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Abstract. Understanding urban morphology is crucial for identifying energy inefficiencies and
improving sustainable energy planning, especially in rapidly urbanizing cities. Urban morphology
influences how electricity is distributed and consumed, while energy efficiency is a core target of
Sustainable Development Goal 7 (SDG-7). This study examined the relationship between urban
morphology and electrification efficiency, using night-time light imagery as a proxy for energy
distribution. NTL data combined with population data from WorldPOP were processed through
zonal statistics in GIS to calculate energy consumption per morphology level. Electrification data
from the national statistics agency were correlated with light intensity to validate NTL as a
reliable proxy. The results reveal significant variations in electrification efficiency across urban
morphologies. The City Center category demonstrates the highest efficiency at 59.96%, indicating
optimized electricity use relative to its dense infrastructure and population. In contrast, the Urban
Fringe category has the lowest efficiency, at 4.30%, suggesting an imbalance between electricity
supply and actual utilization. Additionally, the Inner Urban category (14.59%) and the Sub Urban
category (5.64%) exhibit intermediate efficiency levels, while the Rural Hinterland category
(8.24%) and the Urban Periphery category (7.28%) indicate that a portion of their electricity
consumption may be allocated for non-residential activities, such as street lighting and
infrastructure operations rather than for direct household use. These findings underscore the
importance of spatially-informed electrification planning to optimize energy distribution based on
urban structure and population needs. By incorporating data-driven strategies and smart grid
technologies, policymakers can enhance energy efficiency, improve electrification access, and
support more sustainable urban energy policies aligned with SDG-7.

Keywords. night-time light imagery, urban morphology, electrification efficiency, spatial energy
planning

Introduction

Cities or urban areas are dynamic and complex systems that continuously evolve, challenging
traditional notions of urban equilibrium (Batty, 2005, 2017; Batty & Cheshire, 2011; Medda et
al., 2009). This dynamic nature presents significant challenges for urban planners in
understanding and managing ongoing changes. To comprehend and plan for dynamic urban

! Doctoral Program, Department of Urban and Regional Planning, Universitas Gadjah Mada, Yogyakarta,
Indonesia. (*Corresponding author) email: firmanafrianto@mail.ugm.ac.id

2 PT. Sagamartha Ultima Indonesia, Malang, Indonesia

3 Lecturer, Department of Urban and Regional Planning, Institut Teknologi Sepuluh Nopember (ITS),
Surabaya, Indonesia

ISSN 2502-6429 online © 2020 ITB Institute for Research and Community Services


mailto:firmanafrianto@mail.ugm.ac.id

69 Afrianto, F., Hariyanto, A. D., & Tucunan, K. P.

environments, a complex systems approach is essential, acknowledging that urban areas consist
of various interconnected elements (Batty, 2009; Baynes, 2009; Nel et al., 2018).

One crucial element in urban dynamics is energy consumption. Equitable and efficient energy
distribution poses a key challenge in development planning, given the ever-increasing energy
demands associated with urban growth. Energy efficiency has become a global policy objective
(SDG 7) (Di Foggia, 2018; Zakari et al.,, 2022), aiming to reduce carbon dioxide (CO;)
emissions (Vehmas et al., 2018). Energy efficiency is seen as one of the solutions to
environmental issues (Ibrahim et al., 2023; Radzi & Hassan, 2020). A high level of energy
efficiency indicates more sustainable and effective energy consumption (Muniz et al., 2023;
Soltangazinov et al., 2020). Conversely, energy consumption is considered inefficient when it
requires more energy input than necessary, rendering it unsustainable. However, a major
challenge in contemporary urban studies lies in determining which parts of the urban system
need optimization or energy efficiency improvements due to energy inefficiency.

The physical configuration of urban areas, known as urban morphology, significantly influences
energy consumption levels in urban regions. Factors such as population density, the shape and
layout of buildings, and road networks all play vital roles in determining energy consumption
rates (Galal, 2019; Li et al., 2024a; Osorio et al., 2017; Tsirigoti & Tsikaloudaki, 2018). Beyond
merely understanding the current physical structure of cities, urban morphology studies also aim
to analyze how these structures change over time. Using a complex systems approach,
researchers can track these dynamic changes and identify emerging trends in energy efficiency
or inefficiency based on specific morphological characteristics.

Previous studies have highlighted the significant impact of urban morphology on energy
consumption in urban environments. Osorio et al. found that urban characteristics, particularly
population density, have a substantial effect on energy consumption in the UK, showing that
higher-density areas achieve better energy efficiency (Osorio et al., 2017). Sharlin and Hoffman
focused on Seattle, revealing that increasing horizontal building density and reducing height
variation led to lower residential energy consumption, emphasizing the spatial dependence of
energy use (Sharlin & Hoffman, 1984). Chen et al. demonstrated the spatial relationships
between urban morphology indicators and energy consumption, stressing the importance of
factors such as building height and vegetation in energy modeling (Chen et al., 2020). Li et al.
proposed a framework utilizing spatial proximity analysis and explainable artificial intelligence
(AD) to assess urban morphological factors affecting energy consumption, identifying 26
influential urban morphology factors (Li et al., 2024b). Salat analyzed energy consumption in
Paris’ building stock, revealing that urban morphology has a significant impact on energy
efficiency and CO; emissions (Salat, 2009). Collectively, these studies underscore the need for a
comprehensive approach to urban energy modeling that considers the multifaceted interactions
between urban morphology and energy consumption.

Despite the growing body of research introducing more factors and tools for urban energy
modeling, physical relationships at this level often remain limited due to a lack of consideration
for human activity dynamics and the spatial distribution of populations within morphological
hierarchies. The present study addressed the empirical knowledge gap by complementing
energy efficiency evidence with dynamic human activities represented by nighttime light (NTL)
satellite imagery proxies and spatial population distribution data sourced from Big Data.

This method requires further development by linking urban form and energy consumption
patterns. Urban morphology is shaped by human activities; the higher the intensity of human
activities in a given urban area, the more changes and developments occur in that area’s
morphology. In a more complex assertion, Frolking et al. argued that human activities
contribute to the dynamics of urban morphology and its structural evolution, ultimately
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influencing energy use (Frolking et al., 2013). One proxy capable of illustrating human activity
and classifying urban morphology is NTL.

This research attempted to use NTL as a tool to accelerate and simplify energy use mapping
across various urban morphology hierarchies. NTL can provide a visual representation of
artificial light intensity, serving as an indicator of human activity and energy consumption in an
area in real time. Researchers worldwide have used NTL data to study urban morphology
structures (Han et al., 2018; Z. Yang et al., 2021), as highlighted by previous studies (Afrianto
& Graha, 2023; Afrianto & Hariyanto, 2022; Frolking et al., 2013; J. Yang et al., 2022). This is
because NTL reflects the intensity of human activity in specific areas (Spinosa, 2022).
Furthermore, Light Pollution Maps derived from NTL data have been widely applied in the
electricity sector for purposes such as tracking electrification access, mapping transmission and
distribution lines, estimating grid stability, and assessing electricity consumption (Baldwin et
al., 2017; Falchetta & Noussan, 2019; Lee, 2021; Townsend & Bruce, 2010).

This study sought to explore potential interventions to reduce energy inefficiency across various
urban morphology levels. For instance, planning at certain morphological levels that prioritizes
public transportation, energy-efficient buildings, and green space development can contribute to
reducing overall energy consumption. Moreover, a deeper understanding of how urban
morphology influences energy consumption patterns can equip policymakers with insights to
design more effective strategies for achieving sustainability goals.

Ultimately, this study aims to offer a new perspective on spatial planning, where electricity
planning no longer solely relies on static population data but also considers human activity
dynamics as part of urban morphology characteristics. By analyzing the relationship between
morphological hierarchies and energy consumption patterns, the outcomes of this research are
expected to assist urban planners in designing more efficient and sustainable energy models to
meet future urban energy demands.

Literature Review
Energy Efficiency

Population and its activities are the two main factors driving energy demand in urban areas,
directly influencing energy consumption levels (Akcin et al., 2016; Arbabi & Mayfield, 2016;
Osorio et al., 2017). The larger the population and the more diverse the activities, the greater the
energy needed to support various aspects of life. Therefore, a deep understanding of population
distribution patterns and activity dynamics is crucial in designing efficient and sustainable
energy management strategies.

Previous studies have shown that higher population size and density correlate with better energy
efficiency and lower per capita consumption (Arbabi & Mayfield, 2016; Osorio et al., 2017).
However, consumption patterns differ between urban and rural areas, with rural regions
generally exhibiting distinct patterns in gas, electricity, and transportation usage (Arbabi &
Mayfield, 2016; Pachauri, 2012).

Urban areas account for 75% of total global energy consumption and produce 70% of
greenhouse gas emissions, making energy optimization an urgent matter (Klemm & Wiese,
2022). This situation poses significant challenges for urban energy systems in achieving
sustainability and efficiency. Energy efficiency refers to the extent to which energy is
effectively used to produce the desired output (Lin & Zhai, 2023). The higher the energy
efficiency, the less energy is required to generate the same amount of output, thereby reducing
energy use, costs, greenhouse gas emissions, and air pollution.
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Urban Morphology

Urban morphology refers to the physical structure of a city that is constantly changing and
updating as a result of urbanization processes (Guo et al., 2022). From that understanding,
Nuraini argues that the study of morphology is very focused on urban areas (Nuraini, 2019).
Urban morphology is also seen as something that reflects the complex interaction between
humans and the urban environment (Yoshida & Omae, 2005). Dempsey et al., explain that
urban morphology specifically includes not only a number of physical features but also non-
physical characteristics, such as size, shape, scale, density, land use, building type, block layout,
and distribution of green spaces (Dempsey et al., 2008).

Describing and characterizing urban morphology has resulted in many methods being
documented in various scientific publications. Pryor provided a terminology gradation between
urban and rural at the level of morphology (Pryor, 1968). Urban morphology is divided into six
categories, i.e., City Center, Inner Urban, Sub Urban, Urban Fringe, Urban Periphery, and Rural
Hinterland. At each level, differences in shape, size, and composition will exist as a
representation of the living organism of the city. The concept created by Pryor is a spatial
reflection of the urbanization process, which ultimately reveals the relationship between urban
and rural areas (Mardiansjah et al., 2021). Figure 1 illustrates these morphology levels
graphically. This research attempted to use the concept of urban morphology hierarchy put forth
by Pryor.

City centre
Inner urban
Suburban

Urban fringe
Urban periphery

Rural hinterland

Built uﬂ area !

Functional Urban Area !

Rural-urban-region

Multiple
combinations
of urban & peri-
urban areas

Figure 1. Urban morphology hierarchy. Source: (Pryor, 1968)

Several previous studies have explored the relationship between urban morphology and energy
consumption (Juan et al., 2021; Lan et al., 2022; Loeffler et al., 2021; Tsirigoti & Bikas, 2017;
Wang et al., 2021; Xie et al., 2023). However, this study differs from earlier research in terms of
both terminology and research scale. In terms of terminology, previous studies generally define
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and discuss urban morphology separately from various physical form factors and city layouts,
such as building proportions, distances between buildings, population density, and other
physical patterns. In contrast, this study conceptualized urban morphology as the spatial
structure of urban areas, incorporating various hierarchical levels, including comparisons
between urban and surrounding rural areas, ultimately forming a system and pattern (Russwurm,
1975). Regarding the scale, previous studies only focused on the scale of one building, one
block, or one specific urban neighborhood. This may lead to a lack of accuracy in generalizing
research results to a larger scale, such as the urban or administrative city level.

The findings of Urquizo et al. (2017) indicate that at the City Center level, a high plot ratio leads
to substantial energy consumption for interior temperature control, whereas in the Inner Urban
zone, uninsulated solid-walled terrace houses exhibit significant heat loss ratios, making solid
wall insulation retrofits a priority intervention; in the Suburban area, although energy intensity
per unit area decreases with reduced building massing, larger room sizes actually increase total
energy consumption for heating and cooling; furthermore, in the Urban Fringe, more varied
building orientations and optimal solar exposure create significant potential for rooftop solar
panel installations; and at the Rural Hinterland level, a very low plot ratio results in the lowest
energy demand per square meter while simultaneously offering opportunities for ground-source
heat pump implementation and community microgrid development. From Urquizo et al.’s
findings, we can see that these consumption patterns and energy intervention potentials align
with Pryor’s (1968) urban morphology gradation, which classifies areas from the city center to
the countryside based on density and spatial use characteristics (Pryor, 1968; Urquizo et al.,
2017).

The use of quantile classification to delineate Pryor’s six morphology levels ensures that each
category from the City Center to the Rural Hinterland has a comparable number of observations,
thereby avoiding empty or overly large categories and enabling balanced energy-use analysis
(Urquizo et al., 2017). This classification also establishes a consistent benchmark across
sub-areas with diverse morphologies, allowing energy intensity comparisons between inner and
outer zones to be made at the same scale (Urquizo et al., 2017). Furthermore, since Estiri (2016)
demonstrates the power of quantile-based regression to capture non-linear variations in
residential energy consumption across different housing types and densities, applying quantile
classification to Pryor’s gradation permits similar advanced statistical modeling within each
morphological zone, yielding more nuanced insights than equal-interval or natural-breaks
schemes (Estiri, 2016).

Material and Methods

In the initial stage, this research conducted a correlation analysis to examine the extent of the
relationship between electrification statistical data from the National Statistics Agency and the
amount or intensity of light pollution. The higher the correlation coefficient, the greater the
likelihood that the Light Pollution Map can be used to identify energy consumption patterns at
various levels of morphology.

Furthermore, this research utilized various spatial analyses, particularly for data preprocessing.
Zonal statistics, as one of the spatial analysis techniques, was intensively used in this study to
calculate the statistical values of NTL and WorldPOP, determined by sub-district administrative
boundary polygons and urban morphology categories. In zonal statistics, the data analyzed
comes from raster data (e.g., satellite imagery). Additionally, spatial analysis, such as raster-to-
contour conversion, is also conducted to visualize the urban morphology. Ultimately, this
research produced a delineation of urban morphology, urban morphology based on population,
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urban morphology based on energy consumption, and urban morphology based on energy
efficiency levels.

Area of Study

This study focused on researching the area of Malang City. Malang City is a city in East Java
Province (Figure 2) that is renowned for its strong reputation in business, tourism, and
education. Based on this, Malang City has a complex land-use pattern, encompassing not only
residential areas but also zones for trade and services, education, and offices. As the second-
largest city in East Java Province after Surabaya, Malang City has experienced rapid growth and
a high rate of urbanization. Although it is not the most populous city in East Java, its diverse
and dynamic activities make Malang City a popular destination for migrants to settle. This
dynamic development makes Malang City a relevant subject for study, particularly in
understanding and analyzing urban morphology.

Moreover, according to a 2021 report by InRIX, a global traffic data analysis company, Malang
City was listed among the top five most congested cities in Indonesia. This fact highlights the
significant pressure on the city’s transportation infrastructure due to high population density and
economic activity, which are closely linked to energy consumption patterns. The congestion and
density not only reflect challenges within the transportation system but also illustrate how
energy is intensively consumed — from mobility and lighting to domestic and commercial needs.

By selecting Malang City as the study area, this research aimed to provide a deeper
understanding of the relationship between urban morphology and energy efficiency. It is also
expected to contribute to the development of more effective data-driven policies, particularly in
enhancing energy efficiency and promoting more sustainable urban development. Therefore,
this study not only reflects the empirical conditions of Malang City but also paves the way for
implementing adaptive policies and strategies for a better urban future.

Malang City

Figure 2. Study area orientation. Source: Author, 2022
Data Sources

The data for this study was gathered from a variety of sources. GADM.org provided
administrative area data at the level 3, while WorldPOP.org provided population data from 2012
to 2021. The NTL data, which is Light Pollution Map data 2012-2021, was obtained from
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VIIRS data, which was processed and downloaded from lightpollutionmap.info. Another data
set is the Malang City installed electricity capacity data 2018-2021 obtained from the National
Statistics Agency website. Table 1 contains information about the dataset used in this study.

Table 1. Research dataset details.

Data Type and

. Source
Resolution

Component Description Data

Population data, statistically zoned to
Population produce population data at each Raster, 100 m  WorldPOP 2021
morphological level

Electricit Tabular data of installed electricity i BPS Kota Malang,
Y capacity (Kwh) 2022

Used as a proxy for electrification
Light approach and also as a criterion in
Pollution Map  determining urban morphological

categories or hierarchies

lightpollutionmap.info,

Raster, 500 m 2022

Administrative ~ Administrative boundaries of Malang

boundaries City - GADM.org, 2022

Main Analysis

In this study, energy consumption efficiency was calculated by integrating electrification data
(watt/cm?.str), population, land area, and nighttime light intensity (Nighttime Light/NTL) to
provide an overview of how well electricity is distributed and utilized according to the activities
occurring in a given area. By understanding this efficiency, we can assess whether energy
consumption aligns with the actual needs of the community and economic activities.

Energy consumption efficiency is calculated using the following formula:

Electrification (Watt /cm?.str)
Population x Area«NTL

Energy Consumption Efficiency =

This formula reflects the relationship between the amount of energy consumed, population
density, geographic scale, and the level of nighttime activity as indicated by artificial lighting.
The results of energy efficiency calculations can be interpreted as follows:

o High efficiency value: The higher the efficiency value, the better electricity is utilized
according to activities. This means that the energy consumed is more proportional to
the population size, land area, and activity levels reflected by nighttime light imagery.

e Low efficiency value: If efficiency is low, there is high electricity consumption but
relatively low activity. This condition indicates energy wastage, such as excessive
lighting or underutilized electrical infrastructure.

The activity-based energy consumption efficiency approach plays a crucial role in urban energy
planning. Some of its applications include:

e This analysis helps identify areas with unbalanced energy distribution, whether due to
over-supply (excess supply) or under-utilization (suboptimal usage).

e The results of the analysis can be used to formulate more effective electrification
policies, ensuring that electricity is allocated based on the actual needs of each region.

e By comparing electricity consumption and activities detected through NTL, we can
evaluate whether a region has an electricity supply surplus relative to its economic
activity level.
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For example, if a city center shows high electricity consumption but low NTL values, this may
indicate energy wastage, such as inefficient public lighting. Conversely, if an industrial or
commercial area has high energy efficiency, it means electricity is productively used to support
significant economic activities. With this approach, policymakers can develop data-driven
energy-saving strategies, improve electricity distribution systems and promote more efficient
electricity use to achieve sustainable development goals (SDG-7).

Research Flow

The research flow is a well-structured and systematic process undertaken by researchers to
conduct a study or investigation. This flow includes a series of interconnected steps that guide
researchers from the initial research question to the final conclusions and recommendations. The
process begins with the formulation of clear research questions or objectives, followed by an
extensive review of existing literature to understand current knowledge and identify research
gaps. Based on this foundation, researchers develop hypotheses or research goals that provide a
framework for the study.

The researchers then design the study, selecting appropriate methodologies and defining
variables, sample populations, and data collection procedures. Data collection is carried out
while ensuring the validity and reliability of the methods used. The collected data is then
analyzed using suitable techniques, leading to the interpretation of results and their discussion
within the context of the research questions. The research flow concludes with a summary of
key findings, their significance, and potential future directions. Throughout the process,
researchers maintain careful documentation and consider the ethical implications of their work.
By following this systematic flow, researchers ensure the quality and coherence of their studies,
contributing to the advancement of knowledge in their respective fields.

This research began with the collection of spatial and tabular data. Within the administrative
boundaries of Malang City, raster data obtained from WorldPop for population data and the
Light Pollution Map for NTL imagery data underwent zonal statistical processes and clipping.
The next step was to examine the relationship between electricity data obtained from the Central
Statistics Agency of Malang City and the values from the Light Pollution Map. The resulting
values explain the strength of the relationship between these two variables.

After calculating the correlation values, the program generated morphology level maps from
2012 to 2021 using the six-quintile morphology class (Raster to Contour). The next step
involved reprocessing zonal statistics before incorporating WorldPop and Light Pollution Map
data to analyze data patterns at each morphology level. The results from the previous steps were
then compared in a radar chart to obtain the average energy usage level — the average level of
energy consumption and per capita energy consumption. The research flow used in this study is
illustrated in the chart shown in Figure 3 below.
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Light pollution map as a proxy to identify the
sustainability of urban morphology in Malang
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Figure 3. Research flow diagram. Source: Author, 2022

Result and Discussion

Electrification Correlation and Light Pollution Map

As an initial step to assess whether the Light Pollution Map could be used as a proxy for
evaluating electrification levels, a correlation process was carried out. The Light Pollution Map
obtained was tabulated or zonal statistics based on district boundaries. Table 2 shows that the
largest energy consumption from 2018 to 2021 was in Lowokwaru District, amounting to
255,344,374 VA in 2018 and decreasing to 172,887,270 VA in 2021. Interestingly, Klojen
District, which is the center of economy, government, history, and culture in Malang City, has
the lowest energy consumption among other districts. Another unique finding is that the light
intensity on the Light Pollution Map per district, converted into units (watt/cm?2.str), has the
same low to high-ranking value as the electrification data of Malang City sourced from the
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National Statistics Agency website. Table 2 shows a comparison between electrification map
data and light pollution data.

Table 2. Malang City electrification by district.

2018 2021
Light Light
Pollution I“Stal(l:&f"wer Pollution PI“Stal(l:,‘z)
Map (watt/cm?.str) Map (watt/cm?.str) ower

Kedungkandan 1,243.62 200,413,771 1,274.13 128,545,866
g
Sukun 1,065.53 158,401,894 1,008.53 98,168,492
Klojen 930.16 108,024,738 838.78 69,309,249
Blimbing 1,284.66 229,396,419 1,157.84 92,829,453
Lowokwaru 1,628.78 255,344,374 1,445.03 172,887,270
Malang City 6,152.75 951,581,196 5,724.32 561,740,330

As shown visually in Figure 4, the light intensity on the Light Pollution Map is concentrated in
the central (Klojen) and northern (Lowokwaru) regions. Klojen and Lowokwaru are two
districts with high strategic importance in Malang City. Klojen is the center of government,
economy, history, and culture in Malang, while Lowokwaru is a business and trading area that
also has several shopping centers and offices. In addition, both districts are also centers of
education in Malang City. Due to their strategic roles, both districts are centers of human
activities that are very crowded, especially at night. This is indicated as a factor that causes the
high intensity of light or light pollution in Klojen and Lowokwaru districts.

Figure 4. Light Pollution Map. Source. Author, 2022
Based on the correlation results between the light intensity from the Light Pollution Map and
electrification (Table 3), it can be seen that these two variables have a positive correlation
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relationship. This means that if the value of light intensity increases, the value of electrification
will also increase (or vice versa). Moreover, both variables have a very strong correlation value.
In 2018, the correlation coefficient value was 0.94, while in 2021 it was 0.95. These correlation
results showed that the light intensity value from the Light Pollution Map could be used as an
indicator for calculating electrification. Ultimately, the researchers could calculate
electrification in Malang city at the level of its urban morphology using the Light Pollution Map
data.

Table 3. Correlation of Light Pollution Map and

electrification.
2018 Installed Power 2018 (log10)
Light Installed Power
Pollution Map (VA) Light Pollution 2018 {log10)
Light Pollution Map 1
Installed Power (VA) 0.94 1 Installed Power 2021 (log10)
2021
nght Installed Power Light Pollution 2021 (log10)
Pollution Map (VA)
Light Pollution Map 1 - N
o o o
Installed Power (VA) 0,95 1 2 2 2
Year 2018: g E !g
Correlation Coefficient (r): ~0.94 & % &
P-value: ~0.016 -
g 5 2
£ - =
Year 2021:
Correlation Coefficient (r): ~0.95
P-value: ~0.012 Electrification Rate based on Morphology

The morphology hierarchy of an urban area
refers to the spatial structure of a city or urban region, which can be classified into several levels
or zones based on physical and socio-economic characteristics. Each zone or region has
differences in terms of function, population density, economic activity, availability of public
facilities, and types of social and cultural activities. In this study, the morphology hierarchy
division of Malang City was based on the intensity of night lights, and areas in Malang were
grouped based on the level of light intensity measured on the Light Pollution Map.

The morphology hierarchy was classified into six categories, i.e., (1) City Center; (2) Inner
Urban; (3) Suburban; (4) Urban Fringe; (5) Urban Periphery; and (6) Rural Hinterland. The
classification of urban morphology into six hierarchical levels in this study was based on the
framework proposed by Pryor (1968), as described in the literature review section. The city
center is the center of the city or Central Business District (CBD), which usually has dense
activities related to government, business, trade, tourism, and culture. Public facilities and
transportation are generally complete and adequate in this area. The Inner Urban zone, which
borders directly on the CBD, is an area with high population density, diverse economic
activities, and high social and cultural diversity. Suburban areas are considered to be outside the
inner urban area, with lower population densities, and are generally used as residences for
middle to upper-income residents. The most unique area is the Urban Fringe, which is located
between suburban and urban periphery areas, usually around the city but still has many empty
lands and unregulated land use. In addition, the Urban Periphery area is located outside the city,
with a lower population density, fewer economic activities, and generally used as a more remote
and isolated residential area. Finally, the Rural Hinterland area has very low population
densities and still has agricultural activities.

Light Pellution 2021 (log10)

Correlation Matrix (Log-transformed Dat{:%o

0.75
0.50
0.25
0.00
-0.25
—0.50
-0.75

-1.00
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These differences affect the intensity of night lights in each zone or area in the urban
morphology hierarchy. For example, there is a well-known stigma that city centers will have
high night light intensity due to the dense business and night-time activities, while rural
hinterlands will have low night light intensity due to the low population density and fewer
economic activities. In terms of the morphology area classification in Malang City (Table 4), the
rural hinterland area has the highest area at 37.77 percent between 2012 and 2022, followed by
urban fringe 21.26 percent, urban periphery 17.81 percent, suburban 13.97 percent, urban inner
5.95 percent, and city center lows 3.23 percent.

Table 4. Area based on morphology (ha).

Year Rural Urban Urban Sub Inner City
Hinterland Periphery Fringe Urban Urban Center
2012 3,272.84 1,565.30 2,214.92 2,256.63 1,355.06 330.19

2013 6,056.83 2,595.48 1,358.55 658.39 252.18 73.51
2014 5,019.50 2,007.70 2,045.97 942.18 636.96 342.63
2015 4,358.53 1,523.28 1,805.35 1,625.65 769.48 912.65
2016 4,833.93 1,876.61 2,269.30 1,191.01 610.36 213.73
2017 4,201.38 1,495.63 1,921.94 1,887.39 723.32 765.26
2018 4,078.24 1,647.54 2,154.05 1,840.09 854.42 420.60
2019 3,106.34 2,279.21 3,553.56 1,576.24 367.99 111.59
2020 2,449.33 2,637.93 3,715.17 1,848.36 320.57 23.57
2021 3,272.84 1,565.30 2,214.92 2,256.63 1,355.06 330.19
Average 4,152.99 1,958.74 2,337.65 1,536.22 654.48 354.86
Percentage 37.77% 17.81% 21.26% 13.97% 5.95% 3.23%

Figure 5 illustrates the spatio-temporal morphology of Malang City, which shows that the city’s
morphology tends to be dynamic rather than static. In 2012, the center of Malang City was
located in the area around Alun-Alun Kota/Kidul, but in 2015, the central area of the city
underwent a significant expansion from Klojen towards Lowokwaru. This was indicated by the
intensive development in Lowokwaru, which experienced rapid growth in terms of settlements
and businesses. This growth led to an increase in socio-economic activities in the area and
ultimately affected the development of the city’s core center. The Malang City Government has
also paid special attention to the development of Lowokwaru as a strategic area for
development. This is evident from the construction of office buildings, hotels, and shopping
centers in the area, which further enhance its attractiveness. From 2018 to 2021, there has been
a shift in the center of Malang City, with the formation of a polycentric urban pattern, where
there are two poles of growth centers. Interestingly, the center of the city in Klojen has
undergone a significant reduction in area, while the center of the city in Lowokwaru,
particularly around the Soekarno Hatta corridor, has experienced significant expansion.
Researchers argue that such a dynamic morphology of the city also indicates that the energy use
pattern of a city will change according to the tendency of human activities at a certain time. This
is consistent with the theory examined by researchers, where previous studies have stated that
population and its activities play a crucial role in driving energy demand in urban areas, which
directly affects energy consumption (Akcin et al., 2016; Arbabi & Mayfield, 2016; Osorio et al.,
2017).
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Figure 5. Trends in different urban zones over time (area in ha). Author, 2022
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Figure 6. Malang city morphology. Author, 2022
From the population aspect, the resulting morphological map was then processed by zonal
statistics in the GIS, so that the total population of each morphological category was obtained.
The results of population mapping in the morphological category (Table 5) show that the largest
population occupies the Urban Fringe area as much as 28.25 percent and the lowest occupies the
City Center area as much as 7.08 percent. The urban fringe in Malang City has a higher
population compared to the city center because the urban fringe is a larger area with more land
available for housing development. On the other hand, the city center tends to have strict land
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use limitations and is usually used for business, trade, or industry purposes. The limited land in
the city center can hinder housing development, resulting in a lower population compared to the
urban fringe. Additionally, the urban fringe tends to be more affordable compared to the city
center, which can attract residents to live there. These factors combined explain why the urban
fringe in Malang City has a higher population than the city center.

Table 5. Total population based on morphology (person).

Year Rural Urban Urban Sub Inner City
Hinterland Periphery Fringe Urban Urban Center
2012 95,752 84,952 207,497 288,563 199,435 53,796
2013 282,041 332,402 170,570 111,766 26,333 12,145
2014 208,856 203,833 255,091 117,808 95,858 70,311
2015 166,958 130,155 198,622 198,057 98,126 167,322
2016 211,164 186,416 287,023 132,661 96,942 55,156
2017 174,153 99,583 238,991 186,465 121,924 156,558
2018 159,830 138,944 257,471 199,683 155,389 69,618
2019 112,746 152,974 398,804 262,652 39,962 27,633
2020 52,150 187,295 445,661 262,644 56,524 3,673
2021 116,120 97,936 229,978 305,931 206,668 56,065
Average 162,628 168,506 273,303 195,589 98,944 68,468
Percentage 16.81% 17.42% 28.25% 20.22% 10.23% 7.08%
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Figure 7. Population trends in different urban zones over time. Author, 2022
The energy consumption rate at each morphology level can be seen in Table 6. The highest
average energy consumption during the period from 2012 to 2021 was in the suburban areas,
while the lowest was in the city center. This is due to the fact that, as previously explained, the
suburban areas have the largest area and population. In addition, urban fringe tends to have
more and larger houses and buildings than the city center, resulting in a greater need for
electricity. Because of the more affordable land prices, the urban fringe of Kota Malang also
becomes the residence of people with lower incomes. As a result, their ability to access energy-
efficient technologies such as solar panels or heat pumps is also lower. Researchers also argue
that the city center has a lower energy consumption rate due to building factors. If the area is
dominated by buildings designed efficiently and equipped with energy-saving technologies such
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as the use of LED lights and other energy-efficient equipment, then its energy consumption can
also be lower.

Table 6. Electrification rate based on morphology (watt/Cm?2.str).

Year Rural Urban Urban Sub Inner City
Hinterland Periphery Fringe Urban Urban Center
2012 395.53 373.90 997.03 1.101.75 969.25 350.75
2013 1.138.89 1131.00 848.17 400.36 203.96 126.47
2014 939.42 941.27 1083.64 711.63 609.69 379.01
2015 851.49 703.02 1013.29 1146.15 626.45 1084.80
2016 956.94 872.24 1210.99 928.89 501.30 261.01
2017 874.39 645.95 1147.89 1328.35 590.81 841.95
2018 873.13 741.15 1209.69 1274.17 806.74 473.76
2019 672.44 948.95 2488.42 1507.80 433.11 193.57
2020 438.74 1022.37 2438.72 1426.12 431.62 32.30
2021 802.23 615.03 1418.61 1509.70 1160.13 423.02
Average 794.32 799.49 1.385.65 1.133.49 633.31 416.67
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Figure 8. Electrification trends in different urban zones over time. Author, 2022
On the basis of the average pixel value of light intensity in the Light Pollution Map (Table 7), it
is known that the areas of the City Center have the highest average light intensity, while the
areas of the Rural Hinterland have the lowest average light intensity. This study also showed
that the City Center is the hub of human activity, while the intensity of human activity is
significantly lower in Rural Hinterland areas. According to the Light Pollution Map, there is a
positive association between the average nighttime light intensity and the intensity of human
activity. This correlation was shown to be positive. Human activities, such as the use of
streetlights, building lights, and vehicle lights, have an effect on the intensity of the light that is
present throughout the nighttime hours. Areas that are far from human activity centers and
urban areas, such as rural hinterland areas, have lower light intensity at night due to the minimal
use of lights. On the other hand, areas that have a high human activity intensity, such as the city
center, industrial areas, and shopping areas, typically have a high light intensity at night.
Additionally, this is due to the fact that domestic activities are typically the primary focus in
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rural hinterland communities. As a result, the likelihood that the nighttime light intensity on the
Light Pollution Map in a particular location will likewise be higher is proportional to the level
of human activity that is present in that area.

Table 7. Average light intensity based on morphology (watt/Cm2.str).

Year Rural Hinterland Urban Periphery Urban Fringe Ur;an Inner Urban CS:& "
2012 2.59 5.75 8.82 11.24 15.14 18.46
2013 4.07 9.42 12.29 15.40 18.54 21.08
2014 4.07 9.60 12.46 15.14 18.48 23.69
2015 4.19 9.63 12.51 15.28 18.42 23.58
2016 427 9.69 12.36 15.23 18.57 21.75
2017 4.37 9.79 12.61 15.45 18.46 22.76
2018 4.37 9.79 12.61 15.45 18.46 22.76
2019 4.54 9.49 14.99 20.10 25.48 32.26
2020 3.92 8.31 13.70 18.05 22.72 29.12
2021 5.24 9.46 12.55 15.41 18.13 22.26
Average 4.16 9.09 12.49 15.67 19.24 23.77
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Figure 9. Average light intensity trends in different urban zones over time. Author, 2022

Electrification Efficiency Overview

Electrification efficiency is determined by evaluating the relationship between electrification
levels (watt/cm?.str) and population, land area, and nighttime light intensity (NTL) at each
morphological level. It is calculated as the inverse of energy inefficiency, where higher
efficiency values indicate better energy utilization relative to spatial and demographic factors.
This approach ensures that energy distribution is assessed not only based on total consumption
but also in relation to the extent of urbanization, land coverage, and intensity of night-time
activities. A higher electrification efficiency value indicates better energy utilization, meaning
electricity is more effectively distributed relative to population density and urban form. The
results (Table 8 and Figure 6) show that the City Center category has the highest electrification
efficiency, at 59.96%, suggesting that this area benefits from the most optimized use of
electricity relative to its population and urban density. In contrast, the Urban Fringe category
exhibits the lowest efficiency, at 4.30%, indicating that electrification in this area is not as
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effectively utilized. This may be due to a mismatch between infrastructure availability and
actual energy use. Interestingly, the Inner Urban (14.59%) and Sub Urban (5.64%) categories
demonstrate intermediate efficiency levels, showing that their electricity usage is relatively
balanced but still has room for optimization. Meanwhile, the Rural Hinterland (8.24%) and
Urban Periphery (7.28%) categories display lower efficiency compared to the City Center
category, implying that electrification in these areas is not predominantly used for direct
population activities but may serve non-residential functions, such as extended street lighting or
infrastructure maintenance. These findings highlight the importance of targeted energy
management strategies, ensuring that electricity distribution aligns with actual consumption
patterns. Future research should explore how infrastructure planning and smart grid
implementation can enhance efficiency across different urban morphologies to create a more
sustainable energy distribution system.

Table 8. Electrification efficiency.

Year Rural Urban Urban Sub Inner City
Hinterland Periphery Fringe Urban Urban Center
2012 4.87E+08 4.89E+08 2.46E+09 1.51E+09 2.37E+09  1.07E+09
2013 1.64E+09 1.39E+09 2.98E+09  3.53E+09 1.66E+10  6.72E+09
2014 2.20E+08 2.40E+08 1.67E+09  4.23E+08 5.40E+08  6.64E+08
2015 2.79E+08 3.68E+09 2.26E+09  2.33E+09 4.50E+09  3.01E+08
2016 2.20E+07 2.57E+08 1.50E+08  3.86E+09 4.56E+09  1.02E+10
2017 2.73E+09 4.43E+08 1.98E+09  2.44E+09 3.63E+08  3.09E+08
2018 3.07E+09 3.31E+08 1.73E+08  2.24E+09 3.29E+09  7.11E+08
2019 4.23E+08 2.87E+08 1.17E+09  1.81E+09 1.16E+10  1.95E+09
2020 8.76E+08 2.49E+08 1.08E+09  1.63E+08 1.05SE+10  1.28E+11
2021 4.03E+09 4.24E+09 2.22E+09  1.42E+08 2.28E+09  1.03E+10
Average 3.65E+08 3.23E+09 1.90E+09  2.50E+08 6.47E+08  2.66E+09
Percentag 8.24% 7.28% 4.30% 5.64% 14.59% 59.96%
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Figure 10. Energy inefficiency trends. Author, 2022
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Discussion

Energy Efficiency and its Relationship with Energy Inefficiency

This study assessed energy efficiency by analyzing the relationship between electrification
levels, indicated by nighttime light intensity (NTL), and factors such as population density and
land area across different urban forms. An elevated value in this assessment signifies increased
energy consumption, which may indicate inefficiencies in energy utilization. This is consistent
with the theory proposed by previous researchers, indicating that energy efficiency is a measure
of how effectively energy is utilized to achieve desired results (Lin & Zhai, 2023; Osorio et al.,
2017). Excessive energy consumption relative to actual needs may signal inefficient
electrification. When electrification efficiency is assessed — by relating electrification levels
(watt/cm?.str) to population density, land area, and nighttime light intensity — it becomes evident
that high consumption does not automatically translate to optimal energy use. In fact, regions
such as the Rural Hinterland, despite their lower overall energy demand, exhibit lower
electrification efficiency compared to densely populated areas like the City Center and Inner
Urban zones. This suggests that in less urbanized regions, electricity is more likely allocated to
non-residential functions, underscoring that effective energy utilization depends on aligning
infrastructure with the specific spatial and demographic characteristics of each area.

Urban Morphology and Its Impact on Energy Efficiency

Pryor classified urban morphology into six distinct levels: City Center, Inner Urban, Sub Urban,
Urban Fringe, Urban Periphery, and Rural Hinterland (Pryor, 1968). The classifications
illustrate distinct urban structures, each impacting energy consumption patterns in unique ways.
The results of the present study indicate that City Center and Inner Urban areas demonstrate
notably greater energy consumption compared to other zones; however, this does not
consistently align with increased efficiency. This indicates that high-density urbanization does
not necessarily lead to energy inefficiency caused by the excessive use of commercial,
industrial, and public lighting practices that are not consistently optimized.

Prior investigations have examined the connection between urban morphology and energy
efficiency (Juan et al., 2021; Lan et al., 2022; Loeffler et al., 2021; Tsirigoti & Bikas, 2017;
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Wang et al., 2021; Xie et al,, 2023). The present study underscores the distinctions in
terminology and the scope of research when compared to earlier works. Loeffler et al.,
characterized urban morphology as the physical structure and arrangement of cities,
encompassing building proportions, spacing, and solar exposure, all of which affect energy
performance in buildings (Loeffler et al., 2021). This viewpoint contrasts with the methodology
employed in this study, which regards urban morphology as the overarching spatial framework
that includes various hierarchical zones both within and surrounding urban environments.

In terms of research scale, numerous previous studies have concentrated on single buildings,
specific blocks, or small urban neighborhoods — approaches that may limit their applicability to
broader urban or administrative areas. In contrast, this study employed an NTL-based spatial
analysis to comprehensively assess the influence of urban morphology on energy consumption
across an entire city. Electrification efficiency is determined by evaluating the relationship
between electrification levels (watt/cm?.str) and key parameters, including population, land area,
and nighttime light intensity. Our findings reveal that the City Center exhibits the highest
electrification efficiency at 59.96%, reflecting an optimal alignment between infrastructure
provision and high population density. Conversely, the Urban Fringe shows the lowest
efficiency at 4.30%, indicating a significant mismatch between available infrastructure and
actual energy use. Intermediate efficiency values are recorded in the Inner Urban (14.59%) and
Sub Urban (5.64%) zones, while the Rural Hinterland (8.24%) and Urban Periphery (7.28%)
also demonstrate lower efficiencies — suggesting that in these areas, electrification is more likely
allocated to non-residential functions. These results underscore the importance of tailoring
energy management strategies to the specific spatial and demographic contexts of each urban
morphology, thereby enhancing overall energy distribution and minimizing waste.

Policy and Urban Planning Implications

This study's findings on electrification efficiency — evaluated through the relationship
between electrification levels (watt/cm?.str), population density, land area, and
nighttime light intensity —lead to several policy recommendations for optimizing energy
distribution in urban settings:

e Data-Informed Urban Planning. Planners should integrate electrification efficiency
analyses into spatial planning to ensure that infrastructure investments align with actual
consumption patterns. For example, the high efficiency in the City Center (59.96%)
contrasts sharply with the low efficiency in the Urban Fringe (4.30%), highlighting the
need for tailored approaches across different zones.

e Targeted Deployment of Energy-Saving Technologies. In areas where inefficiencies
are pronounced — especially where electrification is primarily allocated to non-
residential functions (as seen in parts of the Urban Fringe, Rural Hinterland at 8.24%,
and Urban Periphery at 7.28%) — the adoption of LED lighting, smart sensors, and
adaptive lighting systems can help reduce energy waste.

e Enhanced Renewable Energy Integration. Increasing the share of renewable energy in
zones with lower efficiency values can reduce fossil fuel dependency and support a
more sustainable energy system, ensuring that energy production better matches
localized demand.

e Balanced Infrastructure Development. The expansion of electricity grids must be
calibrated to local population trends and urban forms. In intermediate zones like Inner
Urban (14.59%) and Sub Urban (5.64%), as well as in peripheral areas, infrastructure
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development should be optimized to meet consumption needs without oversupplying
energy.

These recommendations underscore the significance of utilizing data-driven
methodologies — such as the integration of NTL, population distribution, and urban
morphology analysis — to develop effective strategies that optimize energy use,
minimize waste, and promote sustainable urban development.

Conclusion

It takes more than simply quantitative research to comprehend energy inefficiency in urban
settings; it also necessitates taking a look at the interactions between electrification,
infrastructure, and people in various spatial locations. This research looked into the role of
spatial analysis in addressing this issue, particularly by utilizing night-time light imagery
(NTL). By integrating NTL data with population distribution and land area statistics, researchers
can acquire more profound comprehension of the relationship between electrification, energy
use, and efficiency.

One important conclusion drawn from this investigation is that energy consumption is
noticeably higher in high-density urban regions, such as inner urban zones and city centers.
Nevertheless, more utilization does not always translate into greater efficiency; in many
instances, these areas waste a significant amount of energy. On the other hand, electrification
and energy use tend to be more proportionate in suburban and outlying areas, indicating a rather
balanced consumption pattern.

Night-time light data offers a useful means of assessing electrification patterns across different
regions. Areas with minimal or no night-time illumination often indicate restricted access to
electricity, making this a necessary tool for both policymakers and researchers. Stakeholders
may track the development of electrification projects, pinpoint infrastructure gaps, and improve
resource allocation plans by utilizing NTL data. Additionally, the brightness of nighttime
lighting can be used as a general measure of electrification, allowing for cross-regional
comparisons and assessments of energy availability over time.

Nevertheless, while NTL data offers important realizations, it is not without limitations.
Artificial night-time illumination may be impacted by a number of such as economic activity,
cultural practices, and population density, all of which can distort its reliability as a direct
measure of electrification. Therefore, a more all-encompassing strategy should integrate
additional data sources, including electricity consumption records, infrastructure assessments,
and ground surveys, to attain a more precise and comprehensive comprehension of urban energy
dynamics.

From a policy perspective, these findings stress the significance of targeted energy strategies
that give priority to sustainable urban planning, energy-efficient infrastructure, and equitable
electrification efforts. Cities may increase energy efficiency, reduce waste, and guarantee a
more equitable distribution of energy resources by integrating geographical data analysis into
decision-making procedures. In the future, developing energy-resilient and sustainable urban
environments will require a multifaceted strategy that incorporates geospatial analytics, real-
time energy monitoring, and socioeconomic factors.
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