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ON NON.LINEAR FINITE STATE DIGITAL CHANNEL CODING

by: Hermat,,att Kresno Dipojono *

ABSTRACT

A discrete-time digital channel coding, in which the encoder and decoder are both time-inva-
riant finite state machines, is investigated. The channel is assumed to be memoryless. Two
measures of performance are considered: the probability of error and the minimum free
distance. Creater emphasis is placed on the minimr.rn free distance since it is easier to eva.
luate than the probability of error criterion, and for srnall channel crossover prcbability il
i: a very good indicator of system performance; it is defined as the HamminS distance
between two possible output sequences that conespond to distinct state sequences of the
same length that are identical at both the start and finish. An algoritfun to calculale the
distance between such possible output sequences was developed; it also identifies all such
pain of output sequence. Another algorithm, based on the finite state machine properties
of the encoder, was found to generate the finite state decoder. Finally, after having found
the pairs of encoderdecoder finite state machines, we simulated the comrnunication system.

SARI

Suatu kode saluran digital dengan waktu tercacal yang mempunyai pasangan ez coder-deco-
der berupa mesin berteadaan terhingga dan in rian waktu akan diteliti. &luran dianggap
tanpa daya ingat. Digunakan dua buah ukuran kineda yaitu probabilitas kesalahan dan jarak
bebas minimum. Penggunaan jarak bebas minimum lebih ditekankan karena lebih mudah
dier"aluasi dibandingkan probabilitas kesalahan. Untuk probabilitas kesalahan saluran yang

kecil, jarak itu merupakan indikator yang sangat baik bagi kinerja sistem; ia didefinisikan
sebagai jarak Hanming minimum antara dua buah kemungkinan sekuen keluaran yang
berupa sekuen keadaan yang unik dengan panjang dan keadaan yang sama, baik di awal
maupun di akhir sekuen, Sebuah algoritma untuk rnenghitung jarak antara sekuen keluaran
yang sedemikian itu telah pula dikembangkao; algoritma tersebut juEa mampu mengidentifi-
kasi semua pagngan sekuen keluaran itu. Sebuah algoritma lainnya, didasarkan pada sifat-
sifat encoder sebagai mesin dengan keadaan berhingga. yang mamFu menqtxtn decoder
dengan keadaan berhingga, telah pula ditemukan. Akhirnya, setelah ,nenemukan berbagai
pasangzn encoderiecoder yang berupa mesin dengan keadaan b€rhingga, sistem komunikasi
digital disimulasikan.

* Jwusan Teknik Firika, Institut T€knologi Bandung
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I INTRODUCTION

A particular kind of digital communication system has, as its objective, a chan-
nel coding. The main idea behird any channel codhg scheme is to add some
redundant bits to the information sequence so that it has the capability to
combat channel noise; the cost of implementing such a system and the rate of
information transmission should also be considered. The channel encoder trans-
forms t}te information sequence-Y into a discrcte encoded sequencesp which is
called a codeword, i.e. the information sequence with the additional redundant
bits. This discrete encoded sequence n is input to the communication channel
which outputs a sequence !. The channel decoder then transforms t}te received
sequence C into a binary sequence ! called the estimate information sequence.
Ideally, J will be a delayed replica of the information sequence.,( although the
noise may cause some decoding erron. This is the type of digita.l communica-
tion system we are concemed with in this paper.

Most of the research on the channel codes has been on clases of linear codes.
The baric purpose of codes is to correct erron caused by noisy communication
channels, and for this purpose linear codes have many practical advantages.
However, the clas of non-linear codes is larger than that of linear codes. Conse-
quently, if we want to obtain t]Ie largest possible number of codewords with
a given property, we should consider non-linear codes. The intent of this paper
is to investigate the class of non-linear finite state codes, i.e. codes generated
by non-linear finite state encoders, by analyzing the state transition diagram of
the codes, i.e. the topological, rather tlun algebraic, structue. There are two
types of channel codes in common use today: block codes and convolutional
codes. Block codes were the earliest type of codes to be investigated, and re-
main the subject of the overwhelming bulk of the coding litemture. On the
other hand, the perfomrance of convolutional codes has proved to be equal, or
superior, to that of comparable block codes in nearly every type of practical
application. This anomaly, wherein convolutional codes arc easy to implement
but relatively unstudied, is due largely to the difficulty of analyzing convolu-
tional codes. Note that every convolutional code is a finite state code;however,
not every finite state code is a convolutional code. Here we examine the struc-
ture of relatively good codes to understand what makes them better than
others, i.e. in terms of closed paths that diverge from and remerge with the
same state and the input-output labelling. The results we obtain are far from
solving the general problem; however, they do contribute to a better under-
standing of such codes.

Convolutional codes were lirst introduc€d by Elias [] in 1955 as an a.lter-
native to block codes. The Viterbi algorithm [2] was proposed in 1967 as an
altemative to the then existing sequential and threshold decoding techniques.
This algorithm is a recunive optimal solution to the problem of estimating the
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state sequence of discrete time finite-state Markov process in memoryless noise.
Mary problems in digital communications can be cast in this form [4].
A complete treatment of convolutional codes, and one of the most enligh-
lening, first appeared in a seriesof papers by Fomey [5,6]. ln [5] Forney
defined a convolutional encoder as any constant linear sequential circuit. The
associated code is the set of all output sequences resulting from any set of all
input sequences. He emphasized the algebraic structure of the convolutional
codes in his first paper. In the second one [6], the topological structure was
emphasized. Here, convolutional codes were characterized by a trellis structure.
Maximum likelihood decoding was characterized as finding the shortest path
through the code trellis; an efficient solution for which is the Viterbi algorithm.

The key concept in the performance analysisofthe Viterbi algorithm is the
concept of an eror event. A tlrst time error event occurs when the true state
sequence.,! is tirst excluded by the state sequence actrrally chosen by the Viter-
bi algorithni !. By using this concept, Viterbi [3] derived a bound on the pro-
bability of decoding e rror using the Viteriri algorithm for convolutional codes
ald memoryless channels. A simple function, the minimum free distance, was
found to be a good indicator of the bit error probability performance. The
minimum free distance becarne the most inrportant distance measure for convo-
lutional codes. The best achievable minimum free distance for a convolutional
code with a given rate and encoder memory has not been determired exactly.
Most code constructions for convolutional codes have been done by computer
search. This has prevented the construction of good long codes, since most
computer search techniques are time consuming and limited to relatively short
constraint lengths. Larsen [7], Paaske [8], and Johanesson [9] published
results of a computer construction technique for non-catastrophic codes with
maximal minimum free distance for rates ll4, ll3, 112,213, and 3/4. Upper
and lower bounds on the minimum free distance for the best convolutional
code have also been obtained by using a random coding approach by Paaske
lUl and Costello I l0] . An efficient algorithm for finding the minimum free
distance based on the state transition diagram of the code has been developed
by Bahl et al. 1l and modified by Lanen U2l. This algorithm searches
through the state transition diagram of the encoder for the minimum free dis-
tancet the diagram is considered as a weighted directed graph whose nodes are
tlre states of the encoder and whose branches are the allowable state transi-
tions. The use of a bidirectional search made this algorithm considerably more
efficient than any previously known algorithm.

Most  of  the resul ts  s tated above (except  [6 ,11,12, ] )  were der ived by us ing
the algebraic stnlcture; ir addition, all these results are restdcted to the class
of linear codes. Methods to design the best non-linear tirne invariant finite state
codes, by using the topological structure, have not been reported to our know-
ledpe.
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To deal with this difficult problem, in section 2 we adopt the model developed
by Gaarder and Slepian [l3] . They developed a finite state model for a digital
transmission system. Their objective was to hnd a pair of transmitter-receiver
finite state machines, which would optimize a given criterion function for
source coding. However, we use this model for channel coding rather than
source coding. In our context the objective would be to find a pair of encoder-
decoder finite state machines, which would guarantee a similar result to that of
maximum likelihood decoding. An advantage of this model lies in the fact that
this model is powerful for analyzing both linear and non-linear finite state codes.

To judge the system performance we will use two measures: probability of
error and minimum free distance. To deal with the first measure, in section 3
we derive a general bound on the bit error probability based upon the error
event probability at a particular node; the bit error probability can be appro-
ximated by a relatively simple function of a generalized minimum free distance.
The bound on bit error probability for convolutional codes is a simplified form
of this general bound. This bound leads us to investigate the second performan-
ce measure, minimum free distance, in section 4; in particular, we investigate
what facton make a finite state encoder have a large minimum free distance.
In section 5 we will discuss the catastrophic property; how the catastrophic
propedy can be identified from the state transition diagram of the encoder will
be our concem. For simplicity we rcshict ourselves to finite state encoders
with one closed communicating class. In section 6 we will use a general bidi-
rectional search algorithm to deal with closed paths identification and the
minimum free distance calculation. In section 7 the problem treated is the
approximation of the Viterbi algorithm by a finite state machine. A general
treatment of tlis problem did not exist previously. Based on this approxima-
tion we will construct our decoder machine. However, the results cannot be
extended to general channels because the path rnetrics are not integers. Finally,
two computer simulation results will be shown in section 8; each has rate
l/2. Since the number of decoder states grown rapidly only the decoder statcs
of the fint example is shown.

2 THE SYSTEM MODEL

Figure I shows the general finite state digital communication system. Therc is
a digital source which has statistically independent. identically distributed out-
puts and a channel encoder and decoder, both of which are time irLvariant finitc
state machines. The channel linking them is assumed to bc mernoryless and
time invariant. Furthermore, the entire system is discrete and opcrltes in dis-
crete time. That is, all the system variables take values in finite or coLrntirbly in-
finite sets and changes occur only at fixed instants in tinre.
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S n * 1 = o ( X n , S n )

Dn = 6 (Xn,  Sn)

Tlius, at time n the digital source generates an output sequencer say Xr, X2,
.  .  . .  Here,  each X'  is  drawn f rom a set  of  source symbols X = (1,  2 , .  .  . ,N, .  ) .
The charnel  encoder  accepts the sequence Xr ,  Xz.  X, , .  .  .  as an input  a i r . l
produces as an output  the sequence Dt ,  D2,  D3,  .  .  . .  For  n = 1,2,3,  .  .  .  the
output rn at time n takes values from 4i = (1, 2, . . ., N6). We represent the
channel encoder as a time invariant finitc state machine with Ns states, i.e.
$ = (1,2, .  .  . ,  Ns ) .  Let  S.  € f  be the channel  encoder  s tate at  t ime r .  We wr i te

( l )

(2 )

(3 )
(4)

where the functions o (. , .) and 6 (. , .) constitute a dcscription of the encoder.
Obviously these functions cen also be described by a transition table or tran-
sition diasam.

Figure 1.  Thegeneral  f in i te  s tate d ig i ta l  communicat ion systdm

The output of the channel encoder, i.e. the encoded message sequence , D, , Dr,
. . . is input to the communication channel which outputs the sequence C1 , Cr,
. . . ?t a lixed rate. Each Cn is a noisy version of Dn and takes values in a given
s e t g =  ( 1 , 2 ,  , N c ) .

Sirnilarly, we represent the decoder as a time invariant finite state machire with
NR states, i.e. 4t = 11, 2, 3, . . ., NR ). The decoder accepts the sequence Cr , C2,
. as ar-t input and produces as its output the sequence Y ,. Y r, . . .. Each y"
for n = l, 2, . . . takes values from the set X.

Let Rn be the decoder state at time n. We write

R n +  1  =  P  ( C n ,  R n )

I , n = 4 ( C n , R n ) .

By defining the channel encoderdecoder as time invariant fil l ite state machines
one can prove that :

l. When the ,Yr is a sequence of an independent identically distributed random
variable, then (^tn. Rn) is a first order Markov chain for a noiseless channel
(Cn = ,n) or an additive channel: Cn = Dn + Nn where + denotes a mod. Ng
addition and N,., is an independent identically distributcd random variable.
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2. (rn, S", Rr' y") is a first order Markov chain for a noiseless channel
(Cn = Dn) or an additive channel: C = Dn + Nn where + denotes a mod. N6
additlon and N. is a sequence of independent identically distributed random
variables. These are shown in Appendix A and B.

We now pose the problem we want to investigate :
Given t l te  channel  output  sequence Ct ,  Cy,  C3, .  .  . ,  the channel  matr ix ,  the
finite state digital channel encoder. find the finite state digital channel decoder
such that  the output  scquence.of  th is  machine,  i .  e .  Y, ,  Yr ,  ) ' r ,  .  .  .  is  an est i -
nrate of  Xr ,  Xt ,  Xr ,  .  which is  c lose to that  of  a  rnaximuml ike l ihood
decoder.

Maximunl ikelihood dccoding for finite state codes can be realized with the
Viterbi algorithn. However, since the number of decoder states have to be
finite, a truncated version of the Viterbi algorithm will be used to solve the
above problem. In general, the best way to approxintate the Viterbi algorithm
with a finite number of the decoder states remains an unresolved problem. We
restrict ourselves to a specific case. These difficulties will be more evident in
the nex t section.

3 PROBABIUTY OF ERROR

Since both the complexity and the operation of the finite state encoder and
decoder depend only on the number of states, code rate, and channel parame-
ters, the block length of the code is irrelevant. Furthermore, the bit eror per-
formance is primarily a function of relative distances among signals, which may
be delermined frorn the code state diagram, whose structrue and complexity
depend strongly on the constraint length but not on the block length. In additi-
on, block error probability is not a reasonable performance measure, particular-
ly when, as is often the case, an entire message is encoded by the finite state
encoder as a single block, whereas in block coding the same message would be
encoded into many smaller blocks. Ultimately, the most useful measure is bit
error probability Po which is the expected number of bit errors per bit decoded.

While our ultinate goal is to upper bound P5, we initially consider a more rea-
dily determined performance measure, a first error event probability at time i,
which we denote P1 (i). Let us recall that first eror event at time i occurs when
ths true state sequence,.S, is first excluded at time i by the state sequence
actually chosen by the Viterbi algorit hm,f: equivalently one can say that a first
error event occurs at time i if the Viterbi path and the corrcct path are dif-
ttrent for the first time at tilne i + I. For further analysis it is convenient
to expand the state transition diagram of the encoder in the time domain, that
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is, to represent each time with a separate state diagram;the resulting structure
is called a trellis diagram. In the trellis we can now define that the error event
occurs at tine I if the Viterbi and thc correct path are the same at time i but
they are different at time i + l. frigr.rre 2 shows a situation when a first error
event occurs at time I in the trellis. By definition we get:

4 (t) = PrIthe Viterbi path and the correct path, in the trellis, are t]re same at
t ime i  but  d i f ferent  at  t ime i  +  l l .  (5)

t  ime i  + 1 i + 2

Fiqu?e 2 An example of a first error event at time i

Although the Viterbi path and the correct path are different at time i + l,
they remerge at some time, at least when the decoder is forced to arrive at
a knowtr final state to make the decision. Let these two paths remerge at time
i + nr. Since all possible Viterbi paths of length i + ln or more can cause a first
error eveitt at time i, the first error event probability at time i, p1 (i), can be
overbounded.  by the union bound,  by the sum of  the error  probabi l i t ies of
c lch of  these paths.  Obviously  Hq.  (5)  can be rewr i t ten:

Pt (i) = PrlH { the Vitcrbi parh and the correct path, in the trellis. are the same
a t  t i m e  i  b u t  d i f f e r e n t  a t  t i m e  I  +  I  a n d r e m e r g e a t  t i m e i + r n ]  l .  ( 6 )

Pi(r) < f,, P, ftn" Viterbi path and thc correct path. in the trellis, are the
same at  t imc I  but  d i f ferent  at  t in le  i+  I  and remeryeat  t imel  +r? j .

Figure 3 shows some possible Viterbi paths that diverge fronr the correct path
at tinre i and renrerye at time i + rn 1or sonte value of rrr, known as tire incorrect
subset for time L For this to occur, tlte correct path metric increments over the
unnrerged segment, that js over the tintc spalt between i and i + ra. ntust be less
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than t)rose of the incorrect path. LetJandSdenole the @rrect and the Viterbi
paths, respectively: given that S = Sk is the correct path then Eq. (6) can now
be rewritten :

Pf  ( t  l J={k )  ,=u  Pro ,  Pr [ t r41 . *  (s1)  Mi (sk)>r t i . ' '  (Sk)  - , ' ]4 i (Jk ) ]  (7 )

where ,44; ({) is the metric of the .t path at time / and ,4 k i is the incorrect
subset ofl! =llk for tinre i, that is, all possible incorrect paths that diverge fronr
the correct path S = S* at time i. By noticing that this bound is independent of
l, one finds that it holds for all i. Sincc Mi* , (Jr. ) I4i (Jr. ) is simply the
metric increment of ,S, over the time span between i and i+/'? then the first
error cvent probability at any time, given that S =-9" is the correct path, is
simply upper-bounded by :

Pr ( l =J r r "  ^  -Z  P r lA l . t ( 5k .Sk ) l
J r .  € .4 r

where A,4I ($u,.S1) is the difference between the metric increment of !* andJ"
over tlle unmerged segnrent. rnd z1* is the inconect subset ofl =r'r.. Clearly
the first error event at any time is upper-bounded by:

P1 < I Pr l- !  =_Ju |  ̂  :  PrtAM (. i  . !r  ) l  .  (9)'  
k  

-  - -  
{ l  € ' 4  I

The final Viterbi path can diverge and remerge with the correct path any num-
ber of times, that is, it can contain any number of error events. Figure 4 shows
a situation where nrultiple error events occur. After the first error event has
occuned, the two paths to be conlpared will both be incorrect paths, one of
which will be a previous error event. This is il lustrated in Figure 5,where it is
assumed that some segments of the correct pathrt have been excluded for the
first time at time i by an incorrecl path-Sr, and assumed that there isanother
inconect pathJ, that diverges fronr.S at tilnel. However, since at time/ they
both have the same metric, then whether some segments of.,! will be excluded

Viterbi path

/ \
/ \

,  

\ ,

correct path

Figure 4 A siruation where multiple error events occur

(8)
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FigurG 5 A comparison of two error events
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again at tinre I by $, depcnris only on their tnetric incremcnt over the time
span between / and / + L If thc metric inctement over the unnrerged scgnrent,
that  is  over  thc t inre span betwcen /  and /  + J .  for$,  exceeds that  of  sorne
segments of  .9  then S wi l l  be exc luded by-S:  at  t ime/ ,  and we say the second
crror !-vent hes occurred xt tinle I. Lct P, (y) denote thc probability that some
segmcnts o1'_.! over the tilne span bctwcen 7 and / + 2 is cxcluded by!2 at time
7.  Now, at ter  the second error  event  has occrr r red.  the Vi terb i  path conta insS,  ,
some segments of . !  orer  the t ine span bctween i+3 and l ,  and f , r .  The pro-
bability for this to occur, that is, the error event probability at timel, canbe
approximated by P(81)  = Ps x P,  ( l ) .  Obviously ,  i f !  has not  feen exc luded by
Sr at time i then P, (l) is simply cqual to P1.0), a first error evcnt probability at
time l. We conclude from tlris exposition lhat the error event probability at
t ime 7,  P( l ' ' ) ,  is  uppcr-bounded by:

Pt r r  |  <  P j  u ) (  l 0 )

Howcr'.'r. since it holds for all time. we will use the error cvent probability at
any lirlc P(f) ratirer thrn for a particular time PQ). ln addition, we restrict
ourselves to flnite statc codcs with one closed conlrnunicating class. Let us now
evaluatc thc upper-bound on the error event probability at any time, P(E).

Fronr  Eqs.  (9)  and 1 I  0)  one can f - rnd:

P( f )  <  t  P r [ f  = .Sp ]  
, o  ?  ,u  

P r [A , r t I (S* . .Su ) ] ( 11 )

Let Dr and p1 bc the conesponding code seqrrences of the Viterbi path f,, end
Ihe corrcct path Jk , rcspectively. Each ten]l of tlte sunlmatiorr over,41 in ( I I )
is the pairwise error probability for two code sequences over tl.re unmerged
segment. For a binary input clranncl this is readily upper-bounded by a func-
tion of the distance between code sequences over this segment. For, if the total
Hamrning distance between code sequcnces p* and21 (ovet tl)eir unmerged
segment) is ri(Dr.2l ) = r/, for the binary symmetric channel, tl 're pairwise error
probabi l i ty  is  bounded by '  [3  ]

P o  (  e x p  l d  l n  f ,  ( r ; 6 ( c ) 2 ,  ( c ) ) o  s l

whcre P1(c) is tile conditional (channel transition) probability of output c given
that  thc input  was l ( i  =  0.1) .  Thus.  g jvcu that  there are a(d)  incorrect  paths
which are at Flamnring distance rJ from thc correct path over the unmerged seg-
men t .  we obta in

P(r)  <  :
k

Pt  tS  =J1  J j ,  P r I r r ro rcausedbyany  one  o f  a (c l (Dk ,  Dk )-  _  m l n
incorrr-ct path at distance d(Dk. Dk)l

( l l )
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Pr tS = l r .  I  f  au tbu .Qr ) \  Zd(Du.2r )
d=d ^ in

(  l 3 )

a \ ,1 (Dr  .  Du ) )  =  I .A t r

A ,  _  J  
1 ,2 r .  -6u  +  Du,  Dr , .  A ' ( , (  i . - r r . r l l  {

L 0:otherwise

rv l rere Z =L (pnk)7t t ( . ) )0  5,d,n i '  is  thc nr in imunr d is taneeof  any pat l l  i ron l
0

the correct path and Akk, guarantees that the same configuration on tlle un-
nlerged segment 

"vill 
not be counted twice by a (d), with this P(t i,t = 9l = P(E ).

He nceforth now we will write d (tk ,.rk ) as .1.

l f  the channel  t ransi t ion probabi l i ty  is  smal l .  Z wi l l  be very snra l l ;  thLrs one can

approximate i Zo by 7d ̂ i". Consequently thc summation ovcr all ft is
" -  "  n r i n

npproximately the summation over /c such that r/ = c1n,;r., . Hcnce we ge-t

P ( t ,  - :  f r l s=J r  )  a rd^ , , ,  r  Zu  ̂j n .  j r . 5 r  €  y ' n , , n
k

(  l 4 )

rvherc ,4 n*' is the set of all possiblc..!u and-Su lbr all /i such tllat d = dnin .
Assumc that all.,!1 are cqually probablc arrd hlve length Q ovcr the ttnntergcd

I
segnent ,  then Pr [ . !=Jr . ]  =11.L"1 l - ; ,  be t l te  mln imurn length o l l l l  Lr r rurcr-

ged segment3 which produce's r/,n;., . We now llnd:

a
P ( f  )  <  ( f  / ( 2 ' . " '  l l o t d ^ , n  t  z "  n i n ( ls )

The Viterbi algorithrr rcquires that a final decision on tl)o most probable cocic
path be made by forc ing the coder  in to a known statc .  However.  onc can
choose any state as thc final state. For simplicity wc choosc thc final statr-
equal  to  the in i t ia l  s tate.  The d is tarce bctween the correct  lnd incorrect  paths
is  then s imply equal  to  the d is tance betwecn two d is t inct  r ' r lLr l l  lengtJr  c losed
paths which we call the frte distance and c/n,* is the nrininrrrm frec distiincc.
dL"" .  Now we get  the f ina l  fonr  by r t 'wr i t ing thc Eq.  (15) :

0
P r f  ) <  { l  { l ' m h ) r d t l r , " "  r Z ' f ' " "

where a(d1," . )  can be evaluated f ronr  21.  1 '  which is
closed paths of length Q that begrn with and encl with I
ce between c losed paths in  Z, .p '  is  equal  to  drree.

( t 6 )

tllc sct of rll possibl,.'
i f  the min inrLrn d is  tan-
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For an illustrative example let the encoder be as shown in Figure 6. Let us
choose thc initial and final state I equal to state 1. By using the computational
t c s t r l l s  s l r o u  r r  i r :  l r h l , .  4  w c  g e l :

t r . o  =  { ! r . 5 2 .  .  . , J r e  }  =  { 1 3 3 3 3 1 1 .  1 3 3 3 2 2 1 , . . . .  1 2 2 2 2 1 2 } .  F r o m  T a b t c
5 rvc find that therc are pairs of correct and incorrect paths with the distance
oler thc unnrerged segment equal to -1. Clearly the unmerged segnlent wjth
nr in jn ' rurn Iength wi l l  be conta incd in  the fo l lorv ing pai rs  of  c losed paths:

( J , , J .  ) .  ( J ' , &  ) . ( J r . J r ) . ( 1 .  J r  )  ( 5 q . & ) . ( . f s . J o ) .  ( & , J ' .  ) .  ( t 6 , S E ) . ( S " , J r q ) ,
( J ' .  . t  ) .  ( f , ' ,  { ' s ) ,  ( S s .  J ' u  ) .  ( J e ,  J r o ) .  ( J , 0 ,  J ' ' ) .  ( J ' r .  f , , ,  ) .  ( { " ,  J r  s ) .
( J ,  z ,  S , u  ) ,  ( f  r : ,  S , o  ) .  ( { ' 0 .  J r r  ) ,  ( 5 r  s .  J r o  ) .

But when we look at the untmerged segntent it is apparent that there are only
three distinct unmerged segnlents with minimum length Q.;r, = 2l (l f., |22),
(212,  222) ,  and (332,  322) ;  obviously  a(dp. . \  =  3.  I f  the channel  crossover
probability is p, one finds

P ( r )  <  ( l / 4 )  ( 3 )  ( ( / o r  ( t  - p ) o  t ) 3 ) .

F o r 7 . , =  l 0  2  o n " . " n e a s i l y  g c t P ( l ) ( . 3 . 0 x  l 0  a

1 / 1 0

F igu re  6  An  encode r  w i t h  t h ree  s ta tes  and  d t ree  =  3

Trrnr ing  norv  to  thc  b i r  ! ' r ro r  l ) rob tb i l i t y .  wc  no tc  tha t  th r  e rpc-c tcc l  nuntber  o l '
b r t  e r ro rs .  e l r . rscd  by  l l1 ! '  ineor r l ] c t  p l r th  w l r i ch  c l i verges  f ionr  t l te  cor r ! -c t  pa th ,
can be  bounc lcc l  by  we ' igh t ing  e  i le l r  t c rn l  O l  the  Lrn ion  bound by  th ( '  l . l l l l nber  o f
h i t  a r ro fs  w l . r i ch  occr t rs  on  t l l : l t  ineor rce t  ryL th .  Th is  n rLn tbcr  i s  t l t c '  nLrnrbcr  o i -

Fnl X nn 
"t 

t l le Lrnrncrgcd s!'glt lcnt5 ,vhe r.c in ancl . l 'n are thc intbrnration (l igits
co l rcsponc i ing  to  the  incor rec t  lnc l  eor rcc t  pa th .  res l tcc t i vc ly .  T l tus  t l l ! .  boL lnd
on t l le  cxpcc ted  nunrber  o1-b i t  e  ro rs  causc t l  by  an  i l teor rec t  pa  r  l s :

l 3

Pn -  l , l no  |  < :  P r t !  =&  )  2  2  i  a t t t ,  i )  / ( 17 )
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where d(d, i ) is the nun:ber-of paths diverging from the correct path at distance
d and with the number of Xn;eXn over the unmerged segments is equal to i. For
the same condition we can substitute ( 16) into ( 17) and yield :

Pb <( l / (2&'b))  t  i  a(dt , "e, i )  .d f t " " (18 )

For an illustrative example let us use the previous example. It is easy to see that
i = I for all the unmerged segments and hence Pb = P(t) < 3.0 x l0 o. It will
be shown in the computational resuh that for the same encoder and p our
simu lation get the relative frequency ofthe error bit which is equal to 1.0 x 10-'

4 MINIMUM FR,EE DISTANCE

The most important measure for finite stat€ codes is the minimum free distance
dir.". This is largely due to the rclation between this distance and the bit error
probability according to Eq. (18). In general, the minimum free distance is
defined as the minimum Hamming distance between distinct output paths
corresponding to state p4ths of the same length that begin and end with the
same state:

di," .  = min { ,1\D' .  B") :  l ; '  + X" anr l  X' .  X" e L}
" "  I l

L =  r , i ' t r ,S .  d [D ' .  D" \=E tD :  .D , "1
( r9)

where.lQ'and D" are the codewords that correspond to the infomration sequen-
cesl 'and1",  respect ive ly ,  i  runs over  ? branches;  and l ; .p  is  the set  of  in for-
mation sequences produced by traversing closed state paths of length { that
diverge from and remerge with the state I.

For a linear code the distance between any two codewords is equal to the
weight of another codeword. Hence, for a convolutional code, the minimum
free distance is the minimrrm weight of a codeword produced by a n<.rn-zero
information sequence. Then for the class of linear codes, Eq. (19) is simplified
t o :

r/rrce = min td(Q' D"); X" * o and X" e L) (20)

L  = U n  L 0 . 9 ,  a n d  d ( 0 ,  D , ' )  =  2  t 0  -  D i " l

where D" is the codeword conesponding to the information sequence-("; and
l6,g is the set of information sequences produced by traversing closed state
path of length Q that diverge from and remerge with the all-zero state.

Since i in Eq. ( I9) and (20) mns over .? branches, then in temls of graph struc-
ture, it seenrs that an encoder with a greater minimum Q should have a bigger
mininrrrnr free distance, Figure 7 gives an illustrative exaniple of this structural
observation. We expect that Mr will have a bigger minimLrm free distance than
M, since the mininrunr Q in Mr is 3 while in,M, it is only 2. Those closed state
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paths with minimum I in M, are Lr3 = (1l l l ,  1241),  Lzl  = e412,2342\,
L33 = (3333,3423),  and La3 = (4124,4234) whi le those closed state paths
w i th  n in in rum 9 inM,  a re  L1 ,2=  ( .1 l  l ,  l 2 l )  and  L r .2=  (222 ,212 ) .

Figure 7 Two encoders with different minimum lengths of closed paths

However, ntaximum minimum Q is not the only condition to ensure a good
encoder in terms of its graph. Eyen an encoder , say M , , with its ntinimum I
is greater than that ol,41r. say. ntay result in a snraller ininintum iicc distance
if there are rnore branchcs incomnton to the closed state paths in I,,q for,4y',
than for,4/,. Figurc 8 will clarify this imnrccliately.

Thc e.ncode r ,U,  has the nr in imum Q eqrra l  to  4 whi le  in , l / ,  i t  is  only  3.  Those
s e t s  o f  c l o s e d  s t a t c  p a t h s  w i t h  Q  c q L r a l  t o  4  i n  ; l I ,  a r c  L 1 a  -  ( l l  l 1 1 .  l Z 3 . 1 l ) .
Z 2 a . = ( 2 2 2 2 1 . 2 3 4 1 1 ) . 2 3 . 4 = ( 3 3 3 - r 3 . 3 , 1 1 t 3 r . . r r : t t  L q , t  =  1 4 4 4 1 4 . 4 1 1 3 4 ) :  a n d
f o r , l 1 ,  t h o s c  s c t s  o f  c l o s e i l  s t t t e  p i t t h s  w i t h  n t i n i n t u m  Q  =  3  a r e  Z t , 3  =  ( l l l l .
l 1 4 l ) .  2 . , . 3  =  ( 1 4 l l .  l 3 . l l ) .  1 - 3 . 3  -  ( 3 3 - 3 3 . . j 4 2 3 ) .  u r i l l . a  3  =  ( 4 1 2 4 . 4 t 3 4 ) .  B u t
tltcrc arc nrlrry branchcs ircorrinron ior thc longer pairs oi closcil state paths in
,Ur .  Let  us exar} r ine a set  of  c lost t l  s tate pat l ls ,  wi th  length 5,  that  d iverges
l r o n r  a n d  r c t n e r g e s  w i t h  s t a t e  l ,  t h r r  r s  I  r . s  = ( l l : 3 4 l . l l l 3 4 l ) .  l t i s c l c a r . t h a t
thcrc arc three branchcs,  out  of  5 .  eo in i : idc in  Z l .s  of  d / r  and th is  cer ta in ly
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rcduces the Drinimum free distance. This cireunrstance does not occur in ,l/, so
that one can expect that M, will have a bigger nrininrum free distance than,,l4r.
However, the largest value of Q needed to ensure that one encoder is bctter than
an other is stil l Lrnrcsolved.

A good label l ing should produce maxinrum ur in inrum f ree d is tarrce whi le  not
allowing catastrophic properties; in rddition, it also could lcad back to the ini-
tial state for a fixed input sequence. For a linear finite statc cncoder (with the
al !  zero s tate rs  the in i t la l  s tate)  the a l l  zero inprr t  learJs back to thc in i t i r l  s t?te
So obviously  g ivcn a goot l  g laph wi th a largc min i rnum Q and a r r r in i rnrurr  r rum-
ber  of  branchcs coinc idrng in  Zr .g another  problem remains:  the labr . ' l ) ing of
the branches.

The task of finding methods to design optimal tnd practical cncoders in tenns
of the statc transition diagranr appeln to bc inherentiy very diificrrlt. Ilcre wc
provide a co lnputer  progam to enl rmcrate ard idcnt i ty  a l l  c losed pJths.  ar ld
having found thesc closed paths thc distances will bc calculated for a given cu-
coder. All details of this graph enumerator rvill bc discrrssed in thc next scction.

5 CATASTROPTtrC PROPERTY

A f in i te  s tate cncoder  is  catast rophic  i f  a  f in i tc  nLrnrber  of  channel  errors c : ruse
an in f in i te  nunrbcr  of  dccoding errors.  This  Lrndcsi rablc  c i r r :LrnrstJnce tna! '
happcn i f  thcrc are at  l ! -ast  two in f in i tc  in fornrat ion sequc: . tccs .Y lnd ,Y '  th l l
can bc cncodet l  in to D ani l  I ) ' .  rcspeet ivc l r ' .  :uch th l t

dQ, D'  )  {  *  an t l  (X. X'  t  = ' - t l l  )
where d( ! ,  Z\  denotcs t i re  Harnming d is tance bctween !  and 7, . l i  the channe I
noise changes D' tnto p. by simply changing a finite nrrntbr:r ol' diglts oiJ)'
then{ '  wi l l  be est imated asX that  is  in l ' in i tc l } ,  d is ter t  f ronr  I ' .

For  a l inear  code i t  is  rve l l  known t l ) t t  the s tat ! '  t rans i t ion dra l rurr r  t r r  a  e l r ls-
t rophic  code conta ins a loop o l  zero we' ig l t t  o t i rcr  than the sel l : loo1r  r rorruc l  thc
al l  zcro s tatc .  An examplc-  o1 'a l inear  cat i ls t rophic  cncocle l  in  t ! ' rn ls  o l  r ts  s tu lc
t ransi t ion d iagrant  is  shown in  F igrr rc  9.  The st l t fc  t r rns i t i r rn  c l iagranr  in  I - igLrre
9 conta ins t \ \ 'o  cyc les.  i .  e .  00 00 and l l  l l .  t l tu t  arc  gcnclur td b)  d i  i ' rcr r l
i ) r i )u t  sequenr-cs but  have thc samc oLl tpLl t  scqr l r ' t ' lccs.  This  ccr t r in lv  $ i l l  pro,
duce catast rophic  codes.  Thc fo l lowing cx l r t rp le wi l l  c lar i l -1  th is  cr tust ropl t ic
p r o p c r t y .  L c t  {  =  0 0 0 0 0 0 . . .  a n d  s o  _ . { l  =  0 0 0 0 0 0 0 0 . . .  O b r i o L r s t r
{ ' =  o t t l l l l  .  .  .  w i t h D ' =  0 0 1 t 0 1 0 0 0 0 0 0 0 0 .  .  .  i n  u t r i e l r  c , i  ( f ) .  1 ) ' ) . - -
for  t t (X,  X '  |  =  6 -  Conse quent l l ' .  i f  t  Jre channe I  no isc charur 's  t l tc  thrce non : r  c lo
d ig i ts  of  2 '  then:( '  wi l l  be est inratcc l  asX that  js  in f ln i te l l  r l is tant  l r t |n . \ ' ' .
Hence this is a catastrophic code.
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1/O1

o l  1 1

Figure 9 An example of a linear catastrophic finite state encoder with four states

Figure 10 shows an example of a non-linear finite state encoder, in tcnns of

the statc transition diagrant, that v'il l produce a catastrophic code The statc
t ransi t ion d iagram in F igure l0  conta ins two cyc les,  i .  c .  1 l  and 232,  that  are
generated by diflerent irput sequenccs bLrt Itrvc thc sante outpLlt scqLlenccs.

This is an obviorrs catastrophic encoder. The lollowing sirnple cxample will
c lar i fy  th is  catast rophic  propcr ty .  Let  X = l l0 l0 l0 l0 l0.  .  .  and so

D =  1 1 1 0 0 0 0 0 0 .  .  .  C l e a r l y  t h e r e  i s - { '  =  0 0 0 0 .  .  .  w i t h 2 '  =  0 0 0 0 0 0 . . . h a s
d(D,  D' )  1*  for t l (X,X ' )  =* .  Hence th is  is  a catast rophic  code.

From the above observations onc can concludc that in the state transition

diagran of a finite state encoder with one closed conlmunicating class Eq. (21)

will be satisfied if therc are at least two cycles generated by two diffcrent input

sequcnces that generate exactly the same output sequence when the cycle re-
peats forever.
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0/000 |
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1 / 1 1 1

I /000

r /001

'o l to1 2 3

0/000

Figure l0 An example of a non-linear catastrophic finite state encoder with three states

6 CLOSED PATH IDENTIFICATION AND d6"" CALCULATION

A comparison of the performance of encoders with the same minimum free
distance d1,"" can be obtained by calculating the number of pairs of closed
paths that produce d1*"; the better encoder has ttwer such pairs. To identify
these pairs we use a generalizcd bidirectional search. This search algorithn will
be based on the firite state eircoder as a directed graph tirat can be visualized as
a directed tre e.

Consider a finite state cncodcr M with Ns states as a weighted directed gaphi
thc nodes are the N5 states of ,/ and the branches are the allowable state
transitions. Thc branches of this graph arc labelled rvith the input,/output pairs
accordir]g to l-.q. (3). A closed path of lengtir ! that divergcs lronr alld rer')]erges
with node I can be visualizcd as a rooted directcd trec with I levels and the
temr inal  node .qual  to  the root  I ,  i .  c .  thc node at  le 've l  0 .  t i . {  =  (0.  I  )  then th js
tree is a binary rooted dircct!'d trce aud therc will bc 2x paths fron thc root to
the 2t terminal nodes. Hcnceforth wc considcr otrly binary X. To identify all
closed paths of length Q that diverge fronr and renrergc with state I the search

l 9
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should be conducted on those

level Q. Computationally all
memory.

To reduce
directions;

stored to
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paths that have terminal nodes eqr.ral to I at
- i  ^ ! + r
2 '  = 2 '  

' -  I  nodesshould be stored in  thc

r Q

9.
L

the number of nodes stored the closed paths are searched from two
forward (.F) and backward (B). This reduces the number of nodes

Q ( z  . , i * r  -  - r ,  r ( e / 2 r + r  r ,  . . . 1
. L / = /.\z - l, l l rne length of the F path is equal to the

Iength of the B path. If Q is odd, we choose e, = [el2) + I as the lengt]r of the
-F path, where [y] is the grcatest integer smaller than or equal to_r,, and hence
2z = Q Q1 is the length of the B path. The closed paths can be determined by
merging all F paths and B paths.

An F path is defined as a path starting with node I with all arrows pointing in
the forward dircction. Since the input is binary, there are 2' paths of length I
branches with the same initial node I. The F1 path obviously can be visualized
as binary rooted tree with I as the root. Figure I I shows this observation.

tcj 
fr,i bc the set of ll l forward paths of length I branches whosc initial node

l s  l :

(22)

where eachl path is a sequence of states!4 = fio= fict, fit, . . ., fy and
l iu  = o(x,4t*  r l )  forsome x.  Obviouslv{6 = I  tbr  a l l l .

Let 14,i be the set of lerminal nodes of all ,F paths of length i whose initial
node is I. Since each branch represents only allowable state lransitions, we can
w n t e :

3
. l 7

Figur€  11 ,  A  b inary  encoder  M wi th  i t s  F lpa$ tha t  i s  a  b inary  roo ted  d i rec ted  t ree
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f l , , ;  =  {o ( f t 111 -  D ,k ' ) i k '  €X ,h ]1 i -  1 )  €  $ '  I  =  1 '2 ' ,  ,  . '  2 { r  r )  1

Obviously fori = I we can write.F1t,1 = (o(I,0), o(I,l) ).

Without loss of generality, and in a computationally simple manner, we gene-
rate llr,i as follows:

H r , i =  l o ( h i 1 i  r y , 0 ) ,  o ( & , , ,  1 y ,  l ) ;  h 1 1 1 -  r )  €  $ , i  =  1 , 2 ,  .  .  . ,  2 ( i  l ) )  ]  ( 2 4 \

This equation implies that the left branches at level i are produced by the
input 0 to the nodes at i - I while the nght branches are produced by the
input l. Thus we car generate all the elements of l{.9, recursively from the
E q .  r 2 4 )  f o r i =  1 , 2 . . . . , Q r .

The next problem is to recover Fr,Q, from. the elements ofl11,q,. Recall that

Ji e Fr,, has been dehned such that fii e Hr,i for i = 1,2,. . ., q1. Hence the
problem of recovering .Fr.g, is the same as the problem of choosing the element
of llr,i to which {1 is eqial to for all I and i. Since 1{,1 has been generated
according to Eq. (24) then this problem can be solved very easily by defining
the counting function that in fact serves as a pointer:

I f
r i _  m  )  rK( j .m)=  | ( j  +  2 "  

- "  _  t )12 "  ,

then

J l m  , '  | ( m

wnere

hKm e Hkt, and I1t,9 ={I}

[y I = the greatest integer smaller than or equal toy

j= t , 2 , . . . , 2 i

m=o ,1 , . . . , i

i  =  1 ,2 , . . . , 0 r

Hence Eo. (26) del ' ines Fr,q,  = l [ ] ;  i  = 1.2,  . .  . .2"t ] .  Note that f i ,Qr can also
be generatcd by considering input sequences to the slate I as a binary number.
Example: Consider the finite state encoderM of Figure 6. Let Qt = 3 and I = 3.
Suppose we want to rccover, = fro,frt,ftr,frz. From (22) and (23) we get
H3r  =  {h t t , h21 }  =  {1 ,2 } ;H7 ,2= {h12 ,h72 ,h3 t ,hqz }=  11 ,2 ,2 ,31  Nrd

H33  =  {h  t  j , h  n ,h .3 ,h$ ,h  s3 ,h$ ,h73 ,h  nJ  =  {1 ,2 ,2 ,3 ,2 ,3 ,1 ,2 i .  F ro In  (25 )  we
ge t  K (1 ,0 )  =  r ( ( l , l )  =  K (1 .2 )=  K  (1 ,3 ;  =  1  

"nO  
f r om (26 )y i e l ds / t  o=h ro=3 ,

f t t=h t r  =  l ; f r : -  =h r ,  =  I  and / , ,  =h t r  =  l '  HenceJ t  =  3 ' l ' 1 ,1 '  Ana logous l y
we can find all1t, i = 2,3,. . .,r.

Define a d1 (backward) path as one starting with I and with all arrows pointing

2 l

(23  )

(2s)

(26)
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to the backward direction. Unlike zLn 4 path, the Br path cannot be visualized
as a binary tree because there may be states that can be reached only through a
single branch or through ntore than two branches. Figure12 will clarify this
obsenation. State 3 has only olre pl.|- d'rcess or- sta te 2; state 2 has all three
states as predecessors. Clearly B. cannot be visLralized as a binarl, rooted direc-
ted tree. The treat'ncnt of .81 paths is nrore complicated than that of f, paths.
In a convolutional iode. the degree of branches ir and out of each state is
exactly two. Conseouently the ,F1 and 81 paths in the crnvolutional codes can
be visualized as a binary directed treei obviously the closcd path analysis in a
Iinear class is easier than in a nonlinear class of finite state codes.

Let Cr,i be the set of terminal nodes of ail ,r paths of length i whose initial
node is I :

Gt j=  {B i lB j i €  $ ,1  =  1 ,2 , . ,  Na ( i ) } (27)

The elements of Grj can be searched recursively by noticing that iill nodes at
level n are the next state of all nodes at level n a l. Since all arrows arc pointing
to the backward direction:

G t r = { / c ;  a  ( k , k ' ) = g t , . r -  r y , k ' e  X , k € S , j =  1 , 2 , . . . . , N a ( i -  1 ) }  ( 2 8 )

Obviously Gt,. = {I}orgj0 = I. No(i) is defined by the counting function:

No( i  -  l )  Ns I
Na(i) = - t

j=1  k= t  k ,=0

where

t1 ;Y=o
^(y) = j

\ 0 ; otherwise
and  No0)=  I  f o r l  ( 0 .

NO(i) counts the numbel' of terminal nodes of B, paths of length i. This num-
ber is obviously equal to the number ofB, paths of length i itself.

Let Brj be the set of all backward paths of length i branches whose initial nodes
i s  I :

Br;= Ib i ; i  =  1 ,2, . .  . " rva( t ) ] (30)

Associated with each fath of b, is a sequence of states !,= bi6,bi1, . . .,bj,

arranged in the reverse manner such that brnl € G,,1,_, I for r, = 0,1, . . ., r.

Since the elements of G. for all i can be generated recursively according to
Eq. (28), then the problein of recovering all backward paths bi is the same as
the problem of choosing the elements of Gr,(i . ) to which b6 is egual to for
all m and all 7. Though the problern is similar to that of recovering the f
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Figure t2 A binary encoder ly' with its g3 path that is not a binary rooted directed tree
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path, the solution is quite differcnt since the By path cannot be visualized as
a binary rooted dirccted tree. Here we need more counting functions to be used
as pointers in G1,1s_.1 to which b;. is eQual to where i = 1,2, . . .,92.
Define the counting function:

Ns
Nn(i j)  = I

k= l

I
t  A (o ( t , k ' ) -e , .  , , )- J t r -  I  ,

/( =u

i =  1 ,2 , . .  . I a ( t  -  l ) i i  =  r , 2 , .  . . ,Q2 .

This counts the number of predecesson of qt,_r) for each j. Note that the
predecessors ofSj(i_ r) are gni € G,, for all i and n = 1,2,. . ., Na(lr). In
other words there are Nn (i,l) elements of G1,1 pointing toward gj(i_ l).
Define another counting function:

No (k, l(,t)) = anq (k + l, j(k))
No (lz ,l(lu )) = I

where

a i  ( t ,  j ( r ) )  =? ,  
t * ,  j t * l l  -  l  +NA(k  *  l , " i ( * , j ( r l t  j t * l )

1 l ; i ( k )=  |c i1r, l1rpi1xy = 
J.nla c$ 61r;_ r I 1i; otherwise

k  =  2z  - .  1 ,9 .2  -  2 , .  .  . , 1

i (k )=  t ,2 , . . . /va(k)
,(k,i(k)) = 1,2, . '  . ' lvq(k+l i(k))
This counts t}te number of occurrences of the elements of Gr,* in br* of
D, €,Rr,i for all ft. So the elements of Bt,gz can be described completely by:

Dr ;11 ,  -  r y )=81*
where  &  =  1 ,2 , .  . . , 92 ; i ( k )=  1 ,2 , .  .  . ,Na ( t )  and

i(k. i&D= 1,2, .  .  .N^&. j(k)) .
Example: Consider the finite state encoder M of Figure 6. Let 9, = 3 and
I = 3.  Suppose we want to rccover bl  = bro,brr ,brr ,brr .  From (28) and for
i  =  lwe  ge tNa( l )=  l s i nceSro  =  I=  3  fo r  a l l  i  and  No(0 )  =  l .  Then  f rom
(26) and (27) we get G3.l = {gl I ) = { 2.} If we do the same process for i equal
to 2 and 3, then No(2).= 3;  Gt,z = @p.g22532) = (1,2,3) and Na(3) = 6;
G 3 3'= {g t  t  gz z 8rr  3r:  8s s 8e: J = \1,3,1 '2,3,2} From (30) we get Nr (  l ,  I  )  = l ,
Nq(2,1) = 3,  Nq(3,1) = 2,  N 

"(3,2) 

= 3 and l /n(3,3) = l .  From (3.12) we f ind

(31 )

{32)
(33)

(34)
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No (3 ,1 )  =  No  (3 ,2 )  =  . =NA(3 ,6 )=  1 ,NA(2 ,1 )  =  2 ,N "^ (2 ,2 )=  3 ,No (2 ,3 )= I
and ,Vo ( l , l )  =  6 .  Now  f r o r r  ( 3 .14 )we  f i nd  t ha tb ,2  =  b t z  =  b t t = . . . =  baz  =
g t t  =  2 .  b t . ,  =  b z r  =  g r :  =  l ,  b s ,  - -  b o ,  - -  b s r  =  E z t  =  2 , b o t  =  g z z =  3 ,

b t o  =  E t s  =  l ,  b z o  =  g z :  =  3 ,  b z o =  g t t  =  I , b q o  =  g q z  = 2 , b s o = g s 3  = 3 ,  a n d
b o o = g o t  =  l .  S i n c e  b i Q ,  =  b i z  =  I = 3 f o r a l l l . h c n c e b l  =  b r o  b r t  b t t  b r t =

I  I  t 3 .

Af ter  having found 1, .p,  and Br .Qu,  onc can f ind a l l  c losed paths of  length
ll = tr + t? that divcrge fi 'orn and remerge with state I by merging the elements
of Fr,l, and Br.q". which is shorvn ir Figure 13, with the following rnerging
ru le.

Let Lr,g be set of all closcd paths of length Q that diverge from and remerge
with state I :

Zr , t  =  { { t ; l =  1 ,2 , .  .  . ,  N , (Q ) }

where N,(Q) is defined by

Nr(c)=. :  
I  Q l ,  -b-o)

Associated wi th each c losed path f ,  is  a sequence ofs tatesJ,  =Sio,Si r , . . . ,S l

wherc Sli € $ for all I and all j. Obviously S,o = S', = I. From the derivation of

(25) and (33) it follows that the elements of Lr.pare identified completely by:

(3  7 )

(38  )

(3s)

(36)

I t k i . i = 0 , 1 . . . . , Q r
S' '=  I' '  t  b . , ,  Q , y : i = Q , + l . Q r + 2 . . . . , Q

such that

l r , Q ,  =  b - o

w h e r e  k  =  1 , 2 ,  .  .  . , 2 Q '  a n c i  m  =  1 , 2 , . . . , N , . , ( 1 2 ) .  H e n c e N , ( { )  a n d  L ,  o  e n u -
merate and identify all closed paths of lengtfr g that diverge'fronr and iiinerge
with thc state I respectively. The number of closed paths of length Q that
diverge from and remerge with state I may also be calculated by using the
adjacency tnatrix of the encoder.

Let the adjacency ntatrix M - [mtj] of an encoder M be an n x n matrix with
n, ,  de f ined as:

f  1  l5- i  =o(^S, . ,Y i )
t r=  i'  0; othcrwisr'
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Let rr,,(9 ) be the (t, i ) entry of the Qc power of the matrix M, then from {21J

we get Nt(Q) = rl 'r() Now we are ready to calculate the distance between two

closed paths.

Consider two closed paths of length Q, in terms of state sequences, that diverBe
from and remerse with state I:

J r  = S r o , S r t , .  . , S r Q

d :  = S z o , S r t , . . . , S u  
Q

where 5,0 = SiC = I, and S.,, €,S for all i and alll. These two closed paths can be

described in terms of output label sequences !, and p,, respectively, as

follows:

(3e)
(40)

(4  1 )
(42)

Dt=  D ro ,  Dr r , . . . ,Dr  rQ_ r )
Dz  =  Dzo,  Dz t ,  .  .  . ,  Dz  <9 ,  r l
where Dl i  = 6(Slr /n) such that o(s, i ,  X, ,)  = s.11i*r .y where,{n €X = {0,1}.

Hence the distance between $, and !, is simply :

d r r=D lD r r -  D r r .  ( 43 )

7 THE DECODER

Consider a path of length d in a state transition diagram of an encoder of a
complete and simple minimal machine (\ /V*,No ). There are N* Paths of

length c enterin8 the Ns states for o 2 Nr-I. There is at least one path ot

length d entering each state.

If we apply a truncated venion of the Viterbi algorithm, then the number of
paths of length a entering N, states can be reduced to exactly N, paths where
each of them minimizes the metric M(O). Obviously the last symbol in each of
these paths is unique.

Let ff; be the ie path of length a at time n rvith metric M" and terminated
by the state i. We can write:

J i l  = s,r"**1,  s i<n+d l ) ,  .  .  . , ,s i , r

S !  €$  =  (1 .2 .3 . .  .  . .N r ) :S i r n+o1  =  i

i  =  1 ,2 ,3 , . . . ,N ,
j =n ,n+ \ , . . . , n+a .

This path conesponds to an encoder output sequence of:

2 6  =  D i l n * o -  1 y , , 1 1 n * " ,  2 1 , .  .  . , , i n

(,44\

(45  )
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yh:t. rq =. 6 (,St,Xj ) such that o(Sij,X, ) = S,rj*, ). W. can search S,in *,, recur-
srve iy  as  Io  ows:

Ji in*rr  = / (5; '  q-") (46)

where r(.,.) is defined such that:

% t n * r I  
=  m i n  { M r  l n  P r ( C n *  o  l r i 1 , , * o y ) i 1 1 1 n * o I  =  6 ( S 1 1 n * o , , X 1 ) } .  ( . 4 7 )

Since o(S, , r r*or . { r  )  =  Si ln*o*  q y  we f ind

f , ; l n * 1 ; = S ; 1 r ' * o r t ) , S i ( r ' * o ) , ' ' ' S , ( , , * t )

w h c r e S l l n + o + r y  = 1 .

Let,sn = ({;, 6;, . . ., Ifi" , ' )r and the corresponding metric vector

Mn = (Mn,  Mrn,  . . ,  / r .n , t .  A t ransi t ion f rom Sn to Jnr l  is  s imply n

transition of its components according to Eo. (48). Now we can write the state
of the channel decoder at time n as follows: 

-

(48)

(4e)

(s l )

(s2)

Rn = 04,,_ 
", Jn_ " 

)
or

R n =

where n ) o. The next state Rn., 1
R n r I  =  ( 4 n - o * r , , S n - o * 1  )

M  I C  C
" ' l ( n - d ) ' ' " 1 ( n  I ) . ' ' " 1 ( n . 0 )

M r  l n -  o 1 '  2 ,  S ,  ( n -  t  ) ,  ' , S z ( n - o . t

M l.r ,  tn- o) 'Ns, Sr.r ,  tn- r  ) , ' ' ' ' s t ' l a ( r , - o )

is just

Since the decoder states are derived from a truncated version of the Viterbi
algorithm, the output of this machine at time n can be computed from the fact
that.gn consists of all suwivors with the best metrics. So we first choose fj, so
that,44n1 is the smallest component of ,11n, then the output is the input to the
encoder machine that  causes the t ransi t ion f rom S, ,n_ o,  to  Si ,n_ o*  r , ,

where M, = min.  Mn such that  Si (n_o+r)  =o(Xn 
o,  Si t .  o ' , ) ; ,Mn standS for

the components of -Mn. From Eq. (3.32) one can easily notice that the deco-
ding decisions always lag the progrcss of the decoder by an amount equal to
the path length d.

It is obvious from Eq- ( I ) and Eq. (49) that Eq(50) will generate more decoder
states as n increases; consequently the decoder does not have a finite number of
states. This is certainly an undesirable circumstance.
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consider a hnite state cncoder alrd a path of length a ir its state transition
diagram. Let this cncodcr have Ns states. Since thc eicmelts ol S,] rrr clruwn
from a hred finite set. the nuntber of possible combinations ol t'h,; 

"1.-r,r"lltsof jn ,  i .e .  a l l  paths of  length a,  is  a lso f in i te ;  however ,  the, l in  contponenls
tnake thc nunrber of dccodcr statcs grorv to intinity sinct, c-ach Min is nonclc_
crcasing. Fortunatcly, the absolute valuc of thertl" collponcnrs are or ll por_
tant. The Viterbi algorithnr reqrrircs onl1, the difli lrcnces bclweell conlponsnls
of  l (n  This  condi t iqn ; r l lqw5 r r5 to  k , :e l  I1 , ,  i r t  a  l l r t t l  rarg,_, .  The f l r l teness. ,J '
the decoder state rvill br based on this property of thc Viterbi algorithlr.
To nraintain the rliffercncts betwcr.n the ,rll- coutpoDcnts fixed while their
absolute va lues grow is  achieved by sLrbt ract ing t l r r ,  sntu l lcst  component  of  M, ,
fron all components of ,tIn. IJence at all times therc is at least one collponent
cqual  to  zero.  Now, i f  the n lc t r ics between stx tes of  thc encoder  only  t tke jn_
teger valucs, I4n will take only a finite number of values. For the BSC this
expectation is fulfil lcd. ln applying the Vit.rbi algorirl.rnr to the BSC. one
finds that the algorithm essentially finds ,hc Irath closest to thc recsived \\,or(l
in Hamming distance.

We can choose any state as the iritial state of thc cncoder and lirbel it as state
l .  Ro is  generated by assuming that  thc dccoder  receives a sequence of  0 's  of
) e n g t J r  o  w h e r e  o l N ,  -  l .  S o  w e  h a v e  S , o  =  I  f o r a l l  j =  1 , 2 , . . . . A r .  H e n c e
we can write

(s3)
r\0 -

f f tu,  o,Ns,sr ' r ,  to -  r  ) , '

whe re  Sn  g  g  =  (1 ,2 , . . .Ns )  f o r i =  1 ,1 , . . . ,Ns  andT  =  1 ,2 , .  . . ,  a -1 .

Let ,[tjo be the smallest component of the set Mn = {Mio: i = I ,2,. . .;\ }. Then
the Eq. (53); can be rewritten:

Mto -M in ' l ' s t t , -  r ; ' s1  1o  2 , "  , 1
Mzo-M io '2S t< " -  r  y , s2  1o -  2y ,  . . , 1

n i s c
"  v , " j ( a  t ' . " j ( o - 2 )

n, f  i t  x ]  < '
N ^ r o  |  |

S

, \ 0 - (54  |
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Fora BSC with transition probability p < | 12, the received sequence Cis binary
and the logJikelihood function becomes
ln Pr(ClD)= d(Q,p) ln(pl( t -p))  +N ln( l -p) (ss)
where d((,p) is the Hamming distance between C and p. Since when p is less
than | 12, ln (p/( I -p)) ( 0 and N I n ( I -p) is constantTor allp, an equivalent
maximum likclihood decoder for thc BSC chooses D as the codeword that
minimizes the Hamming distance
d (C ,D )=  I  lC  -D ,  l .

i '

Hence in applying the Viterbi algorithm
rn teger.

(s6)
to the BSC, the metric becomes an

For nrany of DMC's positive integers can be the metric. The metic M(CJDr) =

ln Pr(CJDr) can be replaced by b, (lnPr(C.lD,) + b, ) where D, is any real num-
ber and C, is any positive rcal number. A path p that maximizes ln Pr(CrlDr)
in fact also maximizes br(ln Pr(CrlDr)+ b, ) and hence the modifietl metrics
can be used without affecting the performance of the Viterbi algorithm.

If b, is chosen to mafe the smallest mctric equal to 0, b,, can then be chosen
so that all metrics can be approximated by integen. Thire are many sets of
integer metrics possible for a given DMC, depending on the choice ofb..
The performance of the Viterbi algorithm is now suboptimum due to lfie
modihed metrics.

For somc transition probabilities such as l/3, 1/7, etc., even using the modrficd
metrics, we may never havc a set of integcrs as our metrics. From now on we
restrict olrrselves to the BSC onlv.

8 COMPUTATIONAL RESULT

Two programs. written in FORTRAN 77. were run on an TSOIBM 3081 to
obtain the results in this section- One program enumerated and identified the
closed paths, the minimum frec distance, and simulated the communication
system while the other generated the finite state decoder.

Two exarnples will be shown; each has rate ll2. Since the number of decoder
states grows rapidly, only the decoder state of the first example is shown.

EXAMPLE I

The linear finite state encoder.4(with two states is chosen becallse thc number
of decoder states is small; this makes it possible to show thc state transition
diagram on one page. Figr.rre l4 shows the encoder while Figure l5 shows the
corre,sponding finite state decoder; state I is chosen as the initial state. The
decoder states are computationally generated in tabular form; they are shown
in Table l. The enumeration and identification of the closed paths. and the
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0/01

Figure 14 A linear encoder Mx with two states

0 l  / 0

Figure 15. The state transition diagram of a flnite state decode r of M
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distance, are not shown here because the main purpose in this linear example is
to give an idea about generating the finite state decoder.

Tabfe 1 The next-state and the output table ot the d ecoder M\

EXAMPLE 2

Figure 16 shows an example of a finite state encoder with three states. The
number of decoder states witi truncated path length 2 is 79. There are too
many to be shown here. The closed path enumeration and identification is
computed for a = 6. Table 2 shows the F, paths, the Bl paths and the corres-
ponding closed paths of length 6 in terms of tlte encoder state sequence.

Time
Present
State

Next - Stats Output

l N = 0 o l N  = 0 1 l N = 1 0 l N = 1 1 00 01 10 11

0

I

3

4

7

I

I

0 1 1
2 2 1

0 1 1
121

211
021

0 1 1
222

012
121

0 1 1
1 2 2

2'12
021

012
122

o't2
222

212
o22

0 1 1
221

0 1 1
222

o12
122

0 l l
221

0 1 1
222

0 1 1
222

012
1 2 2

0 1 1
222

0 1 1
2 2 1

012
122

0 1 1

012
121

012

012
121

012
121

012
121

012
222

o12
121

0 1 1
121

o't2
222

0 1 1
121

0 1 1

122

2 1 2

o22

0 1 1
121

0 1 1
1 2 2

0 1 1
1 2 2

212
o22

0 1 1
122

OTT
121

212
o22

211
021

021

012
122

o21

212
o21

2',12
o21

o12
122

212
021

211
02r

o12
122

0 0 0 1

0 0 0 1

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

0 0 1 0

0 0 0 1

0 0 0 r

0 0 1 0
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0/00

1 / 1 0

Figurc 16 A finite state encoder /ltv with three states

Table 2 Ttre F1 and the Bl paths and their corresponding closed paths of length 6

Lengdr Ft Paths B I Paths Cloced Parhs No

o 13333
'13332

13321
13322
1 3 2 1 3
13212
13221
13222
12133
12132
12121
12122
12213
12212
12221
12222

121
221
321

1333321
1333221
182121
1332221
1321321
1321221
13221?1
1322221
1213321
12'13221
1212121
1212221
1221321
1221221
1222121
1222221

I

4

o

1
I
9

1 0
1 l

I J

1 4
l 5

1 6

Table 3 shows the distances among the closed paths of length 6 that diverge
and remerge with state l. These distances arc paesented in an n x n matrix
form where n is the corresponding closed path; the entry(k,j) is the distance
between closed path i and closed path l.

J J
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Tabl€ 3 The Hamming distances between closed paths of length 6 that diverg€ from and
remerge with state I

The resulb of the simulation study arc shown in Table 4; it shows the number
of bit enors for a particular channel crossover probability and truncated length
a given I d uses of the channel.

Trble 4 Number of bit errors for a panicular crossover piobability p and truncated length
c aiven lO4 uses of the channer

cd. Pd|. DISTANCE

I
2

4
5
6

I
9

1 0
1 l
12
1 3
1 4
1 5
1 6

0

5
4
5
4

5

6

o

5
6
5
7
b

n

4

4
5
5
4
B
5

4
5
o

6

4
0
3
6
5
J

6
o

5
6

I

o

4

4

?

0

4
6
3
5
4
8
5
o
K

4

5 A

5 4
4 5
6 5
5 4
0 3
3 0
5 4
4 3
6 5
5 6
7 6
6 5
3 6
6 3
8 1

6

6
5
4
0

6
4

I
7
3
o

5

o

4
3
3
0
o

5

4

6
6
3

I

5
I
o

o

6

0

5
4
t

4

o

5

r 0  1 1  1 2  1 3  1 4  1 5  1 6

o o S o J t o

s  5  4  s6  6  5
5  5  8 7  6  4  7
4  8  5 6  5 7  4
5 7 6 3 6 8 7
6  6  5  6  3 7  6
6  4  7  8 7  3  6
5 1 4 7  6  6  3
3 5 4 5 4 6 5
0 4 3 4 5 5 4
4 0 3 6 5 3 6
3 3 0 s 4 6 3
4 6 5 0 3 5 4
5 5 4 3 0 4 3
5 3 6 5 4 0 3
4 6 3 4 3 3 0

P Number of bit €rroR
a - 2 o - 3 a - 6 a - g

1.  0x10'2
2. QxlO'2
4 . 0 x 1 0 - 2
6 . 0 x 1 0 ' 2
8.0x, t0-2
1.  0x10'1
2. Ox10-l

0
3

29
79

117
209
831

I
2

29

104
229
6tc

I
2

22
56
98

r87
754

1

22
54

1 0 1
185
747



PROCEEDNCS nB Vot 20, No. 1/2, 1987

9 CONCLUSIONS
This paper studied a nonlinear class of finite state digital channel coding with
the aim of finding some properties of the code which improve the performance.
In this case, the performance is measured by the minimum free distance since it
is easier to evaluate than the probability of error criterion, and for small chan-
nel crossover probability it is a very good indicator of system performance. The
analysis has indicated that the structues of the finite state machines are impor-
tant to performance. In particular, the pairs of closed paths that diverge from
and rcmerge with the same state and how we identify and imprwe them, in
order to find a bigger minimum free distance, are very impo ant; in addition,
the catastrophic property has also been investigated, based on the machine
structuF. Thus, a new approach has been initiated which emphasizes on the
structure imposed by modelling our encoder-decoder as a finite state machine;
consequently it is not limited to only linear codes. This is in stark contrast to
most existing methods of analysis which consider only the class of linear codes.

The general problem itself remains unsolved and there are many aspects of it
that may be investigated. Even for the binary case much remains to be done.
Although we adopted a truncated version of the Viterbi algorithm for the de-
coder, we assumed that t}te system performance could be approximated by the
ideal Viterbi algorithm. The analysis of the loss in performance caused by the
truncation strategy remaiRs untouched. Consequently, thep is a room to im-
prove our bound on bit enor probability; a random coding approach could also
be used to deal with the error probability measure. Another assumption in our
present analysis is that of perfect synchronization. Finding a pair of hnite state
encoder-decoder that always synchronize is another problem. We mentioned
and proved some Markov chain properties, yet we did not exploit these power-
ful properties. These properties, along with renewal theory, may be useful for
the synchronization analysis. The use of a bidirectional search to identify the
critical closed paths seerns to be helpful. Of course, by the very nature of our
algorithm, we can not use this search algorithm if the number of the encoder
states is too large. This is a classical problem that remains unresolved when one
deals with a graph. In addition, we have not considered the case when the
metrics are real numbers. This problem seems much more difficult than the loss
of performance due to tmncation and code synchronization. We do not know
how to deal with this general problem. We leave this as an open problem for
further investigations.
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APPENDIX A

With the notation of section 2 we want to show that (Sn, R n ) is a first order
Markov Chain for both the noiseless channel and the addl t.ive channel: C- =
Dn + Nn where + denotes a mod. Nc addition and the (Nn) are a sequence of
independent, identicalIy distdbuted, random variables.
Proof :

a. Noiseless channel case:

P /  [ , t r ,  = s r ,  
& R r ,  = r n  l ( S 1  , R l )  = ( s i , r ) , i { n  l ]

=  P r t o ( X n  l , s n _ l )  =  r n  ,  p  ( D , , _  1  ,  r , , _  1  )  = r n  1 ( 5 1 , R i )  =  ( s 1 ,  z 1 ) ,  i  ( n  -  l l
= P r l o ( X n  

1 , s n  1 ) = s , . , , p  (  6 ( X " - r , s n _ l ) , r n - l } = r n l ( S i , R i )  =  ( s ; , r ; ) , i  ( n  -  l l
=  h l o ( X n _ r , s n  1 )  =  s n  ,  p  (  6  ( X n _  I  ,  s n  1 ) ,  r n  1 )  = r n l

since S, and R; functions of only X, , - . ., Xi-t
Hence :

&  [ . t n  = r n  & R n  = r n  l {  = s l , R 1  = r , , i ( z  - l l
= . & [ S n  = s n  & R n  = r n  l S n _ ,  = s n _ r , R n _ l  = r n _ l ]

which completes the proof.

b. Additive channel:

C, = D" +N" where + denotes a mod. N6 addition and theNn are rndependent,
identically distribu ted random yariables;

P r [ , $  = s n  & &  =  r , ,  t ( S i , R i )  =  ( s 1 , 4 ) , i  { n  _  l l
By using our finite state decoder model one can easily get:
=  P r I o ( X n - 1 , s n _ 1 )  = s n ,  p  ( C 1 1  1 , r n _ 1 ) = r n  I  ( s i ,  r i ) =  ( r i , m , ) , i ( i l  *  l l
= P/ [ o (Xn, I , sn- I ) = $, p ( 6 (Xn_ r , rn_ r ) + \ 1 , rn_ 1 ) = rn I

(S i ,  &)  = (s ; ,  r , ) ,  i  (n  -  l l
=  &  [  o  ( X n -  r ,  s n -  1 )  =  s n ,  p  ( 6  ( X r , _ r , s n _  r )  + N n _ 1 ,  / r _ r )  =  h ]
srnce.9, and R1 are functions of only,y, , . . ., Xi_ t and Nl , . . ., N; ,. Hence:
= P r [ S r ,  = s n  & R n  = r n  r , 9 n _  1  =  J n _  1  ,  R n _  ,  = r n _ 1 1

which completes the proof.



PROCEEDINCS ITB vol 20,No. t/2. lgBT

APPENDIX B

With the notation of section 2 we want to show that (D,,,Sn, yn,Rn) is a first
order Mar\ov Clrain for both a noiseless channel: Cn ="Dn, and in additive

i l "Ts ,^ ,  1=  
r l  * ; ) r  wh11.+  dcnores  amod.  \c  ;dd i r io ;  and rhe  ( .vn)arc

Indepcndenl  r  l ,  r r ic r l l r  d is tnbulcr l  r rndom r  ar i lb lcs l
Proof:

a. For the noiseless channel: Cn = Dn,

Pr lD n 
= dn,S n= Jn, fn = _f n Rn = rn i (ri,,Si, yi,Ri) = (di,s i,y \,r),i ( n * I l

=  P r l D n =  d n ,  S n  = s , . , ,  ) , n  = l n . R n  = t n l D n  
t = d n  t , I n _ 1  

= _ t , n _ 1 ,
(Dr Y)= (d,, t ' ) , i (r  -  2, (q, Ri)= (s,,  r ,) ,r  (rr l l
By using the finite state model one finds:
=  P r  [  6  ( X n ,  o  ( X  n  _  r , s n  _ ,  ) )  =  r , / , , ,  o  ( X  n  _  r , s n , ,  )  =  s , , ,

n ( 6 ( X n ,  o  ( X , ,  , , s n _  ) ) , 0 @ ,  l , / n _ 1 ) ) = / n ,
p ( d n _ t , f n , t ) = r '  I D n _ t  = d .  

r , y n _  t = / n  t ,
( D i ,  Y ) =  ( d , ,  t ) . i  4 n  2 ,  ( S , ,  R t ) = s , ,  r , ) , t ( n  -  l l
=  P r l 6 ( X ^ ,  o ( X n  , , s , , _  1 ) ) = d , , ,  o ( X n _ t , s n _  r ) = s , , ,
r t ( 6 ( X n ,  o ( X n  r ,  s n _  I  ) ) .  p ( d n _  1 , r n _ ) ) = y n ,
p ( d n ,  y  r n _  1 )  

=  r n  i D n  _  t = d n -  t , y n * t = / n _ t l
since Dr, I, forl =< n - 2 and,S,, R, for, i (n _ I art functions of only
X r , . . . , X ^ - 2 .

Hence:

P r l D n = d n ,  S n . = s r '  Y n  = / n ,  R n  = r n D r = c l r , S i = r u  y r = / ; , R i  = r , , i ( n  _ 1 1
=  P r [ D n = d n , S n = s n ,  Y n = ) ' n ,  R n  =  r , . ,  D n _  t  

= d '  
t , S n _  I  

= J n _  
1 ,

Y r - t = l n - t , R n - t  = f n  
t l

which completes the proof.

b. For additive channel:

9." 
= 

9"..* 
N" where + denotes a mod. Na addition and the Na are independent

identically distribute d random variables,

Pr lDn=dn,  Sn = sn,  Y ' ,  = , l . ,n ,Rn =r ,  l (e ,S, , / , ,R,)= (d i ,s i ,y i , r1) , i  (n  _ l l
= P r [ D n =  d n , . 9 n  = s , r ,  Y n = f  n ,  R , ,  = r n  i D n _ t = d ,  l , y n _ t  

= / n _ t ,

D j =  d j .  Y i =  t y i 4 n  -  2 . S ,  =  r , .  R ,  =  r , .  t ( n  _  l l
By using the finite state model one finds:
= & [ 6 ( X , ,  o ( X n -  r ,  s n _  l ) ) = d n ,  o ( X , ,  r , s n _  l ) = r , , ,

39
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? (  6  (X" ,  a(Xn,  r ,  s , ,_  I  ) )  +Nn,  p(dn_ l ,  /n_ ,  ) )  = ln ,
p ( d '  r  + N n -  r , / n -  r ) =  r n  I D n - r  =  d n -  r ,  Y n _ ,  = - / , r _ , l ,

since Xn and Xn_, are independent of Xk and N* for k 1n - 2 and also
independent ofS* and R_ for all rn.

Hence:
P r l D n =  d n , . S n  = s , r ,  Y n  = / , r , R ' ,  = r n l D n .  

t = d n _ t ,  S . n _ t  = s r , _  
t ,

Y n _ t = ! n _ r , R n _ ,  = r n _  
r  l

which completes the proof.


