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Abstract. Understanding urban morphology is crucial for identifying energy inefficiencies and 

improving sustainable energy planning, especially in rapidly urbanizing cities. Urban morphology 

influences how electricity is distributed and consumed, while energy efficiency is a core target of 

Sustainable Development Goal 7 (SDG-7). This study examined the relationship between urban 

morphology and electrification efficiency, using night-time light imagery as a proxy for energy 

distribution. NTL data combined with population data from WorldPOP were processed through 

zonal statistics in GIS to calculate energy consumption per morphology level. Electrification data 

from the national statistics agency were correlated with light intensity to validate NTL as a 

reliable proxy. The results reveal significant variations in electrification efficiency across urban 

morphologies. The City Center category demonstrates the highest efficiency at 59.96%, indicating 

optimized electricity use relative to its dense infrastructure and population. In contrast, the Urban 

Fringe category has the lowest efficiency, at 4.30%, suggesting an imbalance between electricity 

supply and actual utilization. Additionally, the Inner Urban category (14.59%) and the Sub Urban 

category (5.64%) exhibit intermediate efficiency levels, while the Rural Hinterland category 

(8.24%) and the Urban Periphery category (7.28%) indicate that a portion of their electricity 

consumption may be allocated for non-residential activities, such as street lighting and 

infrastructure operations rather than for direct household use. These findings underscore the 

importance of spatially-informed electrification planning to optimize energy distribution based on 

urban structure and population needs. By incorporating data-driven strategies and smart grid 

technologies, policymakers can enhance energy efficiency, improve electrification access, and 

support more sustainable urban energy policies aligned with SDG-7. 

 

Keywords. night-time light imagery, urban morphology, electrification efficiency, spatial energy 

planning 

 

Introduction   
Cities or urban areas are dynamic and complex systems that continuously evolve, challenging 

traditional notions of urban equilibrium (Batty, 2005, 2017; Batty & Cheshire, 2011; Medda et 

al., 2009). This dynamic nature presents significant challenges for urban planners in 

understanding and managing ongoing changes. To comprehend and plan for dynamic urban 
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environments, a complex systems approach is essential, acknowledging that urban areas consist 

of various interconnected elements (Batty, 2009; Baynes, 2009; Nel et al., 2018). 

One crucial element in urban dynamics is energy consumption. Equitable and efficient energy 

distribution poses a key challenge in development planning, given the ever-increasing energy 

demands associated with urban growth. Energy efficiency has become a global policy objective 

(SDG 7) (Di Foggia, 2018; Zakari et al., 2022), aiming to reduce carbon dioxide (CO2) 

emissions (Vehmas et al., 2018). Energy efficiency is seen as one of the solutions to 

environmental issues (Ibrahim et al., 2023; Radzi & Hassan, 2020). A high level of energy 

efficiency indicates more sustainable and effective energy consumption (Muniz et al., 2023; 

Soltangazinov et al., 2020). Conversely, energy consumption is considered inefficient when it 

requires more energy input than necessary, rendering it unsustainable. However, a major 

challenge in contemporary urban studies lies in determining which parts of the urban system 

need optimization or energy efficiency improvements due to energy inefficiency. 

The physical configuration of urban areas, known as urban morphology, significantly influences 

energy consumption levels in urban regions. Factors such as population density, the shape and 

layout of buildings, and road networks all play vital roles in determining energy consumption 

rates (Galal, 2019; Li et al., 2024a; Osorio et al., 2017; Tsirigoti & Tsikaloudaki, 2018). Beyond 

merely understanding the current physical structure of cities, urban morphology studies also aim 

to analyze how these structures change over time. Using a complex systems approach, 

researchers can track these dynamic changes and identify emerging trends in energy efficiency 

or inefficiency based on specific morphological characteristics. 

Previous studies have highlighted the significant impact of urban morphology on energy 

consumption in urban environments. Osorio et al. found that urban characteristics, particularly 

population density, have a substantial effect on energy consumption in the UK, showing that 

higher-density areas achieve better energy efficiency (Osorio et al., 2017). Sharlin and Hoffman 

focused on Seattle, revealing that increasing horizontal building density and reducing height 

variation led to lower residential energy consumption, emphasizing the spatial dependence of 

energy use (Sharlin & Hoffman, 1984). Chen et al. demonstrated the spatial relationships 

between urban morphology indicators and energy consumption, stressing the importance of 

factors such as building height and vegetation in energy modeling (Chen et al., 2020). Li et al. 

proposed a framework utilizing spatial proximity analysis and explainable artificial intelligence 

(AI) to assess urban morphological factors affecting energy consumption, identifying 26 

influential urban morphology factors (Li et al., 2024b). Salat analyzed energy consumption in 

Paris’ building stock, revealing that urban morphology has a significant impact on energy 

efficiency and CO2 emissions (Salat, 2009). Collectively, these studies underscore the need for a 

comprehensive approach to urban energy modeling that considers the multifaceted interactions 

between urban morphology and energy consumption. 

Despite the growing body of research introducing more factors and tools for urban energy 

modeling, physical relationships at this level often remain limited due to a lack of consideration 

for human activity dynamics and the spatial distribution of populations within morphological 

hierarchies. The present study addressed the empirical knowledge gap by complementing 

energy efficiency evidence with dynamic human activities represented by nighttime light (NTL) 

satellite imagery proxies and spatial population distribution data sourced from Big Data. 

This method requires further development by linking urban form and energy consumption 

patterns. Urban morphology is shaped by human activities; the higher the intensity of human 

activities in a given urban area, the more changes and developments occur in that area’s 

morphology. In a more complex assertion, Frolking et al. argued that human activities 

contribute to the dynamics of urban morphology and its structural evolution, ultimately 
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influencing energy use (Frolking et al., 2013). One proxy capable of illustrating human activity 

and classifying urban morphology is NTL. 

This research attempted to use NTL as a tool to accelerate and simplify energy use mapping 

across various urban morphology hierarchies. NTL can provide a visual representation of 

artificial light intensity, serving as an indicator of human activity and energy consumption in an 

area in real time. Researchers worldwide have used NTL data to study urban morphology 

structures (Han et al., 2018; Z. Yang et al., 2021), as highlighted by previous studies (Afrianto 

& Graha, 2023; Afrianto & Hariyanto, 2022; Frolking et al., 2013; J. Yang et al., 2022). This is 

because NTL reflects the intensity of human activity in specific areas (Spinosa, 2022). 

Furthermore, Light Pollution Maps derived from NTL data have been widely applied in the 

electricity sector for purposes such as tracking electrification access, mapping transmission and 

distribution lines, estimating grid stability, and assessing electricity consumption (Baldwin et 

al., 2017; Falchetta & Noussan, 2019; Lee, 2021; Townsend & Bruce, 2010). 

This study sought to explore potential interventions to reduce energy inefficiency across various 

urban morphology levels. For instance, planning at certain morphological levels that prioritizes 

public transportation, energy-efficient buildings, and green space development can contribute to 

reducing overall energy consumption. Moreover, a deeper understanding of how urban 

morphology influences energy consumption patterns can equip policymakers with insights to 

design more effective strategies for achieving sustainability goals. 

Ultimately, this study aims to offer a new perspective on spatial planning, where electricity 

planning no longer solely relies on static population data but also considers human activity 

dynamics as part of urban morphology characteristics. By analyzing the relationship between 

morphological hierarchies and energy consumption patterns, the outcomes of this research are 

expected to assist urban planners in designing more efficient and sustainable energy models to 

meet future urban energy demands. 

Literature Review 
 

Energy Efficiency 

 
Population and its activities are the two main factors driving energy demand in urban areas, 

directly influencing energy consumption levels (Akcin et al., 2016; Arbabi & Mayfield, 2016; 

Osorio et al., 2017). The larger the population and the more diverse the activities, the greater the 

energy needed to support various aspects of life. Therefore, a deep understanding of population 

distribution patterns and activity dynamics is crucial in designing efficient and sustainable 

energy management strategies. 

Previous studies have shown that higher population size and density correlate with better energy 

efficiency and lower per capita consumption (Arbabi & Mayfield, 2016; Osorio et al., 2017). 

However, consumption patterns differ between urban and rural areas, with rural regions 

generally exhibiting distinct patterns in gas, electricity, and transportation usage (Arbabi & 

Mayfield, 2016; Pachauri, 2012). 

Urban areas account for 75% of total global energy consumption and produce 70% of 

greenhouse gas emissions, making energy optimization an urgent matter (Klemm & Wiese, 

2022). This situation poses significant challenges for urban energy systems in achieving 

sustainability and efficiency. Energy efficiency refers to the extent to which energy is 

effectively used to produce the desired output (Lin & Zhai, 2023). The higher the energy 

efficiency, the less energy is required to generate the same amount of output, thereby reducing 

energy use, costs, greenhouse gas emissions, and air pollution. 
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Urban Morphology 

 
Urban morphology refers to the physical structure of a city that is constantly changing and 

updating as a result of urbanization processes (Guo et al., 2022). From that understanding, 

Nuraini argues that the study of morphology is very focused on urban areas (Nuraini, 2019). 

Urban morphology is also seen as something that reflects the complex interaction between 

humans and the urban environment (Yoshida & Omae, 2005). Dempsey et al., explain that 

urban morphology specifically includes not only a number of physical features but also non-

physical characteristics, such as size, shape, scale, density, land use, building type, block layout, 

and distribution of green spaces (Dempsey et al., 2008).  

Describing and characterizing urban morphology has resulted in many methods being 

documented in various scientific publications. Pryor provided a terminology gradation between 

urban and rural at the level of morphology (Pryor, 1968). Urban morphology is divided into six 

categories, i.e., City Center, Inner Urban, Sub Urban, Urban Fringe, Urban Periphery, and Rural 

Hinterland. At each level, differences in shape, size, and composition will exist as a 

representation of the living organism of the city. The concept created by Pryor is a spatial 

reflection of the urbanization process, which ultimately reveals the relationship between urban 

and rural areas (Mardiansjah et al., 2021). Figure 1 illustrates these morphology levels 

graphically. This research attempted to use the concept of urban morphology hierarchy put forth 

by Pryor.  

 

Figure 1. Urban morphology hierarchy. Source: (Pryor, 1968) 

 

Several previous studies have explored the relationship between urban morphology and energy 

consumption (Juan et al., 2021; Lan et al., 2022; Loeffler et al., 2021; Tsirigoti & Bikas, 2017; 

Wang et al., 2021; Xie et al., 2023). However, this study differs from earlier research in terms of 

both terminology and research scale. In terms of terminology, previous studies generally define 
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and discuss urban morphology separately from various physical form factors and city layouts, 

such as building proportions, distances between buildings, population density, and other 

physical patterns. In contrast, this study conceptualized urban morphology as the spatial 

structure of urban areas, incorporating various hierarchical levels, including comparisons 

between urban and surrounding rural areas, ultimately forming a system and pattern (Russwurm, 

1975). Regarding the scale, previous studies only focused on the scale of one building, one 

block, or one specific urban neighborhood. This may lead to a lack of accuracy in generalizing 

research results to a larger scale, such as the urban or administrative city level. 

The findings of Urquizo et al. (2017) indicate that at the City Center level, a high plot ratio leads 

to substantial energy consumption for interior temperature control, whereas in the Inner Urban 

zone, uninsulated solid‐walled terrace houses exhibit significant heat loss ratios, making solid 

wall insulation retrofits a priority intervention; in the Suburban area, although energy intensity 

per unit area decreases with reduced building massing, larger room sizes actually increase total 

energy consumption for heating and cooling; furthermore, in the Urban Fringe, more varied 

building orientations and optimal solar exposure create significant potential for rooftop solar 

panel installations; and at the Rural Hinterland level, a very low plot ratio results in the lowest 

energy demand per square meter while simultaneously offering opportunities for ground‐source 

heat pump implementation and community microgrid development. From Urquizo et al.’s 

findings, we can see that these consumption patterns and energy intervention potentials align 

with Pryor’s (1968) urban morphology gradation, which classifies areas from the city center to 

the countryside based on density and spatial use characteristics (Pryor, 1968; Urquizo et al., 

2017). 

The use of quantile classification to delineate Pryor’s six morphology levels ensures that each 

category from the City Center to the Rural Hinterland has a comparable number of observations, 

thereby avoiding empty or overly large categories and enabling balanced energy‐use analysis 

(Urquizo et al., 2017). This classification also establishes a consistent benchmark across 

sub‐areas with diverse morphologies, allowing energy intensity comparisons between inner and 

outer zones to be made at the same scale (Urquizo et al., 2017). Furthermore, since Estiri (2016) 

demonstrates the power of quantile‐based regression to capture non‐linear variations in 

residential energy consumption across different housing types and densities, applying quantile 

classification to Pryor’s gradation permits similar advanced statistical modeling within each 

morphological zone, yielding more nuanced insights than equal‐interval or natural‐breaks 

schemes (Estiri, 2016). 

Material and Methods 
 

In the initial stage, this research conducted a correlation analysis to examine the extent of the 

relationship between electrification statistical data from the National Statistics Agency and the 

amount or intensity of light pollution. The higher the correlation coefficient, the greater the 

likelihood that the Light Pollution Map can be used to identify energy consumption patterns at 

various levels of morphology. 

Furthermore, this research utilized various spatial analyses, particularly for data preprocessing. 

Zonal statistics, as one of the spatial analysis techniques, was intensively used in this study to 

calculate the statistical values of NTL and WorldPOP, determined by sub-district administrative 

boundary polygons and urban morphology categories. In zonal statistics, the data analyzed 

comes from raster data (e.g., satellite imagery). Additionally, spatial analysis, such as raster-to-

contour conversion, is also conducted to visualize the urban morphology. Ultimately, this 

research produced a delineation of urban morphology, urban morphology based on population, 
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urban morphology based on energy consumption, and urban morphology based on energy 

efficiency levels. 

Area of Study 

 
This study focused on researching the area of Malang City. Malang City is a city in East Java 

Province (Figure 2) that is renowned for its strong reputation in business, tourism, and 

education. Based on this, Malang City has a complex land-use pattern, encompassing not only 

residential areas but also zones for trade and services, education, and offices. As the second-

largest city in East Java Province after Surabaya, Malang City has experienced rapid growth and 

a high rate of urbanization. Although it is not the most populous city in East Java, its diverse 

and dynamic activities make Malang City a popular destination for migrants to settle. This 

dynamic development makes Malang City a relevant subject for study, particularly in 

understanding and analyzing urban morphology. 

Moreover, according to a 2021 report by InRIX, a global traffic data analysis company, Malang 

City was listed among the top five most congested cities in Indonesia. This fact highlights the 

significant pressure on the city’s transportation infrastructure due to high population density and 

economic activity, which are closely linked to energy consumption patterns. The congestion and 

density not only reflect challenges within the transportation system but also illustrate how 

energy is intensively consumed – from mobility and lighting to domestic and commercial needs. 

By selecting Malang City as the study area, this research aimed to provide a deeper 

understanding of the relationship between urban morphology and energy efficiency. It is also 

expected to contribute to the development of more effective data-driven policies, particularly in 

enhancing energy efficiency and promoting more sustainable urban development. Therefore, 

this study not only reflects the empirical conditions of Malang City but also paves the way for 

implementing adaptive policies and strategies for a better urban future. 

 

Figure 2. Study area orientation. Source: Author, 2022 

Data Sources  

 
The data for this study was gathered from a variety of sources. GADM.org provided 

administrative area data at the level 3, while WorldPOP.org provided population data from 2012 

to 2021. The NTL data, which is Light Pollution Map data 2012-2021, was obtained from 
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VIIRS data, which was processed and downloaded from lightpollutionmap.info. Another data 

set is the Malang City installed electricity capacity data 2018-2021 obtained from the National 

Statistics Agency website. Table 1 contains information about the dataset used in this study. 

Table 1. Research dataset details. 

Component Description Data 
Data Type and 

Resolution 
Source 

Population  

Population data, statistically zoned to 

produce population data at each 

morphological level 

Raster, 100 m WorldPOP 2021 

Electricity 
Tabular data of installed electricity 

capacity (Kwh) 
- 

BPS Kota Malang, 

2022 

Light 

Pollution Map 

Used as a proxy for electrification 

approach and also as a criterion in 

determining urban morphological 

categories or hierarchies 

Raster, 500 m 
lightpollutionmap.info, 

2022 

Administrative 

boundaries 

Administrative boundaries of Malang 

City 
- GADM.org, 2022 

Main Analysis 
In this study, energy consumption efficiency was calculated by integrating electrification data 

(watt/cm².str), population, land area, and nighttime light intensity (Nighttime Light/NTL) to 

provide an overview of how well electricity is distributed and utilized according to the activities 

occurring in a given area. By understanding this efficiency, we can assess whether energy 

consumption aligns with the actual needs of the community and economic activities.  

Energy consumption efficiency is calculated using the following formula: 

Energy Consumption Efficiency  

This formula reflects the relationship between the amount of energy consumed, population 

density, geographic scale, and the level of nighttime activity as indicated by artificial lighting. 

The results of energy efficiency calculations can be interpreted as follows: 

• High efficiency value: The higher the efficiency value, the better electricity is utilized 

according to activities. This means that the energy consumed is more proportional to 

the population size, land area, and activity levels reflected by nighttime light imagery. 

• Low efficiency value: If efficiency is low, there is high electricity consumption but 

relatively low activity. This condition indicates energy wastage, such as excessive 

lighting or underutilized electrical infrastructure. 

The activity-based energy consumption efficiency approach plays a crucial role in urban energy 

planning. Some of its applications include: 

• This analysis helps identify areas with unbalanced energy distribution, whether due to 

over-supply (excess supply) or under-utilization (suboptimal usage). 

• The results of the analysis can be used to formulate more effective electrification 

policies, ensuring that electricity is allocated based on the actual needs of each region. 

• By comparing electricity consumption and activities detected through NTL, we can 

evaluate whether a region has an electricity supply surplus relative to its economic 

activity level. 
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For example, if a city center shows high electricity consumption but low NTL values, this may 

indicate energy wastage, such as inefficient public lighting. Conversely, if an industrial or 

commercial area has high energy efficiency, it means electricity is productively used to support 

significant economic activities. With this approach, policymakers can develop data-driven 

energy-saving strategies, improve electricity distribution systems and promote more efficient 

electricity use to achieve sustainable development goals (SDG-7). 

Research Flow 

 
The research flow is a well-structured and systematic process undertaken by researchers to 

conduct a study or investigation. This flow includes a series of interconnected steps that guide 

researchers from the initial research question to the final conclusions and recommendations. The 

process begins with the formulation of clear research questions or objectives, followed by an 

extensive review of existing literature to understand current knowledge and identify research 

gaps. Based on this foundation, researchers develop hypotheses or research goals that provide a 

framework for the study. 

The researchers then design the study, selecting appropriate methodologies and defining 

variables, sample populations, and data collection procedures. Data collection is carried out 

while ensuring the validity and reliability of the methods used. The collected data is then 

analyzed using suitable techniques, leading to the interpretation of results and their discussion 

within the context of the research questions. The research flow concludes with a summary of 

key findings, their significance, and potential future directions. Throughout the process, 

researchers maintain careful documentation and consider the ethical implications of their work. 

By following this systematic flow, researchers ensure the quality and coherence of their studies, 

contributing to the advancement of knowledge in their respective fields. 

This research began with the collection of spatial and tabular data. Within the administrative 

boundaries of Malang City, raster data obtained from WorldPop for population data and the 

Light Pollution Map for NTL imagery data underwent zonal statistical processes and clipping. 

The next step was to examine the relationship between electricity data obtained from the Central 

Statistics Agency of Malang City and the values from the Light Pollution Map. The resulting 

values explain the strength of the relationship between these two variables. 

After calculating the correlation values, the program generated morphology level maps from 

2012 to 2021 using the six-quintile morphology class (Raster to Contour). The next step 

involved reprocessing zonal statistics before incorporating WorldPop and Light Pollution Map 

data to analyze data patterns at each morphology level. The results from the previous steps were 

then compared in a radar chart to obtain the average energy usage level – the average level of 

energy consumption and per capita energy consumption. The research flow used in this study is 

illustrated in the chart shown in Figure 3 below. 
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Figure 3. Research flow diagram. Source: Author, 2022 

 

Result and Discussion 

Electrification Correlation and Light Pollution Map 
As an initial step to assess whether the Light Pollution Map could be used as a proxy for 

evaluating electrification levels, a correlation process was carried out. The Light Pollution Map 

obtained was tabulated or zonal statistics based on district boundaries. Table 2 shows that the 

largest energy consumption from 2018 to 2021 was in Lowokwaru District, amounting to 

255,344,374 VA in 2018 and decreasing to 172,887,270 VA in 2021. Interestingly, Klojen 

District, which is the center of economy, government, history, and culture in Malang City, has 

the lowest energy consumption among other districts. Another unique finding is that the light 

intensity on the Light Pollution Map per district, converted into units (watt/cm2.str), has the 

same low to high-ranking value as the electrification data of Malang City sourced from the 
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National Statistics Agency website. Table 2 shows a comparison between electrification map 

data and light pollution data. 

Table 2. Malang City electrification by district. 

 

2018 2021 

Light 

Pollution 

Map (watt/cm2.str) 

Installed Power 

(VA) 

Light 

Pollution 

Map (watt/cm2.str) 

Installed 

Power (VA) 

Kedungkandan

g 

1,243.62 200,413,771 1,274.13 128,545,866 

Sukun 1,065.53 158,401,894 1,008.53 98,168,492 

Klojen 930.16 108,024,738 838.78 69,309,249 

Blimbing 1,284.66 229,396,419 1,157.84 92,829,453 

Lowokwaru 1,628.78 255,344,374 1,445.03 172,887,270 

Malang City 6,152.75 951,581,196 5,724.32 561,740,330 

As shown visually in Figure 4, the light intensity on the Light Pollution Map is concentrated in 

the central (Klojen) and northern (Lowokwaru) regions. Klojen and Lowokwaru are two 

districts with high strategic importance in Malang City. Klojen is the center of government, 

economy, history, and culture in Malang, while Lowokwaru is a business and trading area that 

also has several shopping centers and offices. In addition, both districts are also centers of 

education in Malang City. Due to their strategic roles, both districts are centers of human 

activities that are very crowded, especially at night. This is indicated as a factor that causes the 

high intensity of light or light pollution in Klojen and Lowokwaru districts. 

 
Figure 4. Light Pollution Map. Source. Author, 2022 

Based on the correlation results between the light intensity from the Light Pollution Map and 

electrification (Table 3), it can be seen that these two variables have a positive correlation 
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relationship. This means that if the value of light intensity increases, the value of electrification 

will also increase (or vice versa). Moreover, both variables have a very strong correlation value. 

In 2018, the correlation coefficient value was 0.94, while in 2021 it was 0.95. These correlation 

results showed that the light intensity value from the Light Pollution Map could be used as an 

indicator for calculating electrification. Ultimately, the researchers could calculate 

electrification in Malang city at the level of its urban morphology using the Light Pollution Map 

data. 

Table 3. Correlation of Light Pollution Map and 

electrification. 
2018 

  

Light 

Pollution Map 

Installed Power 

(VA) 

Light Pollution Map 1  
Installed Power (VA) 0.94 1 

2021 

  

Light 

Pollution Map 

Installed Power 

(VA) 

Light Pollution Map 1  
Installed Power (VA) 0,95 1 

 

 

 

 

Electrification Rate based on Morphology 
The morphology hierarchy of an urban area 

refers to the spatial structure of a city or urban region, which can be classified into several levels 

or zones based on physical and socio-economic characteristics. Each zone or region has 

differences in terms of function, population density, economic activity, availability of public 

facilities, and types of social and cultural activities. In this study, the morphology hierarchy 

division of Malang City was based on the intensity of night lights, and areas in Malang were 

grouped based on the level of light intensity measured on the Light Pollution Map.  

The morphology hierarchy was classified into six categories, i.e., (1) City Center; (2) Inner 

Urban; (3) Suburban; (4) Urban Fringe; (5) Urban Periphery; and (6) Rural Hinterland. The 

classification of urban morphology into six hierarchical levels in this study was based on the 

framework proposed by Pryor (1968), as described in the literature review section. The city 

center is the center of the city or Central Business District (CBD), which usually has dense 

activities related to government, business, trade, tourism, and culture. Public facilities and 

transportation are generally complete and adequate in this area. The Inner Urban zone, which 

borders directly on the CBD, is an area with high population density, diverse economic 

activities, and high social and cultural diversity. Suburban areas are considered to be outside the 

inner urban area, with lower population densities, and are generally used as residences for 

middle to upper-income residents. The most unique area is the Urban Fringe, which is located 

between suburban and urban periphery areas, usually around the city but still has many empty 

lands and unregulated land use. In addition, the Urban Periphery area is located outside the city, 

with a lower population density, fewer economic activities, and generally used as a more remote 

and isolated residential area. Finally, the Rural Hinterland area has very low population 

densities and still has agricultural activities.  

Year 2018: 

Correlation Coefficient (r): ~0.94 

P-value: ~0.016 

Year 2021: 

Correlation Coefficient (r): ~0.95 

P-value: ~0.012 
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These differences affect the intensity of night lights in each zone or area in the urban 

morphology hierarchy. For example, there is a well-known stigma that city centers will have 

high night light intensity due to the dense business and night-time activities, while rural 

hinterlands will have low night light intensity due to the low population density and fewer 

economic activities. In terms of the morphology area classification in Malang City (Table 4), the 

rural hinterland area has the highest area at 37.77 percent between 2012 and 2022, followed by 

urban fringe 21.26 percent, urban periphery 17.81 percent, suburban 13.97 percent, urban inner 

5.95 percent, and city center lows 3.23 percent. 

Table 4. Area based on morphology (ha). 

Year 
Rural 

Hinterland 

Urban 

Periphery 

Urban 

Fringe 

Sub 

Urban 

Inner 

Urban 

City 

Center 

2012 3,272.84 1,565.30 2,214.92 2,256.63 1,355.06 330.19 

2013 6,056.83 2,595.48 1,358.55 658.39 252.18 73.51 

2014 5,019.50 2,007.70 2,045.97 942.18 636.96 342.63 

2015 4,358.53 1,523.28 1,805.35 1,625.65 769.48 912.65 

2016 4,833.93 1,876.61 2,269.30 1,191.01 610.36 213.73 

2017 4,201.38 1,495.63 1,921.94 1,887.39 723.32 765.26 

2018 4,078.24 1,647.54 2,154.05 1,840.09 854.42 420.60 

2019 3,106.34 2,279.21 3,553.56 1,576.24 367.99 111.59 

2020 2,449.33 2,637.93 3,715.17 1,848.36 320.57 23.57 

2021 3,272.84 1,565.30 2,214.92 2,256.63 1,355.06 330.19 

Average 4,152.99 1,958.74 2,337.65 1,536.22 654.48 354.86 

Percentage 37.77% 17.81% 21.26% 13.97% 5.95% 3.23% 

 

Figure 5 illustrates the spatio-temporal morphology of Malang City, which shows that the city’s 

morphology tends to be dynamic rather than static. In 2012, the center of Malang City was 

located in the area around Alun-Alun Kota/Kidul, but in 2015, the central area of the city 

underwent a significant expansion from Klojen towards Lowokwaru. This was indicated by the 

intensive development in Lowokwaru, which experienced rapid growth in terms of settlements 

and businesses. This growth led to an increase in socio-economic activities in the area and 

ultimately affected the development of the city’s core center. The Malang City Government has 

also paid special attention to the development of Lowokwaru as a strategic area for 

development. This is evident from the construction of office buildings, hotels, and shopping 

centers in the area, which further enhance its attractiveness. From 2018 to 2021, there has been 

a shift in the center of Malang City, with the formation of a polycentric urban pattern, where 

there are two poles of growth centers. Interestingly, the center of the city in Klojen has 

undergone a significant reduction in area, while the center of the city in Lowokwaru, 

particularly around the Soekarno Hatta corridor, has experienced significant expansion. 

Researchers argue that such a dynamic morphology of the city also indicates that the energy use 

pattern of a city will change according to the tendency of human activities at a certain time. This 

is consistent with the theory examined by researchers, where previous studies have stated that 

population and its activities play a crucial role in driving energy demand in urban areas, which 

directly affects energy consumption (Akcin et al., 2016; Arbabi & Mayfield, 2016; Osorio et al., 

2017). 
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Figure 5. Trends in different urban zones over time (area in ha). Author, 2022 

 

 
Figure 6. Malang city morphology. Author, 2022 

From the population aspect, the resulting morphological map was then processed by zonal 

statistics in the GIS, so that the total population of each morphological category was obtained. 

The results of population mapping in the morphological category (Table 5) show that the largest 

population occupies the Urban Fringe area as much as 28.25 percent and the lowest occupies the 

City Center area as much as 7.08 percent. The urban fringe in Malang City has a higher 

population compared to the city center because the urban fringe is a larger area with more land 

available for housing development. On the other hand, the city center tends to have strict land 
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use limitations and is usually used for business, trade, or industry purposes. The limited land in 

the city center can hinder housing development, resulting in a lower population compared to the 

urban fringe. Additionally, the urban fringe tends to be more affordable compared to the city 

center, which can attract residents to live there. These factors combined explain why the urban 

fringe in Malang City has a higher population than the city center. 

Table 5. Total population based on morphology (person). 

Year 
Rural 

Hinterland 

Urban 

Periphery 

Urban 

Fringe 

Sub 

Urban 

Inner 

Urban 

City 

Center 

2012 95,752 84,952 207,497 288,563 199,435 53,796 

2013 282,041 332,402 170,570 111,766 26,333 12,145 

2014 208,856 203,833 255,091 117,808 95,858 70,311 

2015 166,958 130,155 198,622 198,057 98,126 167,322 

2016 211,164 186,416 287,023 132,661 96,942 55,156 

2017 174,153 99,583 238,991 186,465 121,924 156,558 

2018 159,830 138,944 257,471 199,683 155,389 69,618 

2019 112,746 152,974 398,804 262,652 39,962 27,633 

2020 52,150 187,295 445,661 262,644 56,524 3,673 

2021 116,120 97,936 229,978 305,931 206,668 56,065 

Average 162,628 168,506 273,303 195,589 98,944 68,468 

Percentage 16.81% 17.42% 28.25% 20.22% 10.23% 7.08% 

 

Figure 7. Population trends in different urban zones over time. Author, 2022 

The energy consumption rate at each morphology level can be seen in Table 6. The highest 

average energy consumption during the period from 2012 to 2021 was in the suburban areas, 

while the lowest was in the city center. This is due to the fact that, as previously explained, the 

suburban areas have the largest area and population. In addition, urban fringe tends to have 

more and larger houses and buildings than the city center, resulting in a greater need for 

electricity. Because of the more affordable land prices, the urban fringe of Kota Malang also 

becomes the residence of people with lower incomes. As a result, their ability to access energy-

efficient technologies such as solar panels or heat pumps is also lower. Researchers also argue 

that the city center has a lower energy consumption rate due to building factors. If the area is 

dominated by buildings designed efficiently and equipped with energy-saving technologies such 
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as the use of LED lights and other energy-efficient equipment, then its energy consumption can 

also be lower. 

Table 6. Electrification rate based on morphology (watt/Cm2.str). 

Year 
Rural 

Hinterland 

Urban 

Periphery 

Urban 

Fringe 

Sub 

Urban 

Inner 

Urban 

City 

Center 

2012 395.53 373.90 997.03 1.101.75 969.25 350.75 

2013 1.138.89 1131.00 848.17 400.36 203.96 126.47 

2014 939.42 941.27 1083.64 711.63 609.69 379.01 

2015 851.49 703.02 1013.29 1146.15 626.45 1084.80 

2016 956.94 872.24 1210.99 928.89 501.30 261.01 

2017 874.39 645.95 1147.89 1328.35 590.81 841.95 

2018 873.13 741.15 1209.69 1274.17 806.74 473.76 

2019 672.44 948.95 2488.42 1507.80 433.11 193.57 

2020 438.74 1022.37 2438.72 1426.12 431.62 32.30 

2021 802.23 615.03 1418.61 1509.70 1160.13 423.02 

Average 794.32 799.49 1.385.65 1.133.49 633.31 416.67 

 

 

Figure 8. Electrification trends in different urban zones over time. Author, 2022 

On the basis of the average pixel value of light intensity in the Light Pollution Map (Table 7), it 

is known that the areas of the City Center have the highest average light intensity, while the 

areas of the Rural Hinterland have the lowest average light intensity. This study also showed 

that the City Center is the hub of human activity, while the intensity of human activity is 

significantly lower in Rural Hinterland areas. According to the Light Pollution Map, there is a 

positive association between the average nighttime light intensity and the intensity of human 

activity. This correlation was shown to be positive. Human activities, such as the use of 

streetlights, building lights, and vehicle lights, have an effect on the intensity of the light that is 

present throughout the nighttime hours. Areas that are far from human activity centers and 

urban areas, such as rural hinterland areas, have lower light intensity at night due to the minimal 

use of lights. On the other hand, areas that have a high human activity intensity, such as the city 

center, industrial areas, and shopping areas, typically have a high light intensity at night. 

Additionally, this is due to the fact that domestic activities are typically the primary focus in 
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rural hinterland communities. As a result, the likelihood that the nighttime light intensity on the 

Light Pollution Map in a particular location will likewise be higher is proportional to the level 

of human activity that is present in that area. 

Table 7. Average light intensity based on morphology (watt/Cm2.str). 

Year Rural Hinterland Urban Periphery Urban Fringe 
Sub 

Urban 
Inner Urban 

City 

Center 

2012 2.59 5.75 8.82 11.24 15.14 18.46 

2013 4.07 9.42 12.29 15.40 18.54 21.08 

2014 4.07 9.60 12.46 15.14 18.48 23.69 

2015 4.19 9.63 12.51 15.28 18.42 23.58 

2016 4.27 9.69 12.36 15.23 18.57 21.75 

2017 4.37 9.79 12.61 15.45 18.46 22.76 

2018 4.37 9.79 12.61 15.45 18.46 22.76 

2019 4.54 9.49 14.99 20.10 25.48 32.26 

2020 3.92 8.31 13.70 18.05 22.72 29.12 

2021 5.24 9.46 12.55 15.41 18.13 22.26 

Average 4.16 9.09 12.49 15.67 19.24 23.77 

 

Figure 9. Average light intensity trends in different urban zones over time. Author, 2022 

Electrification Efficiency Overview 
Electrification efficiency is determined by evaluating the relationship between electrification 

levels (watt/cm².str) and population, land area, and nighttime light intensity (NTL) at each 

morphological level. It is calculated as the inverse of energy inefficiency, where higher 

efficiency values indicate better energy utilization relative to spatial and demographic factors. 

This approach ensures that energy distribution is assessed not only based on total consumption 

but also in relation to the extent of urbanization, land coverage, and intensity of night-time 

activities. A higher electrification efficiency value indicates better energy utilization, meaning 

electricity is more effectively distributed relative to population density and urban form. The 

results (Table 8 and Figure 6) show that the City Center category has the highest electrification 

efficiency, at 59.96%, suggesting that this area benefits from the most optimized use of 

electricity relative to its population and urban density. In contrast, the Urban Fringe category 

exhibits the lowest efficiency, at 4.30%, indicating that electrification in this area is not as 
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effectively utilized. This may be due to a mismatch between infrastructure availability and 

actual energy use. Interestingly, the Inner Urban (14.59%) and Sub Urban (5.64%) categories 

demonstrate intermediate efficiency levels, showing that their electricity usage is relatively 

balanced but still has room for optimization. Meanwhile, the Rural Hinterland (8.24%) and 

Urban Periphery (7.28%) categories display lower efficiency compared to the City Center 

category, implying that electrification in these areas is not predominantly used for direct 

population activities but may serve non-residential functions, such as extended street lighting or 

infrastructure maintenance. These findings highlight the importance of targeted energy 

management strategies, ensuring that electricity distribution aligns with actual consumption 

patterns. Future research should explore how infrastructure planning and smart grid 

implementation can enhance efficiency across different urban morphologies to create a more 

sustainable energy distribution system. 

Table 8. Electrification efficiency. 

Year 
Rural 

Hinterland 

Urban 

Periphery 

Urban 

Fringe 

Sub 

Urban 

Inner 

Urban 

City 

Center 

2012 4.87E+08 4.89E+08 2.46E+09 1.51E+09 2.37E+09 1.07E+09 

2013 1.64E+09 1.39E+09 2.98E+09 3.53E+09 1.66E+10 6.72E+09 

2014 2.20E+08 2.40E+08 1.67E+09 4.23E+08 5.40E+08 6.64E+08 

2015 2.79E+08 3.68E+09 2.26E+09 2.33E+09 4.50E+09 3.01E+08 

2016 2.20E+07 2.57E+08 1.50E+08 3.86E+09 4.56E+09 1.02E+10 

2017 2.73E+09 4.43E+08 1.98E+09 2.44E+09 3.63E+08 3.09E+08 

2018 3.07E+09 3.31E+08 1.73E+08 2.24E+09 3.29E+09 7.11E+08 

2019 4.23E+08 2.87E+08 1.17E+09 1.81E+09 1.16E+10 1.95E+09 

2020 8.76E+08 2.49E+08 1.08E+09 1.63E+08 1.05E+10 1.28E+11 

2021 4.03E+09 4.24E+09 2.22E+09 1.42E+08 2.28E+09 1.03E+10 

Average 3.65E+08 3.23E+09 1.90E+09 2.50E+08 6.47E+08 2.66E+09 

Percentag

e 

8.24% 7.28% 4.30% 5.64% 14.59% 59.96% 

 

 
Figure 10. Energy inefficiency trends. Author, 2022 
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Figure 11. Energy use efficiency at the morphological level of Malang City. Author, 2022 

Discussion 

Energy Efficiency and its Relationship with Energy Inefficiency 

This study assessed energy efficiency by analyzing the relationship between electrification 

levels, indicated by nighttime light intensity (NTL), and factors such as population density and 

land area across different urban forms. An elevated value in this assessment signifies increased 

energy consumption, which may indicate inefficiencies in energy utilization. This is consistent 

with the theory proposed by previous researchers, indicating that energy efficiency is a measure 

of how effectively energy is utilized to achieve desired results (Lin & Zhai, 2023; Osorio et al., 

2017). Excessive energy consumption relative to actual needs may signal inefficient 

electrification. When electrification efficiency is assessed – by relating electrification levels 

(watt/cm².str) to population density, land area, and nighttime light intensity – it becomes evident 

that high consumption does not automatically translate to optimal energy use. In fact, regions 

such as the Rural Hinterland, despite their lower overall energy demand, exhibit lower 

electrification efficiency compared to densely populated areas like the City Center and Inner 

Urban zones. This suggests that in less urbanized regions, electricity is more likely allocated to 

non-residential functions, underscoring that effective energy utilization depends on aligning 

infrastructure with the specific spatial and demographic characteristics of each area. 

Urban Morphology and Its Impact on Energy Efficiency 

Pryor classified urban morphology into six distinct levels: City Center, Inner Urban, Sub Urban, 

Urban Fringe, Urban Periphery, and Rural Hinterland (Pryor, 1968). The classifications 

illustrate distinct urban structures, each impacting energy consumption patterns in unique ways. 

The results of the present study indicate that City Center and Inner Urban areas demonstrate 

notably greater energy consumption compared to other zones; however, this does not 

consistently align with increased efficiency. This indicates that high-density urbanization does 

not necessarily lead to energy inefficiency caused by the excessive use of commercial, 

industrial, and public lighting practices that are not consistently optimized. 

Prior investigations have examined the connection between urban morphology and energy 

efficiency (Juan et al., 2021; Lan et al., 2022; Loeffler et al., 2021; Tsirigoti & Bikas, 2017; 
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Wang et al., 2021; Xie et al., 2023).  The present study underscores the distinctions in 

terminology and the scope of research when compared to earlier works. Loeffler et al., 

characterized urban morphology as the physical structure and arrangement of cities, 

encompassing building proportions, spacing, and solar exposure, all of which affect energy 

performance in buildings (Loeffler et al., 2021). This viewpoint contrasts with the methodology 

employed in this study, which regards urban morphology as the overarching spatial framework 

that includes various hierarchical zones both within and surrounding urban environments. 

In terms of research scale, numerous previous studies have concentrated on single buildings, 

specific blocks, or small urban neighborhoods – approaches that may limit their applicability to 

broader urban or administrative areas. In contrast, this study employed an NTL-based spatial 

analysis to comprehensively assess the influence of urban morphology on energy consumption 

across an entire city. Electrification efficiency is determined by evaluating the relationship 

between electrification levels (watt/cm².str) and key parameters, including population, land area, 

and nighttime light intensity. Our findings reveal that the City Center exhibits the highest 

electrification efficiency at 59.96%, reflecting an optimal alignment between infrastructure 

provision and high population density. Conversely, the Urban Fringe shows the lowest 

efficiency at 4.30%, indicating a significant mismatch between available infrastructure and 

actual energy use. Intermediate efficiency values are recorded in the Inner Urban (14.59%) and 

Sub Urban (5.64%) zones, while the Rural Hinterland (8.24%) and Urban Periphery (7.28%) 

also demonstrate lower efficiencies – suggesting that in these areas, electrification is more likely 

allocated to non-residential functions. These results underscore the importance of tailoring 

energy management strategies to the specific spatial and demographic contexts of each urban 

morphology, thereby enhancing overall energy distribution and minimizing waste. 

Policy and Urban Planning Implications 

This study's findings on electrification efficiency – evaluated through the relationship 

between electrification levels (watt/cm².str), population density, land area, and 

nighttime light intensity –lead to several policy recommendations for optimizing energy 

distribution in urban settings: 

• Data-Informed Urban Planning. Planners should integrate electrification efficiency 

analyses into spatial planning to ensure that infrastructure investments align with actual 

consumption patterns. For example, the high efficiency in the City Center (59.96%) 

contrasts sharply with the low efficiency in the Urban Fringe (4.30%), highlighting the 

need for tailored approaches across different zones. 

• Targeted Deployment of Energy-Saving Technologies. In areas where inefficiencies 

are pronounced – especially where electrification is primarily allocated to non-

residential functions (as seen in parts of the Urban Fringe, Rural Hinterland at 8.24%, 

and Urban Periphery at 7.28%) – the adoption of LED lighting, smart sensors, and 

adaptive lighting systems can help reduce energy waste. 

• Enhanced Renewable Energy Integration. Increasing the share of renewable energy in 

zones with lower efficiency values can reduce fossil fuel dependency and support a 

more sustainable energy system, ensuring that energy production better matches 

localized demand. 

• Balanced Infrastructure Development. The expansion of electricity grids must be 

calibrated to local population trends and urban forms. In intermediate zones like Inner 

Urban (14.59%) and Sub Urban (5.64%), as well as in peripheral areas, infrastructure 
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development should be optimized to meet consumption needs without oversupplying 

energy. 

These recommendations underscore the significance of utilizing data-driven 

methodologies – such as the integration of NTL, population distribution, and urban 

morphology analysis – to develop effective strategies that optimize energy use, 

minimize waste, and promote sustainable urban development. 

Conclusion 
It takes more than simply quantitative research to comprehend energy inefficiency in urban 

settings; it also necessitates taking a look at the interactions between electrification, 

infrastructure, and people in various spatial locations. This research looked into the role of 

spatial analysis in addressing this issue, particularly by utilizing night-time light imagery 

(NTL). By integrating NTL data with population distribution and land area statistics, researchers 

can acquire more profound comprehension of the relationship between electrification, energy 

use, and efficiency. 

One important conclusion drawn from this investigation is that energy consumption is 

noticeably higher in high-density urban regions, such as inner urban zones and city centers. 

Nevertheless, more utilization does not always translate into greater efficiency; in many 

instances, these areas waste a significant amount of energy. On the other hand, electrification 

and energy use tend to be more proportionate in suburban and outlying areas, indicating a rather 

balanced consumption pattern. 

Night-time light data offers a useful means of assessing electrification patterns across different 

regions. Areas with minimal or no night-time illumination often indicate restricted access to 

electricity, making this a necessary tool for both policymakers and researchers. Stakeholders 

may track the development of electrification projects, pinpoint infrastructure gaps, and improve 

resource allocation plans by utilizing NTL data. Additionally, the brightness of nighttime 

lighting can be used as a general measure of electrification, allowing for cross-regional 

comparisons and assessments of energy availability over time. 

Nevertheless, while NTL data offers important realizations, it is not without limitations. 

Artificial night-time illumination may be impacted by a number of such as economic activity, 

cultural practices, and population density, all of which can distort its reliability as a direct 

measure of electrification. Therefore, a more all-encompassing strategy should integrate 

additional data sources, including electricity consumption records, infrastructure assessments, 

and ground surveys, to attain a more precise and comprehensive comprehension of urban energy 

dynamics. 

From a policy perspective, these findings stress the significance of targeted energy strategies 

that give priority to sustainable urban planning, energy-efficient infrastructure, and equitable 

electrification efforts. Cities may increase energy efficiency, reduce waste, and guarantee a 

more equitable distribution of energy resources by integrating geographical data analysis into 

decision-making procedures. In the future, developing energy-resilient and sustainable urban 

environments will require a multifaceted strategy that incorporates geospatial analytics, real-

time energy monitoring, and socioeconomic factors. 
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