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SCHRODINGER EQUATION IN GENERKﬁ’RELAT}VITY

*%)
Hans J. Wospakrik

RINGKASAN

Dalam tulisan ini diturunkan persamaan

Schrédinger ke dalam TRU dari suatu partikel

bermuatan dalam potensial Coulomb, yang diper-
oleh sebagai approksimasi dari pada persamaan
Klein-Gordon dalam TRU dengan anggapan bahwa
energi kinetik dan potensialnya kecil sekall
dibandingkan terhadap energi diam meZ. Poten-
sial gravitasi-Newton muncul di dalam formula-
gi ini sebagaimana diharapkan dalam bentuk
non-relativistiknya.

Ditunjukkan pula disint bahwa persamaan
radialnya memiliki titik r = o sebagai titik
singular yang non-essenstal, yang mana mem-
berikan eksistensi solusinya dalam penguraian
deret sekitar r = o. Solusi approksimasi de-
ngan mempergunakan teori Perturbasi termyata
memunculkan beberapa divergensi yang mastih
belun terpecahkan dalam tulisan ini.

ABSTRACT

Sehrodinger equation in GR for a charged
particle in Coulomb potential is presented,
derived from the formulation of Klein-Gordon
equation in GR with an assumption that the ki-
netiec and potential energy are small in com-
parison with the rest energy me®. The term
Newtonian potential appeared directly as ex-
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pected from the non-relativistic Schrédinger
equation in the Newtonian gravitational field.
It is shown that its radial equation pos-
seses a non-essential singular point at r = o,
therefore it has a power series solution about
r = o. Perturbation theory is wused to find
its approximation solution, encountered some
divergences that remained unsolved.

I. Introduction

Schrodinger equation that was given here is not a covari-
ant equation as required in GR but just an approximation of a
covariant Klein-Gordon equation in GR. Approximation of a
covariant Klein-Gordon equation to Schrodinger equation in SR
is given in Chapter II, by taking on its interaction with EM-
field.

Rewritting the Klein-Gordon equation in SR into a tensor
form equation, 1its generalization to a covariant form in Rie-
mannian space of the solution of Einstein-Maxwell equation in
GR is obtained in Chapter III, for which the problem is spe-
cialized to its interaction with Coulomb potential. Schro-
dinger equation in GR is obtained in Chapter IV, by making
used of the method given in Chapter II.

Finally, it is shown in Chapter V that its radial equa-
tion posseses a non-essential singular point at r = o, there-
fore its solution could be expand as power series about r = o.
It must be noted that there appeared no Schwarzschild singu-
larity if the ratio of charged to the mass of particle that
generate the field 1s greater than the square root of gravita-
tional constant. Approximation with Perturbation theory en-
countered some divergences in its third and fourth power of
1/r, that remained unsolved in this paper.

II. Schridinger equation as an approximation of Klein-Gordon
equation in SR

Sghradinger equation that included EM potential K(;, t)
and @(r, t),

2 >
ih 'g't' VG, 0 = - Z‘—m @ - % %+ eplur, v (11.1)
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is a non-relativistic wave equation since it is not covariant
under Lorentz transformation of SR.

This is the main obstacle for deriving it directly in GR.
However, this obstacle could be over come with the condition
that Schrodinger equation (II.1) is just an approximation of
the relativistic Klein-Gordon equatfon which for the kinetic
and potential energy are small in comparison with the rest
energy mc#.

Klein-Gordon equation that included EM potential ls de-
rived from the relativistic relation between energy-momentum
and EM-potential,

E - ef)? = (cp - eh)? + m2c? (11.2)

with the substitution of energy and momentum operator,
3 >
E = ih 3 P = iRy (I1.3)

<>
to (II.2) and operated it to the wave function Y(r, t) then
the result is,

2
(- 1° 2 - 21en g 2 sen gy, o -
3t t ot
(- 12e%0? + 21ench.T + fehe(div 2) + o242 + 22 (E, t)

(11.4)

By the gssumption that the total energy E = E' + mc2, were E',
P << mcz, gives (E - eQ%Z ~ 2mc2(E' - ef) + m2c’4 then substi-
tuted to (II.2) where m?c4 term canceled and then divide with
2mc2, the Schrodinger equation in EM-field is obtained,

- 2 ie >
EVGE 0 = - @ -2D2 ey G any
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the right side in the bracket is the non-relativistic Hamil-
tonian operator of the charge particle in the FEM-field. Sub-
stitution of energy operator in the left side gives Schroding-
er equation (II.1). The reader should be realized that the
wave-function ¢(?, t) in (II.4) and (II1.5) are not identical.

This is the method that should be applied to derive the
Schrodinger equation in GR.

III. Klein-Gordon equation in GR

Klein-Gordon equation (II.4) would be simplified in ten-
sor form and then generalized it to the GR. Mathematically,
this is just to transfer physical equation in Minkowsky four
dimensional spacetime which characterized by the metric ds? =
nuv dxMdxV (where n N is Lorentzian metric tensor with Noo =
-N13 = -N22 = -N33 =1 and ny, =0 if u # v and x*(u = 0, 1,
2, 3) 1is the spacetimpe coordinate where the index 0 denoted
time coordinate x© = ct), into Riemannian four dimensional
spacetime, ds? = guvdxudxv (where 8uv = guv(xp) the general
metric tensor). We have used the notation that the repeated
indices denoted summation over them.

Introducing the four vector potential of EM-field, ¢u
where &; (1 =1, 2, 3) = A and ¢o = —@, we obtain the tensor
equation of (II.4).

Y

2
ny - 2e

2
My, -legw e M mey 2, |
TR PV 0" Y- 50 o ¥+ GV =0

s M hc sH c
(I11.1)

where the comma's after a quantity denoted partial derivative,
It is generalized to covariant derivative in Riemannian space
which denoted with ";" mark after a quantity, which is identi-
cal with partial derivative for a scalar function. The opera-
tion ¢" | is the divergence operation in Minkowsky spacetime
that was generalized in Riemannian space as,

u 1 u
) = V-g @ = det <0
T Vg (B, B s detly)

Furthermore, the operation nuvw v is (Grad)zw operation in
b
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Minkowsky space where its generalization to Riemannian space
is given by,

pv 1 . uv, -
B T B

Therefore, the generalization of Klein-Gordon equation (II.4)
to the Riemannian spacetime is,

Lo vy, e _de 1
T Ve Vv T TR V0 nc7-§(‘/g®),u+

Sy + EH% =0 (111.2)
ch H R

The generalized Lorentz condition for EM potential QU,

® =0 (1II1.3)

reduced the above equation to,

7'1'—8(/_g gy W v Zi'eq’ LT ——‘1’“@ WV = ) 2y =0 (II1.4)

Since we discussed the Klein-Gordon equation which inter-
act with the EM-field, the Riemannian spacetime that should be
used here is the solution of Einstein-Maxwell field equation,

871G
_ L = (871G
Ru\) 28y R = C4) Eu\)
F + F + F =0 (1II1.5)
HV; 0 VP H pUsV
FFo=o0
TR
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where G is the gravitational constant,

-1 P
= - 4
EHV (4m) (Fup FV 4guv ch F

is the momentum - energy density tensor of the EM-field and

F W = @ @v is the EM-field temsor. R, and R are re-
spectiveiy contrgcted tensgss of the Riemannian Curvature
tensor R R and R = R

w - o, LT

IV. Schrodinger equation with Coulomb potential in GR

Furthermore, the problem is specialized to the case in
which ¢; = 0 and ¢, = -@(r) which is spherical symmetry and
static that is the Coulomb potential. This condition simpli-
fied the solution of Einstein-Maxwell equation (III.3), which
its solution is given by the Scwarzschild metric,

2 A 2

B .-1
ds” = -(1 - T + r2) dr

- rz(de2 + sin28d¢2)

+ - +—)c 2412 (IV.1)
r

where M and q are mass and charge of the particle that gener-
ate the field respectively. It seem that Schwarzsch&ld singu-
larity does not exist in this solution, if (q/M) > G2

Substitution of the metric temsor (IV.1) into (III.4)
and replacing the time differentiation with the operator E,
(I111.4) reduced to the form of Klein-Gordon equation with Cou-
lomb potential in GR,

2 2
) 2 A B, 3y
- r + 2) Br] +

A B .,-1 c
a- r + 2) 2 9Jr
r r
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2 2 22 2
+ _I;c_ 2_(sin6 —‘2) + 2 < 5 ———"i m2c4xp~= 0 (1v.2)
r sinB r sin" 0 3¢
By multiplying the both side with (1 + %-+ 279, gives
r
2 A, B, Mmcld .2 o
(E - e()"y + (1 - Tt { 7 5p 1t (1 - —'+ )
r r
2 2 2 2 2
¢ BT 82 _lk) poe 39 24y o (1V.3)
2 FY) 2
r sinf r sin" 6 3¢ :

Bu further substitution to the total energy E with the same
assumption before in Chapter II and apply the same method, we
obtain the Schrodinger equation with Coulomb interaction in
GR, given by

2
- 85, _A_ B, 9.2 . A _‘2
E'W = - 2m(l r + 2){ 2 Br[r a + )
r r
+ 1 L(51n63l)+ ——i} E™yy +
2, 90 26 2 r
r sind r sin 8 8¢
+ Ei-w + e@(x)y,
r
2 (IV.4)
c c

Newtonian gravitational potential (-GmM/r) that appeared in
(IV.4) is just the consequence of the approximation that we
used above. If we neglect all the terms with A, B,and C since
all of them are small values, we get the non - relativistic
Schrodinger equation with Coulomb potential in Newtonian grav-
itational potential.

V. Solution of Schrodinger equation in GR

Solution of (IV.4) is comnstructed by the method of the
separation of the variables y{(r, 6, #) = R(r) H (6)®(@) which
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gives that the angular equations H (0) and ¢(@) take the same
form in QM, but its radial equation are modified by the GR to
the form,

A, Byl d 27 A B R, L 2mo, _ Gmt

Q r + 2) 2 dr [r"(1 r + 2)dr] + 1 Z(E ef(r) + r +
r r T R
A B \A X
“gz)_(l';+_2)_2—]R=0, )\=Q‘('Q'+1)’ L =0, 1, 2,
T T T

(v.1)

By further simplification of differentiation on (1 ~ %-— EE

r

term, eq. (V.1) reduced to the radial Schrodinger equation and
the rest term 1s the perturbation terms, that is

2 2 2 2
p = B 1 d  2dR Al R A, 2B-A"
E'R m 2 drf gp TR TR - o [y 4
r 2mr r r
dR 28-A%  2aB . B2.d%R . AM BA GmM
~RatCg At R 2t R TR - GR
r r r r dr r r
C
+ —ER, (v.2)
T

The question arises whether eq. (V.2) has a regular solution
about the origin. 4 _
Let us multiply the both side with r  and divided with

the cofactor of Q_% then rearrangement to the Fuch's type
form, we get, dr

d2R 1 2r4 + Ar3‘+ (ZB—Az)r2 - ABr dR
2t & 7. 2 2 A T
dr r + (2B-A")r" - 2ABr + B
6 5 2 6 AEZ 4 3 2
, Er +GmMr® - Gr" -er #(r) - prmit AAr~ - BAr
3 4 2. 2 2 R=0
r r + (2B-A")r" - 2ABr + B
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or

d2

dr

=

N

1 dR 1 _
+?P(Z’)E‘+?Q(I‘)R =0 (v.4)

where P(r) and Q(r) are respectively given in the above equa-
tion.

It is clear that P(r) and Q(r) are both analytic function
at r = o, therefore according to Fuch's Theorem eq. (V.2), the
radial equation of Schrodinger equation in GR has a regular
solution at ¥ = o, hence could be developed as a power series
about r = o. '

The exact solution with power series solution about the
origin is more complicated, however by remembering that A, B
and C are small values, we take the approximation solution
with the method of the Perturbation theory.

In accordance to the Perturbation theory, the non-per-
turbation Hamiltonian is,

2
B = - %ﬁ v 4 ed(r) (V.5)

and the Hamiltonian Perturbation is given by (IV.6), that is

IS TSN =GRV N M - TG TY BG S L
2m 2 3 47 3r 2 3 4 2 -
r T r T r r Oor
AX BA G C
A T Y i (v.6)
r r T

Which gives the GR correction to the non~perturbed epergy lev-
el of the system. Unfortunately, that the term 1/r3 and 1/r4
in (V.6) encountered some divergences in its Hamiltonian per-
turbation matrix, that remain unsolved in this case. Although
one could obtain its exact regular equation as been shown
above.



50

Commentary to reference 2

It had been shown by Callaway J. in Phys. Rev. 112, 290
(1958), that the radial equation of Klein-Gordon and Dirac
equation in GR had not posses a regular solution about r = 0.
Alternatively, if one apply the algebraic form of metric ten-
sor i.e. non-exponential form, and do the same algebraic
arrangement as mentioned in Chapter V, it seems to Fuch's the-
orem that those equations posseses a regular solution about
r = o.
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Notes on abbreviations
‘GR: General Relativity, SR: Special Relativity, EM: Electro-

magnetic field, QM: Quahtum Mechanics, TRU: Theory Relativi-
tas Umum,
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