Perancangan Safety Shutdown System pada Kepala Sumur Minyak dengan Menggunakan Analisis Pemodelan Petrinet

Alfeus Leonardo, Endra Julianto, Sutanto Hadisupadmo Program Studi Teknik Fisika, Institut Teknologi Bandung Jalan Ganesha 10 Bandung

Abstrak

Dalam proses produksi minyak dan gas, kepala sumur memegang peranan penting, sebab jika terjadi masalah di kepala sumur akan menggangu produksi minyak dan gas serta dapat menyebabkan kegagalan produksi. Permasalahan kegagalan pada kepala sumur dapat diminimumkan dengan memasang Safety Shutdown System, Safety Shutdown System merupakan suatu prosedur untuk mematikan operasi kepala sumur dengan aman pada saat terjadi masalah. Oleh karena itu, perancangan Safety Shutdown System yang baik sangat diperlukan agar tidak terjadi blow out di sumur. Jala Petri Sinyal Terinterpretasi (JPST) merupakan suatu pemodelan sistem diskrit yang memberikan informasi tentang struktur dan perilaku dinamik dari sistem yang dimodelkan. Perancangan menggunakan pemodelan JPST bertujuan untuk menganalisis suatu sistem sebelum mengimplementasikannya di lapangan. Pemodelan Safety Shutdown System dengan JPST dapat meminimumkan waktu perancangan dan kegagalan safety system.

Pemodelan JPST dimulai dengan mengidentifikasi semua masukan dan keluaran pada sistem, lalu menentukan logika masukan pada tiap transisi dan daftar keluaran pada setiap place. Setelah itu pemodelan dilanjutkan dengan konstruksi dan analisis. Hasil analisis pada pemodelan ini menunjukkan bahwa sistem memiliki sifat keselamatan, keterbatasan, daya hidup, dan didapat nilai transparansi sebesar 0,86 dari skala 1, menunjukkan bahwa sistem bersifat transparan. Setelah melakukan pemodelan JPST, dilakukan simulasi dengan cara menerjemahkan bentuk JPST ke dalam ladder diagram. Hasil ladder diagram yang diterjemahkan dari model JPST dan ladder diagram yang dibuat langsung dari diagram logika memiliki hasil yang sedikit berbeda. Karena dalam pemodelan JPST terdapat asumsi - asumsi ideal.

Kata Kunci: JPST, Ladder Diagram, Safety Shutdown System, kepala sumur

1 Pendahuluan

Dewasa ini perusahaan minyak dan gas bumi semakin berkembang pesat di dalam dunia bisnis, hal tersebut menjadikan suatu tantangan kepada para engineer untuk dapat mengoptimalkan produksi atau tetap dapat menjaga kestabilan proses dengan memberikan perawatan yang lebih baik dan efektif. Dalam produksi minyak dan gas, kepala sumur memegang peranan penting, sebab jika terjadi masalah dalam kepala sumur hal tersebut akan sangat menggangu produksi minyak dan gas dan dapat menyebabkan kegagalan produksi.

Permasalahan tersebut menjadi latar belakang penelitian ini untuk merancang sistem kontrol pada kepala sumur yang lebih baik dari sistem yang ada saat ini untuk menghindari terjadinya kegagalan produksi yang disebabkan oleh kegagalan sistem.

2 Teori Dasar

2.1 Jala Petri Sinval Terintepretasi (JPST)

JPST adalah suatu metode pemodelan sistem yang memberikan informasi tentang struktur dan perilaku dinamik dari sistem yang dimodelkan. Informasi ini digunakan untuk mengevaluasi sistem yang dimodelkan dan memberikan alternatif perubahan dan pengembangannya. Salah satu keunggulan JPST adalah menampilkan secara eksplisit kondisi-kondisi dimana kejadian dapat terpicu. JPST adalah pengembangan dari jala Petri sederhana yang dilengkapi deskripsi masukan dan keluaran dengan harga biner. 0 dan 1.

2.2 Sifat - Sifat JPST

JPST memiliki beberapa sifat yang dapat digunakan untuk menganalisis perilaku sistem, diantaranya adalah keselamatan (Safety), keterbatasan (Boundedness) dan daya hidup (Liveness) serta ketercapaian (Reachability).

2.2.1 Keselamatan (Safety)

Suatu place dalam JPST dikatakan safe (aman/selamat secara perangkat lunak) jika jumlah token dalam place tersebut tidak pernah lebih dari satu.

Suatu JPST dikatakan aman jika seluruh fungsi kondisi pemicuan JPST φ terdefinisi dengan baik dan keluaran JPST Ω bernilai benar, tanpa trivial dan bebas kontradiksi seperti telah dijelaskan sebelumnya.

2.2.2 Keterbatasan (Boundedness)

Sifat ini merupakan perluasan dari sifat keselamatan. Sifat keterbatasan mensyaratkan bahwa jumlah token di dalam suatu place tidak boleh melebihi suatu bilangan integer k. Pada sistem pemicuan berlaku seperti saklar (on dan off) maka k bernilai satu.

2.2.3 Daya Hidup (*Liveness*)

Sifat ini menyatakan kemampuan suatu transisi untuk menjadi terpicu. Jika tidak ada satupun transisi dalam JPST tersebut dapat terpicu maka Jala berada dalam keadaan yang disebut "terkunci" (deadlock).

JPST akan disebut memiliki daya hidup tak terbatas atau berkesinambungan jika seluruh transisi di dalam jala tersebut bebas dari keadaan terkunci. Inilah salah satu hal yang hendak dicapai pada perancangan sistem kontrol even diskrit.

2.2.4 Ketercapaian (Reachability)

Himpunan ketercapaian (Reachability Set/RS_{SIPN}) berfungsi untuk menggambarkan semua pengisian tokenpada place yang mungkin tercapai berdasarkan penandaan keadaan awalnya. Dari RSJPST dapat diperoleh diagram ketercapaian (Reachability Graph) yang dapat dipakai untuk memprediksi kesinambungan sistem.

Penandaan M merupakan vektor kolom (nx1) yang berisikan penandaan place tertentu dengan token. Ketika suatu transisi tercapai pada suatu penandaan M, penandaan yang baru M' dicapai menurut persamaan [1]:

 $M'(pi)=M(pi)+(OUTxN)-(INxN) \forall pi \in P(1)$

ISSN: 2085-2517

Dimana:

IN : (PXT) merupakan sebuah fungsi masukan dari place ke transisi.

OUT : (TXP) merupakan sebuah fungsi keluaran dari transisi ke place.

N merupakan sebuah fungsi sesaat yang memicu terjadinya perubahan penandaan.

2.2.5 Transparansi

Transparansi merupakan sifat untuk mengukur kefleksibelan dan kehandalan perancangan JPST. Perancangan yang transparan didefinisikan sebagai berikut:

- Perancangan harus mudah dan jelas untuk mengamati keadaan sistem yang terjadi saat itu dan berikutnya.
- Perancangan harus memiliki kemungkinan interpretasi algoritma yang lain

Ada 8 kriteria transparansi yang akan dijabarkan berikut [2]:

1. Komentar (#t₁), sebaiknya setiap *place* dan transisi memiliki komentar.

Romentar (#11), Sepaikinya setiap piase anti-Persamaan yang digunakan : # $t_1 = \frac{\#komentar}{\#Place+\#transisi}$

Masukan bukan trivial (#t2), sebaiknya tidak terdapat sinyal masukan yang tidak mempengaruhi sistem kontrol.

Persamaan yang digunakan: # $t_2 = 1 - \frac{\text{#Masukan Trivial}}{\text{#Max Masukan}}$

3. Keluaran bukan trivial (#t3), sebaiknya tidak terdapat sinyal keluaran yang diset sama setiap saat

Persamaan yang digunakan: # $t_3 = 1 - \frac{\#Keluaran Trivial}{\#Max Keluaran}$

4. Keluaran terdefinisi (#t4), sebaiknya aksi keluaran benar dan bebas dari kontradiksi.

Persamaan yang digunakan: # $t_4 = \frac{\# Keluaran Benar}{\# Max Keluaran}$

- 5. Keamanan / Safety (#t5), jika token pada setiap place terbatas jumlahnya. Persamaan yang digunakan: $\#t_4 = \begin{cases} 1, jika \ jala \ aman \\ 0, jika \ jala \ tidak \ aman \end{cases}$
- 6. Kesetaraan (#t6), sebaiknya arah busur mengikuti satu arah saja. Persamaan yang digunakan: # $t_6 = \frac{\#Jumlah\ busur\ dengan\ arah\ yang\ dominan}{\#Jumlah\ semua\ busur}$
- 7. Perpotongan (#t7), sebaiknya tidak teralu banyak perpotongan garis busur Persamaan yang digunakan:

 $\#t_7 = \begin{cases} 1 - \frac{\#Jumlah\ perpotongan}{5}, jika\ jumlah\ perpotongan < 5\\ 0, jika\ jumlah\ perpotongan > 5, \end{cases}$

8. Penandaan Stabil (#t8), sebaiknya tidak ada penandaan transien atau tidak stabil pada Grafik Ketercapaian.

Persamaan yang digunakan: # $t_{\mathrm{g}}=1-rac{\#\mathit{Jumlah Busur yang Memicu Penandaan Transien}}{}$ # Jumlah semua busur

Kedelapan kriteria tersebut kemudian dirata-ratakan untuk mendapatkan nilai transparansi bagi penandaan JPST.

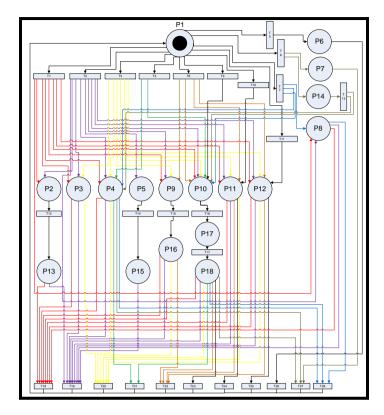
2.3 Representasi JPST dalam Diagram Ladder

Pengkodean algortima JPST pada PLC dilakukan dengan membuat diagram ladder dan daftar instruksi berdasarkan JPST yang dimaksud.

Berikut ini tata cara penyusunan daftar instruksi dan diagram ladder berdasarkan JPST yang bersangkutan [3].

1. Pengkodean transisi

Ti:	LD	PP1	(* Ti: jika <i>place</i> awal pP1 tertandai *)
	AND	PP2	(* jika <i>place</i> awal pP2 tertandai *)
	ANDN	Pp1	(* dan <i>plac</i> e tujuan Pp1 tidak tertandai *)
	ANDN	Pp2	(* dan <i>plac</i> e tujuan Pp2 tidak tertandai *)
	AND	f(E)	(* dan kondisi pemicuan terpenuhi *)


3. Pengkodean place

Pi:	LD	Pi	(* jika <i>plac</i> e Pi ditandai*)
	S	Oi	(* set 0i *)
	R	Oj	(* dan reset Oj *)
Pj:	LD	Pj	(* Jika <i>plac</i> e Pj ditandai *)

3 Perancangan Pengontrol Safety Shutdown System pada Kepala Sumur

Safety Shutdown System pada kepala sumur adalah suatu prosedur safety untuk melakukan shutdown pada kepala sumur. Safety Shutdown System berfungsi untuk mencegah terjadinya hal-hal yang dapat merugikan, seperti terjadinya kerusakan pada instrument, komponen-komponen pada kepala sumur, pipa, dan kemungkinan terburuk bisa terjadi blow out. Maka dalam perancangan pengontrol untuk Safety Shutdown System harus dilakukan dengan baik untuk menghindari terjadinya hal-hal tersebut.

Representasi perancangan pada JPST 3.1

Gambar 1 Representasi perancangan JPST

Aksi keluaran pada tiap place (ω) direpresentasikan dengan (1) bila berada dalam kondisi terbuka atau aktif dan (0) bila kondisi keluaran sedang dalam kondisi tertutup atau tidak aktif. Di bawah ini merupakan tabel yang menunjukan daftar place dan aksinya.

ISSN: 2085-2517

Tabel 1 Daftar place dan aksinya

No		Aksi Keluaran Tiap Place	
Place	Definisi	ω (01,02,03,04,05,06,07,08,09,,022)	
p1	Idle (sistem berialen nermel)	,	
р⊥	Idle (sistem berjalan normal)	(0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1	
p2	Emergency Shut Down 1	(0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	
рЗ	Emergency Shut Down 1.1	(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0	
p4	Shut Down 2	(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1	
р5	Incomer CB'S of supplyby ORMAT'sterbuka	(0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1	
р6	Choke Valve dalam keadaan tertutup	(0,0,0,0,0,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1	
р7	Choke Valve dalam keadaan diam	(0,0,0,0,0,0,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1)	
p8	Export ESDV dalam keadaan tertutup	(0,0,0,0,0,0,0,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1)	
р9	Shut Down 2.Y	(0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1	
p10	Shut Down 3.53W	(0,0,0,0,0,0,1,0,1,1,1,1,1,1,0,0,0,0,0,1,1)	
p11	Shut Down 3.Y.1	(0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,1)	
p12	Shut Down 3.Y.2	(0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,0)	
p13	Emergency Shut Down 1	(1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0	
p14	Shut Down 2 dan preset time belum terpenuhi	(0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1	
p15	Suplai listrik terisolasi	(0,0,0,0,0,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1	
p16	Shut Down 2.Y dan preset time telah dipenuhi	(0,0,0,0,0,0,0,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1)	
p17	Master Valve tertutup	(0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,1,1)	

3.2 Mekanisme Perpindahan Proses yang Terjadi

Pada pemodelan Safety Shutdown System pada kepala sumur ini didefinisikan berbagai keadaan yang ditunjukan dengan penandaan place oleh token. Berikut merupakan mekanime perpindahan token.

Т	Place Asal	Place Tujuan	Logika Masukan
T1	P1	P2,P3,P4,P8,P9,P10,P11,P12	i ₁ v i ₂ v i ₃ v i ₄ v i ₅ v i ₆
T2	P1	P2,P3,P4,P5,P8,P9,P10,P11,P12	$i_{12} \wedge i_{13}) \vee (i_{13} \wedge i_{14}) \vee (i_{12} \wedge i_{14})$
Т3	P1	P3,P4,P9,P10,P11,P12	$ \begin{smallmatrix} y, (i_{15} & \Lambda & i_{16}) & y, (i_{16} & \Lambda & i_{17}) \\ (i_{18} & \Lambda & i_{19}) & (i_{19} & \Lambda & i_{20}) & v, (i_{15} & \Lambda & i_{17}) \\ 0 & (i_{18} & \Lambda & i_{20}) & (i_{18} & \Lambda & i_{20}) & 0 \end{smallmatrix} $
T4	P1	P4,P10	121, Vilag V 132/Y 134 1,1
T5	P1	P6	i ₂₄ v i ₂₅ v i ₂₆
Т6	P1	P7,P14	i ₂₇
Т7	P1	P4,P8,P10	i ₂₈
Т8	P1	P9,P10,P11,P12	i ₂₉
Т9	P1	P10	i ₃₀ v i ₃₁ v i ₃₂ v i ₃₃ v i ₃₄ v i ₃₅
T10	P1	P11	y i ₃₆ v i ₃₇ v i ₃₈ v i ₃₉ v i ₄₀ v i ₄₁
T11	P1	P12	i ₄₃
T12	P2	P13	t = 30 detik
T13	P14	P4,P10	t = 24 jam
T14	P5	P15	t = 30 detik
T15	P9	P16	t = 20 detik
T16	P10	P17	t = 10 detik
T17	P17	P18	t = 20 detik
T18	P13,P3,P4,P8,P 16,P18,P11,P12	P1	$\overline{l_1} \wedge \overline{l_2} \wedge \overline{l_3} \wedge \overline{l_4} \wedge \overline{l_5} \wedge \overline{l_6}$
T19	P13,P3,P4,P15, P8,P16,P18,P11	P1	$t_{12}^{\frac{1}{4}} \sqrt[4]{t_{13}^{\frac{1}{2}}} \sqrt[4]{t_{13}^{\frac{1}{2}}} \sqrt[4]{t_{14}^{\frac{1}{2}}} \sqrt[4]{t_{14}} \sqrt[4]{t_{12}} \sqrt[4]{t_{14}} \sqrt[4]{t_{14}} \sqrt[4]{t_{14}} \sqrt[4]{t_{14}} \sqrt[4]{t_{14}} \sqrt[4]{t_{14}^{\frac{1}{2}}} \sqrt[4]{t_{14}^{\frac{1}{2}}}} \sqrt[4]{t_{14}^{\frac{1}{2}}} \sqrt[4]{t_{14}^{\frac{1}{2}}} \sqrt[4]{t_{14}^{\frac{1}{2}}}} \sqrt[4]{t_{14}^{\frac{1}{2}}} \sqrt[4]{t_{14}^{\frac{1}{2}}} \sqrt[4]{t_{14}^{\frac{1}{2}}}} \sqrt[4]{t_{14}^{\frac{1}{2}}} \sqrt[4]{t_{14}^{\frac{1}{2}}}} \sqrt[4]{t_{14}^{\frac{1}{2}}} \sqrt[4]{t_{14}^{\frac{1}{2}}}} \sqrt[4]{t_{14}^{\frac{1}{2}}$
T20	P3,P4,P16,P18, P11,P12	P1	$\frac{\left(\overline{l_{15}} \vee \overline{l_{16}}\right) \wedge \left(\overline{l_{16}} \vee \overline{l_{17}}\right) \wedge \left(\overline{l_{15}} \vee \overline{l_{17}}\right)}{\overline{l_{19}} \vee \overline{l_{19}}) \wedge \left(\overline{l_{19}} \vee \overline{l_{20}}\right) \wedge \left(\overline{l_{18}} \vee \overline{l_{20}}\right)}$
T21	P4,P18	P1	$\overline{\iota_{21}} \wedge \overline{\iota_{22}} \wedge \overline{\iota_{23}} \wedge \overline{\iota_{24}}$
T22	P16,P18,P11,P1 2	P1	ī ₂₉
T23	P18	P1	$\overline{l_{30}} \wedge \overline{l_{31}} \wedge \overline{l_{32}} \wedge \overline{l_{33}} \wedge \overline{l_{34}} \wedge \overline{l_{35}}$
T24	P11	P1	$\frac{\Lambda}{l_{42}^4} \frac{1}{36} \Lambda \overline{l_{27}} \Lambda \overline{l_{28}} \Lambda \overline{l_{29}} \Lambda \overline{l_{40}} \Lambda \overline{l_{41}}$
T25	P12	P1	143

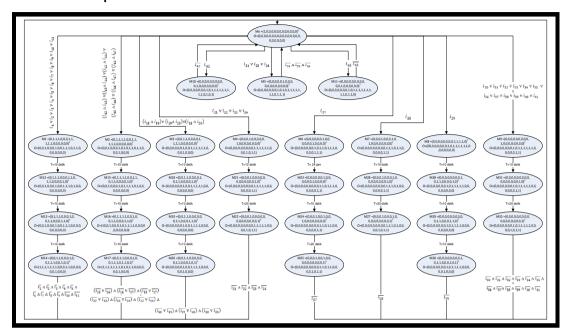
Т	Place Asal	Place Tujuan	Logika Masukan
T26	P6	P1	$\overline{\iota_{24}} \wedge \overline{\iota_{25}} \wedge \overline{\iota_{26}}$
T27	P4,P7,P18	P1	ī ₂₇
T28	P4,P8,P18	P1	128

Analisis Pemodelan Dan Simulasi

4.1 Keselamatan (Safety) da Keterbatasan (Boundedness)

Sistem dapat dikatakan memenuhi sifat keselamatan karena tidak ada jumlah token yang lebih dari satu dalam suatu place

4.2 Transparansi


Setelah didapati seluruh nilai dari kedelapan kriteria, maka nilai transparansi untuk perancangan JPST ini adalah T= $\frac{1+1+1+1+1+0.885+0+1}{2}$ = 0.86 dari skala 1. Hal ini menunjukan bahwa perancangan JPST ini bersifat transparan.

4.3 Daya Hidup

Dapat dilihat dari diagram ketercapaian menunjukan bahwa setidaknya terdapat satu penandaan yang dapat dicapai dari suatu penandaan. Dengan demikian mekanisme proses pada sistem dapat dikatakan berkesinambungan (live) atau tidak mengalami kebuntuan (deadlock).

ISSN: 2085-2517

4.4 Ketercapaian

Gambar 2 Diagram ketercapaian

5 Kesimpulan

Melalui seluruh hasil perancangan dan analisis dapat ditarik beberapa kesimpulan dalam penelitian ini.

- 1. Hasil analisis terhadap masukan dan keluaran pada Safety Shutdown Sysytem pada kepala sumur menunjukkan tidak adanya konflik dan kontradiksi yang menjamin sifat aman dan kesinambungan sistemdengan nilai transparansi sebesar 0.86 dari skala 1.
- 2. Hasil simulasi diagram ladder hasil terjemahan dari JPST dan diagram ladder yang secara langsung dirancang dari logic diagram menunjukan sedikit perbedaan. Perbedaan tersebut dikarenakan asumsi yang digunakan dalam merancang JPST. Namun kedua diagram ladder menunjukan sifat aman dan berkesinambungan.

6 **Daftar Pustaka**

- [1] Viswanadham, N.; Narahari, Y., Performance Modeling of Automated Manufacturing Systems, New York, Prentice Hall.
- [2] Frey, George; Litz, Lothar, Transparency Analysis of Petri Net Based Logic Controllers-A Measure for Software Quality in Automation, Proceedings of The American Control Conference ACC 2000, Chicago, 28-30 June 2000.
- [3] Frey, George, Automatic Implementation of Petri Net Based Control Algoruthms on PLC, Proceedings of The American Control Conference ACC 2000, Chicago, 28-30 June 2000.