Figure 10 contains two cycles, i. e. 11 and 232, that are
generated by different i1put sequences but have the same output sequences.
This is an obvious catastrophic encoder. The [oliowing simple example will
clarify this catastrophic property. Let X = 11010101010... and so
D= 111000000 . . . Clearly there is X' = 0000 . . . with D" = 000000 . . . has
d(D, D'y <= ford(X, X') =< . Hence this is a catastrophic code.

From the above observations one can conclude that in the state transition
diagram of a finite state encoder with one closed communicating class Eq. (21)
will be satisficd if there are at least two cycles generated by two different input
sequences that generate exactly the same output sequence when the cycle re-
peats forever,
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0/000 !

171111 1/001

0/000

Figure 10 An example of a non-linear catastrophic finite state encoder with three states

6 CLOSED PATH IDENTIFICATION " AND dfpee CALCULATION

A comparison of the performance of encoders with the same minimum free
distance dg,.. can be obtained by calculating the number of pairs of closed
paths that produce a‘fzee; the better encoder has fewer such pairs. To identify
these pairs we use a generalized bidirectional search. This search algorithm will
be based on the finite state encoder as a directed graph that can be visualized as
a directed tree.

Consider a finite state encoder M with Ny states as a weighted directed graph;
the nodes are the Ng states of M and the branches are the allowable state
transitions. The branches of this graph are labelled with the input/output pairs
according to Fq. (3). A closed path of tength £ that diverges from and remerges
with node [ can be visualized as a rooted directed tree with £ levels and the
terminal node cqual to the root I, i. ¢. the node at level 0, [t X = (0.1) then this
tree is a binary rooted directed tree and there will be 2% paths from the root to
the 2¢ terminal nodes. Henceforth we consider only binary X. To identify all
closed paths of length € that diverge tfrom and remerge with state | the search
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should be conducted on those 2¢ paths that have terminal nodes equal to I at

g .
level €. Computationally all % 2'= 2Q+1— 1 nodes should be stored in the
=0

memory. !

To reduce the number of nodes stored the closed paths are searched from two
directions; forward (£) and backward (B). This reduces the number of nodes

i+1 _ {2/2) +1]

Q2
stored to 50 2 =202 — 1} if the length of the F path is equal to the
iz

length of the B path. If €is odd, we choose €, = [£/2]) + 1 as the length of the
F path, where [y] is the greatest integer smaller than or equal to y, and hence
2, = £ — &, is the length of the B path. The closed paths can be determined by
merging all F paths and B paths,

An F; path is defined as a path starting with node I with all arrows pointing in
the forward dircction. Since the input is binary, there are 2' paths of length i
branches with the same initial node I. The F| path obviously can be visualized
as binary rooted tree with I as the root. Figure 11 shows this observation.

Let £} ; be the set of all forward paths of length i branches whosc initial node
is [:

Fy=pi=12,..0,2 (22)

where each fi path is a sequence of states_..fj = j}o= ij’ fjl, R fji and

fj =0(x, fj(—k_ 1y) for some x. Obviously fjo =] forallj.

Let X ; be the set of ferminal nodes of all /* paths of length i whose initial
node is 1. Since each branch represents only allowable state transitions, we can
write

Figure 11. A binary encoder M with its F3path that is a binary rooted directed tree
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= (ol ) KK EX Ry 1y €8, j=1.2,..,2071)) (23)
Obv1ously fori =1 we can write #; ; = (0 (1,0),0(L,1) ).

Without loss of generality, and in a computationally simple manner, we gene-
rate H; ; as follows:

H 1= {0(hj(17 i) O)’U(hj(i— 1) ]), hj(i-— 1) €$,] = 1,2, e 2(i_ 1))} (24)

This equation implies that the left branches at level i are produced by the
input 0 to the nodes at § — 1 while the right branches are produced by the
input 1. Thus we can generate all the elements of H) 2, recursively from the
Eq. 24)fori=12,...,%,.

The next problem is to recover Fy ¢ ~from,the elements of Hy ¢ . Recall that
Jj € Fp; has been defined such thatf €Hy,; fori=1,2, d Hence the
problem of recovering F| ¢ is the same as the problem of choosmg the element
of Hy ; to which f; is equal to for all j and i. Since H; ; has been generated
according to Eq. (24) then this problem can be solved very easily by defining
the counting function that in fact serves as a pointer:

If

KGmy=[G+20™ — ")y (25)
then

fim =hgm (26)
where

Bym €Hyy and H g ={1}
[¥] = the greatest integer smaller than or equal toy

i=12,...2

m=0,1,...,z’

i=1,2,.

HenceE (26) defines FIQ ={f:/=112, ‘} Note that FIQ can also

be generated by cons1denng input sequences to the state [ as a bmary number.
Example: Consider the finite state encoder M of Figure 6. Let®, = 3 and I = 3.
Suppose we want to recover f| = fo.f11./12.f13- From (22) and (23) we get
Hy ={hy hy 3= (125 Hy g ={h 3000500421 = {1,2,2,3}and

Hs3 = (hyahas.33,043. 0530163, 73 g3} = {1,2,2,3,2,3,1,2}. From (25) we
get K(1,0) = K(1,1) =K (1.2)=K (1,3)= 1 and from (26} yields f1o =, = 3;
fiv =hy, = 1;fi; =h,; =land f,; =h,; = 1. Hence f, = 3.1,1,1. Analogously
we can find allf;, j = 2.3,...,8.

Define a B; (backward) path as one starting with I and with all arrows pointing
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to the backward direction. Unlike an /| path, the B| path cannot be visualized
as a binary tree because there may be states that can be reached only through a
single branch or through more than two branches. Figure12 will clarify this
observation. State 3 has only one predacessor-state 2; state 2 has all three
states as predecessors. Clearly £, cannot be visualized as a binary rooted direc-
ted tree. The treatnent of B) paths is more complicated than that of £ paths,
In a convolutional :ode, the degree of branches in and out of each state is
exactly two. Consequently the Fy and B; paths in the convolutional codes can
be visualized as a binary directed tree; obviously the closed path analysis in a
linear class is easier than in a non-linear class of finite state codes.

Let G ; be the set of terminal nodes of all B| paths of length i whose initial
node is I:

The elements of Gl,i can be searched recursively by noticing that all nodes at

level n are the next state of all nodes at level n + 1. Since all arrows are pointing
to the backward direction:

GLi ={k;0 (k,k")=gj(i _ 1y KeX kes,ji=1.2,...., No@ — 1)} (28)
Obviously G, 0- (I} orgo = I NQ (1) i1s defined by the counting function:
NQ(i - Ny 1]
NQ(i)= z z Z A k) *gj(l.ll)) 29
=1 k=1 k'=0
where
1;,v=0
Ap)= {
0 ; otherwise

and No()=1forj <0.
NQ(i) counts the numbe: of terminal nodes of B, paths of length i. This num-
ber 1s obviously equal to the number of B| paths of length i itself.

Let BIJ be the set of all backward paths of length i branches whose initial nodes
is{:
J.'S’Li = {Qj 7=1,2, .. .NQ(i)} (30)

Associated with each path of bj is a sequence of states Qj = bjo,bjl, c bj.l

arranged in the reverse manner such that bjm € G, Gm) form=0,1,.. i

Since the elements of Gy, for all i can be generated recursively according to
Eq. (28), then the problem of recovering all backward paths by is the same as
the problem of choosing the elements of Gy 4 ., to which by is equal to for
all m and all j Though the problem is similar to that of recovering the f;



Q

e
ogNGEING
HOTOO O
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path, the solution is quite different since the B, path cannot be visualized as
a binary rooted directed tree. Here we need more counting functions to be used

as pointersin Gy ;_,, y to which by, is equal to wherei=1,2,....¢,

Define the counting function:
Ng 1

NGj)= Z '2 A(a(k,k')—gjﬁ_l)) (3D
k=1 k=0

i=1.2,.. .,IVQ(i— 1;i=1.2,...,8.
This counts the number of predecessors of &(i-1) for each j. Note that the

predecessors of gj(;_y) are gy € Gy for alljandn = 1,2, ., Ng(%;). In
other words there are Nq (i,7) elements of (1 ; pointing toward 31(1 1)

Define another counting function:

Ny Gk JKD) =g vt 000 32)
Ny, i@ )=1 (33)
where

G, ik "%k, ik - 1V KL oge a0y i)
1;jik)=1

Cigk,jxnick) =

n;ax €8 ik)—1) +1i; otherwise

k=2 -1,%-2,...1
k=12, .. Nk
ik jk) = 1,2, .. N (k+1j(k))

This counts the number of occurrences of the clements of Gy, in bk of
b EB ; Tor all k. So the elements of Bl g, can be described completely by:

bkj(ﬂ, ~ k)T 8k 34
where k= 1,2, ... 8,;/(k)=1,2,.. .,NQ(k) and

i(knj(k)) = 1,23 . 'JVA (krj(k))' )
Example: Consider the finite state encoder M of Figure 6. Let #; = 3 and
I = 3. Suppose we want to recover b, = b,,,0,,.0;,5.0,3. From (28) and for
i=1we getNQ(l) = 1 since g, = 1 =3 for alli and NQ(O) = 1. Then from
(26) and (27) we get G3 L =18y,) ={2.}If we do the same process for i equal
to 2 and 3, then NQ(Z) = 3, G3,2 = (811-872837) = (1,2,3) and NQ(B) =6
03,3 = {g13323£33 )g43 ’353 363} = {ly351)2’3;2}' From (30) wt get Nq(]71) = I
Nq(2,l) =3, Nq(B,l) =32, Nq(3,2) = 3 and Nq(3,3) = 1. From (3.12) we find
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NA(3,1)=:\’A(3,2):...=NA(3,6)=I,NA(2,1)=2,NA(2,2)=3,NA(2,3)=1
and N, (1,1) = 6. Now from (3.14) we find that b, = by, = b3, = ... = bgy =
811 = 2.0y = by =gy =), by T bay Thsy T g2 T 2.0 783, =3,

bio =813 = 1 bag =823 3, 0305833 = 1,049 =843 =2,b5y =855 =3, and
bgg = 8¢5 = 2. Since ijz = by =1=3forallj hence by =b,q byy byy 013 =
1123,

After having found F, 2, and Bl.Qg’ one can find all closed paths of length
£ =4, + &, that diverge from and remerge with state | by merging the elements
of I} 2, and B, 2, which is shown in Figure 13, with the following merging
rule. ’

Let L; ¢ be set of all closed paths of length € that diverge from and remerge
with state 1:

Lig={8:7=12, .., N} (35)
where Nl(.Q} is defined by
M@= T 2 g, —by) (36)

Associated with each closed path §j is a sequence of state:sé‘j = Sjo,Sjl, c Sj

where ._‘Iji € % for all i and all j. Obviously Sjo = Sj =[. From the derivation of
(25) and (33) it follows that the elements of L, g are identified completely by:

T 150,000 (37)
L b gy TG,

such that

feg, T by (38)

where k = 1.2, .. .2 and m = 1,2,. . Nq(%). Hence N (%) and L 4 enu-
merate and identify all closed paths of length 2 that diverge from and rémerge
with the state [ respectively. The number of closed paths of length £ that
diverge from and remerge with state | may also be calculated by using the
adjacency matrix of the encoder.

Let the adjacency matrix M = [mij] of an encoder M be an # x # matrix with
my defined as:

s Eesx
i 0; otherwise
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Figure 13 A merging between £, and 5‘3 paths of an encoder M
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Let my; (Ql be the (I, J) entry of the Q power of the matrix M, then from {21])
we get N(R) = my (®) Now we are ready to calculate the distance between two

closed paths.

Consider two closed paths of length €, in terms of state sequences, that diverge
from and remerge with state [:

S =50:501,-.-.97¢ (39)
83 =810, 5215 -5, (40)
where S0 = S;p = 1, and §; € for all i and allj. These two closed paths can be
described in terms of output label sequences D, and D,, respectively, as
follows:

Dy=Dg.Dyys - Dy (41)
Dy =Dy, Dyy5 Dy 0y (42)
where D = S(S X ,) such that o(S i X)) = _|(l+1) where X, € X = {0,1}.
Hence the distance between §; and S, is 31mply.

dy =Xy~ Dy . (43)

7 THE DECODER

Consider a path of length o in a state transition diagram of an encoder of a
complete and simple minimal machine (Ng ’Nx ,ND ). There are Ny, paths of
length o entering the NS states for o = NS—I. There is at least one path ot

length o entering each state.

If we apply a truncated version of the Viterbialgorithm, then the number of
paths of length « entering Ng states can be reduced to exactly Ns paths where
each of them minimizes the metric M(D). Obviously the [ast symbaol in each of
these paths is unique,

Let S, be the i™ path of length « at time n with metric M, and terminated
by the state i. We can write:

Sin = Simeay Siata 1) 9 (44)
S, €= (1,23, . N: Sy nya, =1

i=123,..., N

J=nn+l, .. nto

This path corresponds to an encoder output sequence of:
Dy = Dinra-1y Ditnra-2)- - Piy (45)
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where D = 6(S X) such that o(Sy,
sively as follows

5j(n+1) (S Core) (46)
where #(.,.) is defined such that:

Mj(n+1) =min. {M,, — In Pr(C_,_ Di(nw]);Di(nm) = B(Si(nhx)’Xk)}‘ (47
Since U(Si(n+a)"Xk) S inva+1y WE find

X )= 8. We can search §%

i(n+ 1) recur-

ig+1)

Sj?n+1)=Sj(n+a+'])’Si(n+a)"'"Si(n+1) (48)

whcreSJ(n+a+1) i.

LetS, = (S Szn, .. SN )T and the corresponding metric vector
(Mln, ans v )T A transition from S, to S +1 is simply a

transmon of its components according to E {48). Now we can write the state
of the channel decoder at time »n as follows:

n =(Mn—oz’,§n—a) (49)
or

PMl(n—or)’l’Sl(nvl)""’Sl(n—a) W

My n_a) 2 Sytm-1) - =82 (n-a)

'M |(n a)’N S

gn-1) - "SNS(n—o:}‘

where n = o The next state R, | 1s just
=(M, Sn_a+1) (51)

n +1 —atl’ o
Since the decoder states are derived from a truncated version of the Viterbi
algorithm, the output of this machine at time # can be computed from the fact
that § consists of all survivors with the best metrics. So we first choose _S; S0
that M, is the smallest component of M, then the output is the input to the

encoder machine that causes the transition from Si(n to S;(n wr 1)
v, =X, , (52)
where M, = min. M such that Si(n—a+1) =0(X, _, Si(n—oe));Mn stands for

the components of M_. From Eq. (3.32) one can easily notice that the deco-
ding decisions always lag the progress of the decoder by an amount equal to
the path length a.

It is obvious from Eq. (1) and Eq. (49) that Eq(SO) will generate more decoder
states as » increases; consequently the decoder does not have a finite number of
states. This is certainly an undesirable circumstance.
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Consider a finite state encoder and a path of length « in its state transition
diagram. Let this encoder have Ny states. Since the elements of SJ are drawn
from a fixed finite set, the numbu of posstble combinations of the clements
of § , Le. all paths of length «, is also finite; however, the M, components
make thc number of decoder states grow to infinity since each M is nonde-
creasing. Fortunately, the absolute value of the M components are not mpor-
tant. The Viterbi algorithm requires only the d1ficrcnues between components
of M Thic condition allows ns tn keen M in a fixed ranee. The finiteness af
the decodcr state will be based on this propertv of the V]terbl algorithim.

To maintain the differcnces between the M_ components fixed while their
absolute values grow is achieved by :aubtractmg the smallest component of M,
irom all components of M. Hence at all times there is at least one Lomponent
equal to zero. Now, if the mLtru,S between states of the encoder only take in-
teger valucs, M_ will take only a finite number of values. For the BSC this
expectation is fulfilled. In applying the Viterbi algorithm to the BSC. one
finds that the algorithm essentially finds *he path closest to the received word
in Hamming distance.

We can choose any state as the initial state of the encoder and lubel it as state
1. R, is gencrated by assuming that the decoder receives a sequence of @'s of
length @ where a > Ng — 1. So we have S = lforalli=12, .. Ng. Hence
we can write

[ Mg 1S o 13 S 12y ol ]
M20’1’S2(o:—1)"5‘2(&~2)"'"1
- LA ] - b . S“"l (53)
R, = C . .. sl
. .. R
LMNSO,NSSN STV
whereS..G$=(1,‘.,...,Ns)for1=1,1,...,N andj=1,2,. .., a-1,
Leth be the smallest componentofthesetM —{M =12, . Vg }. Then
the Eq. (53); can be rewritten:
Pjwl{]—M]O’l’Sl(a—1)'S1(a72]‘"“1 ]
Myo—Mig. 2.5, (0 1383 a2y -+ =]
- ) - » 3 5---71
Ry = . . } sl {54)
0 JS(CE—I)’SJ(akZ) SR
) s , . el
'MN M,O'N Sy gle=1), ... 1 A
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Fora BSC with transition probability p < 1/2, the received sequence C is binary
and the log-likelihood function becomes
In Pr(CIDY=d(C.D) In(p/(1-p)) + N In(1—p) (55)

where d(C,D) is the Hamming distance between C and . Since when p is less
than 1/2, In (p/(1-p)) < 0 and N In (1—p) is constant for allD , an equivalent
maximum likelihood decoder for the BSC chooses D as the codeword that
minimizes the Hamming distance

dCD)=% ICi -D, | (56)
Hence in 1applying the Viterbi algorithm to the BSC, the metric becomes an
nteger.

For many of DMC’s positive integers can be the metric. The metric M(Ci/Di) =
1n Pr(Ci/Di) can be replaced by &, (lnPr(Ci/Di) +b,) where b, is any real num-
ber and C, is any positive rcal number. A path D that maximizes In Pr(Ci/Di)
in fact also maximizes b,(1n Pr(Ci/Di)-F b, ) and hence the modified metrics
can be used without affecting the performance of the Viterbi algorithm.

If &, is chosen to maKe the smallest metric equal to 0, b, can then be chosen
SO that all metrics can be approximated by integers. There are many sets of
integer metrics possible for a given DMC, depending on the choice of b, .
The performance of the Viterbi algorithm is now suboptimum due to the
modified metrics.

For some transition probabilities such as 1/3, 1/7, etc., even using the modified
metrics, we may never have a set of integers as our metrics. From now on we
restrict ourselves to the BSC only.

8 COMPUTATIONAL RESULT

Two programs, written in FORTRAN 77, were run on an TSO-IBM 3081 to
obtain the results in this section. One program enumerated and identified the
closed paths, the minimum free distance, and simulated the communication
system while the other generated the finite state decoder.

Two examples will be shown; each has rate 1/2. Since the number of decoder
states grows rapidly, only the decoder state of the first example is shown.

EXAMPLE 1

The linear finite state encoder M with two states is chosen because the number
of decoder states is small; this makes it possible to show the state transition
diagram on one page. Figure 14 shows the encoder while Figure 15 shows the
corrgsponding finite state decoder; state 1 is chosen as the initial state. The
decoder states are computationally generated in tabular form; they are shown
in Table 1. The enumeration and identification of the closed paths, and the
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1/11

0/00

0/01

Figure 14 A linear encoder Mx with two states

al/o

Figure 15. The state transition diagram of a finite state decoder of M,

1/10

31
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distance, are not shown here because the main purpose in this linear example is
1o give an idea about generating the finite state decoder.

Table 1 The next—state and the output table of the decoder M,

. Present Next — State . Output

Time istate I'\n'_00 |IN=01 |IN=10 | IN=1 | 00 o1 10 11

o |on 011 01 011 211 0o 0 o0 1
221 221 221 121 021

1 loh 011 012 011 212 o 0 o0 1
121 222 121 122 021

2 |21 012 012 212 012 o 0 1 0
021 122 222 022 122

3 o 011 012 011 212 6 o 0 1
222 | 221 121 121 021

4 jo12  |on 012 011 212 o 0 0 1
121 222 121 122 021

5 |01 011 012 011 212 c 0 0 1
122 | 222 121 122 021

6 |212 |02 012 212 012 0o o 1 0
021 122 222 022 | 122

7 o1z |on 012 011 212 o 0o 0 1
122 | 222 121 122 021

8 (012 |ot 011 011 211 0 o 0 1
222 | 221 121 121 021

9 212 |o12 012 212 012 o o 1 o
022|122 222 022 122

EXAMPLE 2

Figure 16 shows an example of a finite state encoder with three states. The
number of decoder states with truncated path length 2 is 79. There are too
many to be shown here. The closed path enumeration and identification is
computed for e = 6. Table 2 shows the F, paths, the B, paths and the corres-
ponding closed paths of length 6 in terms of the encoder state sequence.
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0/00

. 1/10

Figure 16 A finite state encoder Mv with three states

Table 2 The F1 and the By paths and their corresponding closed paths of length 6

Length | F, Paths By Paths Closed Paths No
6 1 13333 121 1333321 1
13332 221 1333221 2
13321 321 1332121 3
13322 1332221 4
13213 1321321 5
13212 1321221 6
13221 1322121 7
13222 1322221 8
12133 1213321 9
12132 1213221 10
12121 1212121 1
12122 1212221 12
12213 1221321 13
12212 1221221 14
12221 1222121 15
12222 1222221 16

Table 3 shows the distances among the closed paths of length 6 that diverge
and remerge with state 1. These distances are presented in an » x »n matrix
form where n is the corresponding closed path; the entry (k,j) is the distance
between closed path i and closed path j.
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Table 3 The Hamming distances between closed paths of length 6 that diverge from and
remerge with state 1

Cd. Pth, DISTANCE
No.
T 2 3 4 6 6 7 8 9 10 11 12 13 14 15 16
1 0O 3 56 4 5 4 6 5 b 8 6 5 6 5 7 6
2 3 0 4 3 4 6 5 4 B 5 5 4 5 6 6 5
3 5 4 0 3 6 5 3 6 6 5 5 8 7 6 4 7
4 4 3 3 0 5 4 6 3 b5 4 8 b 6 & 7 4
5 5§ 4 6 5 0 3 5 4 &6 & 7 6 3 6 8 7
6 4 5 5 4 3 0 4 3 5 6 6 5 6 3 7 &
7 6 b 3 6 b 4 0 3 7 6 4 7 8 7 3 6
8 5 4 6 3 4 3 3 0 6 5 7 4 7 6 6 3
9 5 8 6 56 6 5 7 6 0 3 5 4 5 4 6 5
10 B8 5 5 4 6 6 6 5 3 0 4 3 4 5 5 4
1 6 5 5 8 7 6 4 7 65 4 0 3 6 5 3 6
12 6§ 4 8 5 6 & 7 4 4 3 3 0 5 4 6 3
13 6 5 7 6 3 6 B 7 5§ 4 6 5 0 3 5 4
14 5 6 6 5 6 3 7 6 4 5 5 4 3 0 4 3
15 7 6 4 7 8B 7 3 6 6 5 3 6 5 4 0 3
16 6 5 7 4 7 6 6 3 5 4 6 3 4 3 3 0

The results of the simulation study are shown in Table 4; it shows the number
of bit errors for a particular channel crossover probability and truncated length
a given 10* uses of the channel.

Table 4 Number of bit errors for a particular crossover probability P and truncated length
a given 10* uses of the channel

P Number of bit errors
a=2 a=3 a=6 a=9

1. 0x10'2 0 1 1 1
2, 0x102 3 2 2 2
4. 0x102 29 29 22 22
6. 0x102 79 75 56 54
8. Ox1072 17 104 98 101
1. 0x107! 209 229 187 185
2. ox10} 831 835 754 747




PROCEEDINGS ITB Vol 20, No. 1/2, 1987 35

9 CONCLUSIONS

This paper studied a non-linear class of finite state digital channel coding with
the aim of finding some properties of the code which improve the performance.
In this case, the perfaormance is measured by the minimum free distance since it
is easier to evaluate than the probability of error criterion, and for small chan-
nel crossover probability it is a very good indicator of system performance. The
analysis has indicated that the structures of the finite state machines are impor-
tant to performance. In particular, the pairs of closed paths that diverge from
"and remerge with the same state and how we identify and improve them, in
order to find a bigger minimum free distance, are very important; in addition,
the catastrophic property has also been investigated, based on the machine
structure. Thus, a new approach has been initiated which emphasizes on the
structure imposed by modelling our encoder-decoder as a finite state machine;
consequently it is not limited fo only linear codes. This is in stark contrast to
most existing methods of analysis which consider only the class of linear codes.

The general problem itself remains unsolved and there are many aspects of it
that may be investigated. Even for the binary case much remains to be done.
Although we adopted a truncated version of the Viterbi algorithm for the de-
coder, we assumed that the system performance could be approximated by the
ideal Viterbi algorithm. The analysis of the loss in performance caused by the
truncation strategy remains untouched. Consequently, there is a room to im-
prove our bound on bit error probability; a random coding approach could also
be used to deal with the error probability measure. Another assumption in our
present analysis is that of perfect synchronization. Finding a pair of finite state
encoder-decoder that always synchronize is another problem. We mentioned
and proved some Markov chain properties, yet we did not exploit these power-
ful properties. These properties, along with renewal theory, may be useful for
the synchronization analysis. The use of a bidirectional search to identify the
critical closed paths seems to be helpful. Of course, by the very nature of our
algorithm, we can not use this search algorithm if the number of the encoder
states is too large. This is a classical problem that remains unresolved when one
deals with a graph. In addition, we have not considered the case when the
metrics are real numbers. This problem seems much more difficult than the loss
of performance due to truncation and code synchronization. We do not know
how to deal with this general problem. We leave this as an open problem for
further investigations.
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APPENDIX A

With the notation of section 2 we want to show that (S,, R n) is a first order
Markov Chain for both the noiseless channe) and the addltive channel: ¢, =
D, + N, where + denotes a mod. N addition and the (N,) are a sequence of
mdependent identically distributed, random variables,

Proof :

a. Noiseless channel case:

PriSy, =s, &Ry =r, I(S;,R)=(s;5,7),i<n — 1)

=Prlio(X, y,$q_1)=s5,0(D, 1,7 a1 =ry S, RY = (s, ), i<n — 1]
=Prlo(X, _y,5, )=s,,p(8(X,_|,5, SR )= W (SR = (55, 1),i<n ~ 1]
_Pr[a(Xn 1:5n— 1) Sn’p(S(Xn 1+5n_1):7n 1) =r,]

since §; and R; functions of only X,, ..., X, ,.

Hence:

PriSy=s, &Ry =r IS;=s, Ry =r,i<n —1]

=Pr[Sn =$n &Rn =T lSn—l =""n—I’Rn--l =rn—1]

which completes the proof.

b. Additive channel:

Cy = D, + N, where + denotes a mod. N¢ addition and the N, are independent
identically distributed random variables;

Pris,=s, &Ry =r (S, R)=(s;, ), i<n—1]

By using our finite state decoder model one can easily get:

=Prio(X,_;,5,_ )= S PGy )= 1 (s, r')=(Si,m.) isn-—-1]
-Pr[U(X 1250 1) S l‘;’(S(Xn 1>%- 1)+ —1:7n- 1)

(' (sp l fl—]]
-Pr[cr(X 1:5a-1) 80, P (Xoy,8, V4N, 1 h ) =r,]
since §; and R; are functions of only Xy, ..., Xi_y and N, ..., N,_.Hence:

=Pr(S,=s, &R, =118, _, =Sn—1, Ry =r_y ]
which completes the proof.
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APPENDIX B

With tlie notation of section 2 we want to show that (Dn,SI'],Yn,Rn) is a first
order Markov Chain for both a noiseless channel ¢, = D_, and an additive
channel: ¢, = Dn + Nn where + denotes a mod. NC addition and the (Nn) are
mdependent isleatically distributed random variables.

Proof:

a. For the noiseless channel: C,=D,.

Prip, = d.S =5 Y =y, R, =r 1(D,S, YiR)= dpspypr)isn — 1]
:Pr[Dn =dn’ Sn =Sn' Yn :yn' Rn =f‘n anfl :dn—l' Yn-l =yrul’

(Dj, Yj) = (a’j, yj),j =n -2, (S, R;)= (sprhisn—1]

By using the finite state model one finds:

=Prid(X o0 _ a1 =dyoX, s )=,

MK, 0 (X, s, pldy o D=,

p(dn—l’rn—l)zrn !Dn—l :dn—l’Yn—l :ynfl’

(Dj, Yj)= (dj,yj).j <n -2, (S; Ri)=s, r).is<n -1}

=Prid(X 0, s, (N=d 0, s, )=s,

Xy, 0(X, 1.5, N.p(,_,. Ta_ 1=V,

p(dnAl’rn—l)=rn an—l:dn—l’ Yn—l =yn—ll

since Dj, Y}. forj<an — 2 and Sy R; fori <n - 1 are functions of only
D ST SR

Hence:
PriD, =d,, Sy =5, Y, =y, R, =7, ID;=d, §,=s, Y,=y, R, =r,i<n-1]
=P]’[Dn =dn’Sn :Sn’ Yn =yl'1’ Rn :rn {Dn—l =dn_1, n- 1 _Sn—l

Yn—l =J"In—l’Rn—l =".n—ll
which completes the proof.
b. For additive channel:

Cn =D_+ N, where + denotes a mod. Nc addition and the Nn are independent
identically distributed random variables,

Pr(D, = d,. S, =s,, Y . =y..R, =r I(Di,Si, Y.R) = (dypspyer),i<n —1]
=Pr[Dn=dn’ Sn=Sn’ Ynzyn’ Rn:rn iDn—l =d‘n71' Yn—l =yn—1’

Dj -‘-dj, Yj =yj,j<n - 2,8 =s, Ri=r,is<n—1]
By using the finite state mode! one finds:
=Pr[5(Xn,U(Xn_l,snﬁl))=dn,0(Xn71,sn_1)=s

n)
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n(d (X, 0(X, s, (D¥N_od 11, D=y,

p(dn—-l +Nn—1’ rn-1)=rn an-—l =dn—-l’ Yn-l =yn—ll’

since X, and X, are independent of X, and N, for k <»n — 2 and also
independent of §  and R_ for all m.

Hence:
Pr[Dn =dn' Sn =Sn' Yn =yn’Rn =rn IDngl =dn-l' Sn—] =Sn»l'

Yn—l =yn~—1'Rn—l =rn—1]
which completes the proof.



