Jurnal Otomasi Kontrol dan Instrumentasi Vol 16 (1), 2024 ISSN: 2085-2517
https://doi.org/10.5614/joki.2024.16.1.3 E-ISSN: 2460-6340

Enhancing the Reliability of Photovoltaic Systems in Microgrid at Campus Area

1Hanadi, tHadi Christian, 1Syafril Tomoyahu, 1Virara Faniama,
1.2Jystin Pradipta, *2Irsyad N. Haq™ and 1-2Edi Leksono

1Energy Management Laboratory, Engineering Physics Department,
Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia

2Engineering Physics Research Group, Engineering Physics Department,
Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia

*) corresponding email: irsyad.n@itb.ac.id

Abstract

This paper assesses the reliability of photovoltaic systems within a microgrid, considering the system's operational mode
and monthly data on solar radiation and load demand. The evaluation encompasses various reliability metrics, including
microgrid failure rate, interruption duration, system unavailability, EENS, EIR, LOLE, and LOLP, with the objective of
minimizing these parameters. The methodologies applied involve the Markov model and artificial intelligence algorithms
such as Naive Bayes and Support Vector Machine (SVM). Results indicate that the microgrid exhibits enhanced reliability in
an on-grid mode configuration, with a LOLP value of 0.0008. Furthermore, employing machine learning, specifically SVM,
for LOLP calculation based on solar radiation yields a more precise value of 0.7245. This study offers valuable insights for
policymakers and system designers in determining the optimal configuration for microgrids.
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Introduction

The combustion of fossil fuels has led to a substantial increase in carbon dioxide emissions during the current
industrial era. Achieving net-zero emissions by 2050 is a formidable task, considering the continuous growth of
the economy and population. Global support is essential to harness energy from natural resources, such as
solar energy [1]. In the pursuit of carbon neutrality by 2050, renewable energy, particularly solar energy,
emerges as a crucial and efficient solution among clean energy sources. It is anticipated to contribute to half of
the emission savings by 2030 in the journey toward net-zero emissions [2]. In recent times, photovoltaic array
systems have gained recognition and are widely used in electrical applications. Photovoltaic (PV) modules act
as the fundamental power conversion units in PV system generators. The output characteristics of PV modules
are influenced by solar insulation, cell temperature, and PV module output voltage. PV systems inherently
exhibit nonlinear |-V and P-V characteristics that vary with radiation intensity.

System operators face the technical and financial challenges posed by the intermittent nature of PV output,
especially with the growing integration of solar energy into the power system. As an uncontrollable generation
source, solar energy affects the power system's technical and financial aspects. The stochastic nature of PV
systems' output, combined with the likelihood of PV panel failures, transforms the output of PV systems into a
stochastic variable. Therefore, the comprehensive development of reliability models for PV systems is crucial in
studying solar energy integration and the reliability assessment of power systems. Reliability study methods
that simultaneously model solar radiation intensity, PV system equipment, and load demand are expected to
address these challenges [3] efficiently.

Reliability analysis of PV systems is vital for system planning, long-term operations, risk assessment
facilitation, and limiting income loss [4]. One of the reliability assessment indices for PV is the Loss of Load
Probability (LOLP). LOLP can measure the risk of load loss per hour or consider the expected peak load during
the dispatch period. Power insufficiency occurs when the system demand exceeds the capability of the
operative generation [5], [6]. Using sufficient and high-quality data is crucial to enhance modeling accuracy
and reliability assessment [7]. This study utilizes data from the PV system field at the ITB Energy Management
Laboratory. Methods such as Markov, Naive Bayes (NB), and Support Vector Machine (SVM) will be employed
to assess the reliability of PV systems by identifying possible events that may cause system failures and
calculating the probability of the outcomes of these events. The research aims to determine the probability of
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power loss due to the PV system's inability to meet load requirements, fulfill the increasing energy needs, and
advocate for a better environmental outcome.

Novelty of the Present Study

This study evaluates a microgrid photovoltaic system on a campus building using mathematical analysis and
Machine Learning (ML). The reliability of the system is assessed through mathematical analysis, while ML is
employed to understand and predict the availability of photovoltaic power based on solar irradiance and
consumer demand. This innovative research integrates both methods, which are not commonly practiced in
evaluating photovoltaic systems. The ML evaluation results can be implemented in real-time for microgrid
management, ensuring accurate and adaptive monitoring based on solar irradiance conditions and electricity
consumption. Besides offering practical benefits, this study contributes to the advancement of knowledge in
applying mathematical analysis and ML to renewable energy.

Literature Review

The global pursuit of sustainable energy solutions, driven by the imperative of achieving net-zero emissions by
2050, has propelled research into integrating photovoltaic (PV) systems and microgrids. Adefarati et al. [8] laid
a crucial foundation by exploring microgrid power systems' reliability and economic dimensions, underscoring
the necessity for a comprehensive evaluation framework. Building upon this groundwork, Ayesha et al. in [9]
extended the scope by providing insights into the reliability evaluation of energy storage systems, offering a
comprehensive review of grid flexibility options. The year 2021 saw Elazab et al. [6] focusing on the reliable
planning of isolated Building Integrated Photovoltaic systems, emphasizing the importance of robust planning
for standalone systems in achieving sustainability. In 2019, Esan et al. [10] delved into the reliability
assessments of an islanded hybrid PV-diesel-battery system, explicitly addressing challenges in rural
communities and off-grid applications. The methodological aspects of reliability assessments were enriched by
Grandini et al. in [11], who presented an overview of metrics for multi-class classification, contributing
theoretical foundations for evaluating classification models.

Moving into 2020, Masih and Verma [12] optimized and evaluated the reliability of hybrid solar wind energy
systems, highlighting the significance of combining multiple renewable sources for enhanced reliability. In the
subsequent year, Nyamathulla et al. [13] provided an overview of lifetime assessment for multilevel inverters
in grid-connected solar photovoltaic applications, shedding light on the longevity and reliability of power
electronics in PV systems. Obeidat and Shuttleworth [14] contributed to the reliability prediction of PV
inverters, emphasizing the critical components of photovoltaic systems. In 2021, Ostovar et al. [3] presented a
reliability assessment of distribution systems integrating photovoltaic and energy storage, addressing the
challenges of decentralized energy systems. Concurrently, Paleti [15] contributed to the optimization and
reliability evaluation of hybrid power systems, emphasizing the importance of a holistic approach to system
design. The year 2020 saw Putri and Adrianti [5] focusing on calculating photovoltaic reliability for assessing
the Loss of Load Probability, providing a practical metric for system performance. Raghuwanshi and Arya [16]
assessed the reliability of standalone hybrid photovoltaic energy systems, particularly for rural healthcare
centers, addressing the unique challenges of remote applications. The year 2023 witnessed Sonawane et al. in
[4] performing reliability and criticality analysis of a large-scale solar photovoltaic system, employing fault tree
analysis for a comprehensive assessment.

Delving into the theoretical underpinnings of reliability, Syrbe in [17] provided insights into the foundational
understanding of the reliability of systems, contributing to the theoretical aspects of system reliability. Urgun
and Singh [18] showcased innovative approaches to reliability analysis and proposed a hybrid Monte Carlo
simulation and multi-label classification method for composite system reliability evaluation. They further
advanced their work in 2020 by incorporating deep learning enhanced by transfer learning for composite
system reliability analysis [7]. As the narrative unfolds, Basha et al. [19] introduced machine learning,
specifically the Support Vector Machine, in automatic sleep stage classification in 2021, showcasing the
adaptability of ML techniques in diverse fields. Finally, Zhang et al. [20] demonstrated the versatility of
machine learning techniques in fault detection, applying Naive Bayes for bearing fault diagnosis. These
sequential advancements provide a comprehensive overview of the evolving landscape in the reliability
evaluation of photovoltaic systems and microgrids, incorporating technological innovations and methodological
diversifications over the years.
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Experimental Methodology

The research methodology was meticulously chosen to involve the application of mathematical analysis in
assessing the failure rate of the system and the probabilistic failure rate of the generator, specifically
considering solar irradiance availability. Machine learning techniques were employed to enhance the
evaluation of the microgrid's reliability. System analysis critically relies on the evaluation of reliability. This
assessment often adopts a probabilistic methodology [9], which can be further classified into analytical and
simulation-based approaches. The analytical approach necessitates the use of mathematical models and
direct calculations to derive reliability indices. On the other hand, simulation-based methods employ
simulations to replicate the random behavior of each system component based on their repair and failure
rates.

Table 1. Failure and repair rate of various components [12], [14], [16], [241] [27]

No Reliability index Failure rate (yezrs) Repair time (r) in hours
1 PV array 0,05 30

2 PV Inverter 0,0163 26,797

3 Switch 0,08 24

4 Battery 0,01 10

5 Inverter 0,095 50

6 Main grid 0,041 0,078

1 Reliability Evaluation

In this study, the analytical approach employs the Markov model, while the simulation method involves the
application of Machine Learning (ML) to estimate the probability of each component's behavior. The evaluation
of components encompasses the scrutiny of their failure rates, repair rates, and overall failures, shown in
Equations (1), (2), and (3), respectively, taking into consideration the intermittent characteristics of the solar
power source [12], [16].

P(t)=2-e (1)

Q) =p- e ™ (2)
The reliability of the component is determined as

Rt)=21-eH (3)

Based on the Markov model, the time-dependent availability (AV) and unavailability (UV) are represented as
13].
u u

AV(t) = —— ———: e~ *wt
® Ttp A+ € (4)
A A
uv(e) =——-— - gt 5
®) g A+n € (5)

Considering long-term operation, the steady-state availability (AV) and unavailability (UV) is typically expressed
as:

u
AV(t) = ——
® =7 ®)
o = (@)
T Atu
Typically, given that p" A, the unavailability is expressed as:
A hrs
UVit)=—=21-r— (8)
U yr

TR
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2 Reliability indices

The indicators utilized for the reliability of the power supply system in the microgrid include Loss of Load
Probability (LOLP), Loss of Load Expectation (LOLE), Expected Energy Not Supplied (EENS), and Energy Index of
Reliability (EIR). The performance metrics employed for the reliability assessment in this study are briefly
explained as follows [10]. Loss of Load Probability (LOLP)

U
LOLP = ;y;é‘z)m (11)

Loss of Load Expectation (LOLE) is represented as [14]
LOLE = 365 LOLP (12)

Expected Energy Not Supplied (EENS) is shown as [16]
EENS = Layerage * Usystem(ﬂ) (13)

years
The Energy Index of Reliability (EIR) is determined by [15]

EIR =1—EENS (14)

3 Markov Model

The Markov model is utilized to evaluate the simulation frequency and duration within uncertain Photovoltaic
(PV) systems. This model establishes connections between state probabilities and their associated frequencies
and durations. It portrays a system with operational (UP) and failure (Down) states, employing nodes and
branches to depict different states and their transition probabilities, as shown in Figure 1. The model's failure
rate (A) represents the likelihood of transitions from operational to failure states, while the repair rate (u)
denotes the reverse transition [21].

K A

Component B

Ay

Up)

Component A
A1 !#I

{Down)

U A

Figure 1. Microgrid system reliability network diagram

UVsystem = Asystem Tsystem (15)

In this context, Usystem is indicative of system unavailability, reflecting the degree to which the system is non-
operational. Agysem represents the system failure rate, denoting the frequency at which the system
experiences failures within a specific time frame. Meanwhile, 7gy4.m Signifies the average duration of
interruption or downtime encountered by the system. Essentially, Us,semServes as a metric for gauging how
often and for what duration the system undergoes failures or operational disruptions.

This system consists of several main components that work together to ensure a reliable power supply in the
microgrid of the campus area. Firstly, there are Photovoltaic (PV) panels, which capture sunlight and convert it
into electricity [16]. These panels are essential for the renewable energy generation of the system, providing a
sustainable source of electrical power. Along with the PV panels, a switch facilitates the management of
electrical flow within the system. This switch allows seamless transitions between various electrical power
sources or operational modes, ensuring optimal performance. The PV electricity generated by the panels is
converted from direct current (DC) to alternating current (AC) by the PV inverter. This conversion enables
compatibility with standard electrical equipment and a broader electrical grid. Additionally, the system includes
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battery storage, which stores excess electricity generated by the PV system. This stored energy can be utilized
during periods of low sunlight or high demand, enhancing the reliability and resilience of the system.

Furthermore, the system is equipped with a hybrid inverter, which combines the functions of a PV inverter with
the battery and main grid. The main grid serves as an essential component, providing additional power supply
when needed and enabling the exchange of electricity with a broader electrical grid. This integration allows for
efficient management and utilization of the electricity generated by the PV system, with the main grid serving
as backup power and electricity stored by the battery within the system. The system comprises a Photovoltaic,
switch, PV inverter, battery storage, hybrid inverter, and main grid. This system organizes all subsystems in
series and parallel configurations [16]. The reliability network diagram, illustrated in Figure 2, depicts the
arrangement of these subsystems.

PV sw PViny
1 2 — 3
sw
Bat sSwW
9

4 5 I Inverter
Main Grid swW 8
- 6 7 |

Figure 2. Microgrid system reliability network diagram

The reliability model for a series system consisting of two elements is depicted in Figures 3a, 3b, and 3c. The
formula is provided as follows [12]:

n
Aseries = Z A (16)
=1

oA T
i=1M "l
Tseries = n—l (A7)
i=1i
M.rq A.ra A2.ra A1y As,15
o— 1 2 3 I o | 4 5 L .
(a) (b)
Aser,1:Tser,1
Ag.T6 A7.r7 Aot
o— 6 7 5 — o
Apar1lrpar1 As:"s

(c) (d)
Figure 3. Components system (a) Series (b) Series-parallel

In Figure 3d, we present an illustration of the reliability model for a parallel system consisting of two elements.
The formula for evaluating indices in a parallel configuration for battery and main grid is expressed as follows:

Aparalel,l = Aser,zlsers (Tser,z + 7"ser,3) (18)
T " T
Toar 1 = ( ser2 ser3) (19)
(Tserz *+ Tsers )
The configuration in Figure 3b can be expressed mathematically as :
Aparalel,z = Aserlpar,1/18 (%er + rpar.l + Tg (20)
(rser *Tpara ® r8) (21)

7par ,2
(7597" 7par,1 78)
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The last obtained failure rate, repair time, and overall system unavailability are as follows, respectively:

)'system = (ﬂ-par.z + ﬂ-9) (22)
UVsystem = (Apar.z “Tpar,2 + A7) (23)
Uv,
Toar = (24)
system

4 Naive Bayes

Machine Learning (ML) is employed for the analysis of power system reliability, specifically in estimating
reliability indices like Loss of Load Probability (LOLP). ML is used effectively to predict how a system will
behave when random conditions occur. In ML, each sample system status C; < L; reflects whether a loss of
load occurs or not.

Success, if true
621 ! (25)

Failure, else

If the Total Number of Failures (TNF) is known using ML, then we can calculate LOLP by dividing it by the Total
Number of Samples (TNS), as shown in [18

TNF

LOLP = —— 26

TNS (26)
ML efficiently represents the probabilistic behavior of a microgrid system based on fluctuating solar radiation,
providing flexibility in addressing the uncertainty of assessing power system reliability. Reliability is
complemented by the probability of failure [17

R=1-F (27)

Bayes' theorem is applied in the classification problem to utilize Naive Bayes as one of the statistical
approaches for inductive inference [20]. If L represents a hypothesis, and N denotes data situated within a
specific F class, then P(L|N) is termed the posterior probability, expressing the confidence level in hypothesis
L after the provision of data N. The preliminary probability of L for all sample data is denoted as P(L).
P P(L|N) is considered notably more informative than P(L). The connection between P(L|N), P(L), and P(N)
is elucidated by Bayes’s theorem, illustrated as

P (N|L)P(L)

PAINY = =y (28)

By the utilization of Bayes's theorem, the Naive Bayes Classifier can be expressed as

P (N|F)P(F;)
P(FiIN) = —————— 29
GILY) P (29)
The unchanging probability of dataset N for all classes is represented by P(N). P(F;) signifies the number of
training instances in class Fi/q (q being the number of training data instances). In this scenario, P(N|F;). P(F;)
is a component that can be optimized to achieve an optimal P(F;|N), given P(N) and P(F;) remain constants.
Formulated from these assumptions, P(N|F;) is represented as shown

PINIF) = [ [ Panelo (30)
t=1

Here, n, signifies the value of the attribute sample N. The probability value P(n|F;) can be estimated from the
training samples.

5 Support Vector Machine

In Support Vector Machines (SVM), the objective is to determine the best possible line (hyperplane) that
establishes the widest margin between distinct categories in the dataset. This margin is defined by support
vectors, which are the points closest to the line. For Linear SVM, the construction of this line involves weights
(w) and bias (b), where w”X + b = 0. This line is utilized to classify data points. When discussing the nonlinear
version (Nonlinear SVM), a technique known as the kernel trick is employed to handle more intricate patterns
in the data. The function f(x) = sign(dis(x)) determines whether a point belongs to one class or another.
The distance function dis(x) takes into account support vectors and their impact on the decision. In simpler
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terms, SVM strives to establish an optimal boundary between different classes, and this boundary can be
either a straight line (Linear SVM) or a more complex curve (Nonlinear SVM), as shown in Figure 4. The
decision depends on the nature of the data [19].

Positive Hyperplane
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Figure 4. Hyperplane

6 Evaluation Metrics

In this study, evaluation metrics such as Sensitivity, Specificity, Recall, and Accuracy are crucial in assessing
the performance of SVM and Naive Bayes models in classifying failure and success states in power generation
systems [18], [7], [22]. Sensitivity measures how well the model identifies "failure state" conditions. Its
relevance is evident in each False Negative, demanding further analysis by the ML algorithm [7].

Sensitivit e (31)

ensitivity = TP+ FN

The Specificity evaluates how accurately the model classifies "success state" conditions. Specificity reflects the
precision of classifying normal conditions with a generator probability more significant than the load.

TN
SPECifiCify = m (32)

The Recall is essential in identifying all actual system failures, especially when failures have significant
consequences [9], [23].

Recall = e (33)
e = TP Y FN
The Accuracy is measured by comparing the model's predictions with the actual system states [11], [23].
TP+ TN

(34)

A =
Ceuray = b Y TN + FP + FN

Experimental Setup

A microgrid is a power distribution system that caters to the electrical needs of a small, autonomous
community, incorporating one or more distributed generators utilizing renewable energy sources. This research
focuses on the configuration of the microgrid in the Bandung Institute of Technology, Energy Management
Laboratory, as depicted in Figure 5. The microgrid's main components are interconnected with the grid,
involving a photovoltaic system, battery energy storage, loads, and a control system [8].
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Figure 5. SCADA system on microgrid

The power output measurement system from solar panels (PV) in a microgrid system and the loads shown in
Figure 6 within that system, as described in the research by Friansa et al. in [24] and Haq et al. in [25]. The
Intelligent Electronic Device (IED) comprises a power monitor, communication interface, and embedded
system, serving as a local data concentrator [26].
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Figure 6. Microgrid power system
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The process of modeling microgrid reliability indices begins with collecting raw data containing relevant
information for analysis. Subsequently, the data undergoes cleaning and preprocessing stages to address
inconsistencies, missing values, and errors. Afterward, the cleaned dataset is categorized into success and
failure categories based on predefined criteria. Two classification algorithms, Support Vector Machine (SVM)
and Naive Bayes, are then applied to build models based on the categorized dataset. Evaluation is conducted
to assess the performance of both models using appropriate evaluation metrics such as Accuracy, Precision,
Recall, and F1-score. The process concludes after the evaluation of the models is completed, as depicted in

Figure 7.

Clean
Dataset
Determaine
Category
x=1, Succes
Xx=2, Failure
W A 4
SVM Classifier NB Classifier
Classifier Classifier
Training & Training &
Validation Validation
RBF Gauusian
Optimization NB
hd h 4
Find Find
Probabilistic x Probabilistic x
=1,x=2 =1,x=2
Calculate Calculate
Probability each Probability each
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Figure 7. Flowchart ML modelling

Experimental Result

The Photovoltaic System at the Energy Management Laboratory (EML) of Bandung Institute of Technology,
Indonesia, is located at a latitude of 6.89, longitude of 107.61, and an altitude of 770 meters. The average
solar radiation intensity experienced is 141 Wh/m?2/day, as Figure 8a shows monthly solar radiation averages.

29


https://doi.org/10.5614/joki.2024.16.1.3

Jurnal Otomasi Kontrol dan Instrumentasi Vol 16 (1), 2024 ISSN: 2085-2517
https://doi.org/10.5614/joki.2024.16.1.3 E-ISSN: 2460-6340

1000

- SolarRad

800

600

400

o
SolarRad

200

2022-09 2022-11 2023-01 2023-03 2023-05 2023-07 2023-09
Time
30001
—— PVoutput
2500 |
] |
5 2000
g
(b) 51500
S
& 1000
500 |
ol
2022-09 2022-11 2023-01 2023-03 2023-05 2023-07 2023-09
Time
2000
— |oad
1500
B
1000
@ kaamwwmw
500
0
2022-09 2022-11 2023-01 2023-03 2023-05 2023-07 2023-09
Time

Figure 5. Data system microgrid (a) Irradiance (b) PV output (c) Load

The power demand at EML includes various electrical appliances such as lights, TVs, computers, servers, and
other electronic devices. The average hourly power consumption is 710 W, covering AC devices that require an
inverter and battery backup. Figure 8c presents a daily overview of the power consumption profile for reliability
analysis.

In the isolated operation mode, the average solar radiation fluctuates daily. On January 1, 2024, solar
radiation was recorded at 70.13 Wh/m?2/hour, resulting in a PV output power of 225 W with a recorded load
power of 770 W. A noticeable imbalance exists between the power generated by the PV system and the power
demanded by the load. Consequently, surplus power is stored in the battery. If the battery capacity proves
insufficient, the system seamlessly transitions to the On-grid mode. The adjustment of operational modes is
efficiently managed by the Control Center (CC).

It is crucial to note that PV performance is subject to nonlinear parameters, demonstrating a positive
correlation with solar radiation and a negative correlation with temperature. A specific frequency range can be
injected into the load within this microgrid system. Deviating from this range is considered a compromise in the
reliability of the PV system. To ensure the reliability of the acquired data, we initially conducted data
reconciliation and cleaning using the IQR method. The data obtained through this process will be instrumental
in evaluating the reliability of the PV system through simulation methods.
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Result and Discussion

Evaluating reliability indices requires a comprehensive modeling of all components within the microgrid
system. There is both a serial and parallel arrangement within the energy system. Figure 2 illustrates the
presence of a switch that initiates operation in on-grid mode when energy is unavailable in isolated mode.
Results of the reliability assessment reveal the failure and repair rates of the PV system in the microgrid,
documented in Table 2. The reliability index of the serial-parallel system is calculated using the Markov model,
as shown in equations (16 to 18), and the output is presented in Table 2. The Reliability Index computation is
based on isolated mode conditions.

Table 2. Reliability indices are based on different configurations using the Markov model.

No Reliability index Isolated On-Grid
1 Asystem/YTS 2,805 0.575
2 Tsystem (ATS) 15,64 12,36
3 UVsystem (hrs/yrs) 43,592 7,107
4 MUT 0,3565 1,7391
5 LOLP 0,0050 0,0008
dys

6 LOLE(—) 1,8285 0,2961
yrs
kWh

7 EENS(——) 31,124 5,069
year

8 EIR 0.956 0,9928

In isolated mode, the energy system exhibits a failure frequency of 2.805/year, an outage duration of 43.85
hours/year, and an unavailability of 15.64 hours. Conversely, during on-grid operating mode, the failure
frequency is 0.575/year, with an outage duration of 7.107 hours/year and an unavailability of 12.36 hours.
The LOLP for the energy system is determined to be 0.0050 in isolated mode and 0.0008 in on-grid mode.
Additionally, the Energy Not Served (EENS) is calculated at 31.124 kWh/year in isolated mode and 5.069
kWh/year in on-grid mode. These indicate that the on-grid operating mode is more reliable than the isolated
mode. The evidence is the significant decrease in failure frequency, outage duration, and system unavailability
time in the on-grid mode. Furthermore, the lower LOLP and smaller EENS in the on-grid mode also suggest that
the system is more efficient in meeting energy demands and reducing unmet energy when operating in the on-
grid mode. Therefore, the on-grid mode may be a preferred option for improving the reliability and efficiency of
the energy system.

Table 3. Index evaluation-based solar radiation data

Index Evaluation Naive Bayes Support Vector Machine

Success States 2833 2413

Failure States 5927 6347

LOLP 0.6765 0.7245
Sensitivity 0.9979 0.9987
Specificity 0.9978 0.9978
Recall 0.9978 0.9978
Accuracy 0.9566 0.9988

Table 3 presents an analysis of the reliability of the hybrid PV/Battery energy system utilizing the Machine
Learning (ML) method, which is based on LOLP indices and failure rates. The application of ML enables real-
time assessments of system reliability. Although the system still exhibits lower reliability due to load
consumption surpassing the average available PV power, the ML method proves valuable in providing reliable
projections. The assessment results indicate that, annually, the LOLP index values using the ML method are
0.6765 and 0.7245, respectively.
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Figure 7. Monthly LOLP and Reliability index

In Figures 9 and 10, an examination of PV power availability is conducted concerning monthly average load
requirements and reliability indices. The LOLP is introduced, and the assessment reveals that the reliability
index reached optimal levels in October, characterized by low LOLP rates. Nevertheless, during periods outside
of October, the system exhibits an average reliability index marked by elevated LOLP rates, as the values do
not approach zero. A higher LOLP value, when compared to zero, corresponds to diminished system reliability.

This research presents a more holistic approach to evaluating the reliability of PV systems in microgrids
compared to the studies conducted by Widjayanto [21] and Putri [5]. Widjayanto focused on assessing
nanogrid reliability using a Markov model, while Putri calculated PV reliability using LOLP calculation and solar
irradiance probability methods. However, neither study utilized machine learning (ML) methods to evaluate
LOLP in real-time, as this research did. By leveraging ML, this study provides a more dynamic and accurate
assessment of system reliability, enabling early detection of potential failures. Additionally, this research
presents an analysis of PV power availability to monthly average load requirements and reliability indices,
providing a deeper understanding of system performance dynamics.

Conclusions

This research highlights the importance of evaluating the reliability of microgrid systems to ensure a stable
electricity supply. The analysis reveals that in isolated operation mode, the system frequently experiences
failures, with a frequency of 2.805 per year and a downtime duration of 43.85 hours per year. However, when
operating in on-grid mode, both the frequency of failures and downtime duration significantly decrease to
0.575 per year and 7.107 hours per year, respectively. The analysis results using Markov, Naive Bayes, and
SVM models confirm that the microgrid system exhibits significant unreliability, especially under conditions of
solar radiation availability and PV output not meeting load demand, with a LOLP reaching 0.7245.
Nevertheless, in on-grid operation mode, the system components demonstrate high reliability, as evidenced by
a very low LOLP of 0.0008. The methodology employed in this manuscript can be implemented in real-time
power generation systems to minimize operational costs and energy consumption while enhancing the
reliability of the power generation system.

32


https://doi.org/10.5614/joki.2024.16.1.3

Jurnal Otomasi Kontrol dan Instrumentasi Vol 16 (1), 2024 ISSN: 2085-2517
https://doi.org/10.5614/joki.2024.16.1.3 E-ISSN: 2460-6340

References

[1] International Energy Agency, "Net Zero by 2050: A Roadmap for the Global Energy Sector," Int. Energy
Agency, p. 224, 2021, [Online]. Available: https://www.iea.org/reports/net-zero-by-2050

[2] International Renewable Energy Agency (IRENA), World energy transitions outlook 2022. 2022. [Online].
Available: https://irena.org/Digital-Report/World-Energy-Transitions-Outlook-
2022%0Ahttps://irena.org/publications/2021/March/World-Energy-Transitions-Outlook

[3] S. Ostovar, A. Esmaeili-Nezhad, M. Moeini-Aghtaie, and M. Fotuhi-Firuzabad, "Reliability assessment of
distribution system with the integration of photovoltaic and energy storage systems," Sustain. Energy,
Grids Networks, vol. 28, Dec. 2021, doi: 10.1016/j.segan.2021.100554.

[4] P. R. Sonawane, S. Bhandari, R. B. Patil, and S. Al-Dahidi, "Reliability and Criticality Analysis of a Large-
Scale Solar Photovoltaic System Using Fault Tree Analysis Approach," Sustainability, vol. 15, no. 5, p.
4609, Mar. 2023, doi: 10.3390/su15054609.

[5] Y. K. Putri and A. Adrianti, "Calculation of Photovoltaic Reliability for Assessing Loss of Load Probability," in
7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE
2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, pp. 230-235. doi:
10.1109/ICITACEE50144.2020.9239171.

[6] R. Elazab, J. Eid, and A. Amin, "Reliable planning of isolated Building Integrated Photovoltaic systems,"
Clean Energy, vol. 5, no. 1, pp. 32-43, 2021, doi: 10.1093/ce/zkaa028.

[71 D. Urgun and C. Singh, "Composite System Reliability Analysis using Deep Learning enhanced by Transfer
Learning," 2020 Int. Conf. Probabilistic Methods Appl. to Power Syst. PMAPS 2020 - Proc., pp. 1-6, 2020,
doi: 10.1109/PMAPS47429.2020.9183474.

[8] T. Adefarati, R. C. Bansal, and J. J. Justo, "Reliability and economic evaluation of a microgrid power
system," Energy Procedia, vol. 142, pp. 43-48, 2017, doi: 10.1016/j.egypro.2017.12.008.

[9] Ayesha, M. Numan, M. F. Baig, and M. Yousif, "Reliability evaluation of energy storage systems combined
with other grid flexibility options: A review," J. Energy Storage, vol. 63, no. January, p. 107022, 2023, doi:
10.1016/j.est.2023.107022.

[10] A. B. Esan, A. F. Agbetuyi, O. Oghorada, K. Ogbeide, A. A. Awelewa, and A. E. Afolabi, "Reliability
assessments of an islanded hybrid PV-diesel-battery system for a typical rural community in Nigeria,"
Heliyon, vol. 5, no. 5, p. e01632, 2019, doi: 10.1016/j.heliyon.2019.e01632.

[11] M. Grandini, E. Bagli, and G. Visani, "Metrics for Multi-Class Classification: an Overview," pp. 1-17, 2020,
[Online]. Available: http://arxiv.org/abs/2008.05756

[12] A. Masih and H. K. Verma, "Optimization and Reliability Evaluation of Hybrid Solar-Wind Energy Systems
for Remote Areas," Int. J. Renew. Energy Res., vol. 10, no. 4, pp. 1696-1707, 2020, doi:
10.20508/ijrer.v10i4.11396.88055.

[13] S. Nyamathulla, D. Chittathuru, and S. M. Muyeen, "An Overview of Multilevel Inverters Lifetime
Assessment for Grid-Connected Solar Photovoltaic Applications," Electron., vol. 12, no. 8, 2023, doi:
10.3390/electronics12081944.

[14] F. Obeidat and R. Shuttleworth, "PV Inverters Reliability Prediction," World Appl. Sci. J., vol. 35, no. 2, pp.
275-287,2017, doi: 10.5829/idosi.wasj.2017.275.287.

[15] S. Paleti, "Optimization and Reliability Evaluation of a Hybrid Power System," vol. 1, no. 7, pp. 14-20,
2014.

[16] S. S. Raghuwanshi and R. Arya, "Reliability evaluation of standalone hybrid photovoltaic energy system for
rural healthcare centre," Sustain. Energy Technol. Assessments, vol. 37, no. December 2019, p. 100624,
2020, doi: 10.1016/j.seta.2019.100624.

[17] M. Syrbe, "Reliability of Systems.," Process Autom., no. 2, pp. 56-60, 1983, doi:
10.1201/9781315273150-3.

[18] D. Urgun and C. Singh, "A Hybrid Monte Carlo Simulation and Multi Label Classification Method for
Composite System Reliability Evaluation," IEEE Trans. Power Syst., vol. 34, no. 2, pp. 908-917, 2019, doi:
10.1109/TPWRS.2018.2878535.

[19] A. J. Basha, B. S. Balaji, S. Poornima, M. Prathilothamai, and K. Venkatachalam, "Support vector machine
and simple recurrent network based automatic sleep stage classification of fuzzy kernel," J. Ambient
Intell. Humaniz. Comput., vol. 12, no. 6, pp. 6189-6197, 2021, doi: 10.1007/s12652-020-02188-4.

[20] N. Zhang, L. Wu, J. Yang, and Y. Guan, "Naive Bayes bearing fault diagnosis based on enhanced
independence of data," Sensors (Switzerland), vol. 18, no. 2, pp. 1-17, 2018, doi: 10.3390/s18020463.

[21] E. Joelianto, A. Turnip, and A. Widyotriatmo, Cyber Physical, Computer and Automation System. 2021. doi:
10.1007/978-981-33-4062-6.

[22] C. A. Yoga, A. J. Rodrigues, and S. O. Abeka, "Hybrid Machine Learning Approach for Attack Classification
and Clustering in Network Security," Int. J. Comput. Appl., vol. 185, no. 31, pp. 45-51, 2023, doi:
10.5120/ijca2023923076.

33


https://doi.org/10.5614/joki.2024.16.1.3

Jurnal Otomasi Kontrol dan Instrumentasi Vol 16 (1), 2024 ISSN: 2085-2517
https://doi.org/10.5614/joki.2024.16.1.3 E-ISSN: 2460-6340

[23] B. H. Sirenden, P. Mursanto, and S. Wijonarko, "Dynamic texture analysis using Temporal Gray scale
Pattern Image for water surface velocity measurement," Image Vis. Comput., vol. 137, no. November
2022, p. 104749, 2023, doi: 10.1016/j.imavis.2023.104749.

[24] K. Friansa, I. N. Haqg, B. M. Santi, D. Kurniadi, E. Leksono, and B. Yuliarto, “Development of Battery
Monitoring System in Smart Microgrid Based on Internet of Things (loT),” Procedia Eng., vol. 170, pp.
482-487,2017, doi: 10.1016/j.proeng.2017.03.077.

[25] I. N. Haq, D. Kurniadi, E. Leksono, B. Yuliarto, and F. X. N. Soelami, "Performance analysis of energy
storage in smart microgrid based on historical data of individual battery temperature and voltage
changes," J. Eng. Technol. Sci., vol. 51, no. 2, pp. 149-169, 2019, doi:
10.5614/j.eng.technol.sci.2019.51.2.1.

[26] E. Leksono et al., "Development of Non-Intrusive Load Monitoring of Electricity Load Classification with
Low-Frequency Sampling Based on Support Vector Machine," J. Eng. Technol. Sci., vol. 55, no. 2, pp.
109-119, 2023, doi: 10.5614/j.eng.technol.sci.2023.55.2.1.

[27] PLN, "Statistik PLN 2021 (Unaudited)," 2022. [Online]. Available:
[https://web.pln.co.id/statics/uploads/2022/03/Statistik-PLN-2021-Unaudited-21.2.22.pdf]. Accessed:

October 28, 2023.

34


https://doi.org/10.5614/joki.2024.16.1.3

