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ABSTRACT

In a number of problem domains there is an increasing interest in exploring
HAow data, which is defined as data that captures movement between places on

a given network, including most branch of engineering, fransporitation,

telecommunication, social system, and economic geography- However, the.
current state of the art in exploratory spatial data analysis (ESDA), which is

largely dominated by geo-statistical and lattice data analysis, lack techniques

and methodologies for the exploration of flow data. Although the general
underlying concepts are largely the same, flow data requires a different set of
specific methods for data exploration. In this paper I extend the methods of
spatial statistic for identifying spatial clusters and outliers to work with Hfow

data, and demonstrate the methods to detect spatial error dependence and
heteroskedasticity in the ervor term of spatial interaction models.

I. INTRODUCTION

Travel flow data, ¢.g. movement of passengers, from origin i to destination j
can be estimated using regression models. The regression model can be
written as:

T,.j. = [, +F,-Jﬂ| +0.5, +Of,6’3 +&;

1
i=1.,n;7=1,..,n, W
where T); denotes a dependent variable which represents a flow between a
given pair of zones i and j. The index 7 refers to the zones belonging to a set
of n; zones at the origin and the index j represents one of the #, zones at the
destination. The same notation is used to model both inter-urban flow data
where the originating zones are distinct from the zones at the destination and
intra-urban flow data where the set of zones in origin is identical to the set of
zones in destination. In that particular case, #; would be equal to ;. One of
the earliest examples of this type of modeling in urban context is the model by
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Domencich, Kraft, and Valette (1968). A more recent example can be found
in Algers (1984), Bowman and Ben-Akiva (2001), Munshi (1993), Jovicic
and Hansen (2003). The explanatory variables of this model usually include:
(1) Flow or network variables, Fy, which are usually refer to level of service
(LOS) variables, for instance travel cost, on-vehicle travel time, out-of-
vehicle travel time, fare, frequency, etc; (2) Socio-economic variables
(population, income, employment, parking cost, number of carg per
household, etc.) associated with the origin, O; and (3) Socio-economic

variables associated with the destination, O, f, is a constant term and

By BBy, and B are coefficients associated with the variables described
above.

Because of omission of variables or because of lack of data, the model often
cannot capture ali relevant factors related to the geographic structure. For
instance, a shopping trip to one area may be explained by the absence of other
shops with comparable characteristics in neighboring areas. Similarly, if two
contiguous destinations have equivalent shopping facilities (shopping malls,
for instance); these destinations may. be close substitutes for the shoppers of
the neighboring zones (Fotheringham and’ O’Kelly, 1989). The fact of
omitting these factors gives rise to some spatial autocorrelation in the
regression errors (spatially correlated and/or heteroskedastic), or in another
word the error terms do not have the same variance across space. For these

reasons, the error term &, ineq. (1) will reflect this situation, and neglecting

these error term will lead to bias, and inconsistent in the parameters being
estimated (CIiff and Ord, 1981; Anselin and Bera, 1998). To overcome this
problem, many solution has been proposed to model the spatial
autocorrelation in the dependent variables. An alternative approach is to
explain the spatial autocorrelation by adding extra variables to the
deterministic part of the model. Using the ideas of in Fotheringham (1983),
one could incorporate some intervening regions’ variables to capture
competing destination effects, competing originating effects and competing
network effects. Another possibility is to use the Wills ( 1986} flexible general
gravity-opportunities model which contains both the intervening opportunity
mode] and gravity model as special case. Different from these two
approaches, the recent effort proposed by Bolduc et. al. (1992) suggested to
handle spatial autocorrelation by incarporating systematic influence on spatial
trip correlation by modeling it through the error term. With this approach, we
can test whether the intervening region’s variables capture the entire spatial
correlation structure or just a part of it.

While those approaches may provide alternatives to the solutions, however
these approaches are not very instructive on how to improve the model when
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the assumptions are hurt. To cope with these problems I suggest extending the
analytical toolkit by incorporating exploratory spatial data analytical tools
(ESDA) into the model evaluation. This tool allows the researcher fo monitor
the spatial structure of the resulting estimation errors and guide him or her in
the process of improving the accuracy of the parameter estimates, and can
improve the specification of a given model if there is structure in the error
terms. Moreover, this tool can map the statistics of these errors and reveal
where the non-stationarity occurs.

The remainder of the paper consists of four sections. I first outline how
principles from ESDA are relevant in the analysis of flow data. Specifically, I
start by briefly reviewing the concept of ESDA and how it can be applied to
spatial data: (1) areal data and then extend that technique to (2) flow data. |
next outline some recently developed approaches that focus on “local”
indicators of spatial assaciation (or LISA) and discuss how these may be used
to detect hot spots and spatial outliers on network and followed by two
illustrations: first is a simple illustration of ESDA applied to areal data and
the second illustration is an application to flow data. This paper closes with
some thoughts on potential extensions and conclusion. -

II. EXPLLORATORY SPATIAL DATA ANALYSIS

Formally, the presence or absence of pattern is indicated by the concept of
spatial autocorrelation, or the co-incidence of similarity in value with
similarity in location. In other words, when high values in a place tend to be
associated with high values at nearby locations, or low values with low values
for the neighbors, positive spatial autocorrelation or spatial clustering is said
to occur. In contrast, when high values at a location are surrounded by nearby
low values, or vice versa, negative spatial autocorrelation is present in the
form of spatial outliers. The point of reference in the analysis of spatial
autocorrelation is spatial randomness, or the lack of any structure. For
example, under spatial randomness, the particular arrangement of the
distribution of the errors of a regression based on travel flow data on a given
road network would be just as likely as any other arrangement, and any
grouping of high or low values in a particular zone would be totally
misleading.

Recently, the set of method$ for structuring the visualization of spatial data
has been referred to as exploratory spatial data analysis, or ESDA. As defined
by Anselin (1994, 1998, 1999a), ESDA is a collection of techniques to
describe and visualize spatial distributions; identify atypical locations or
spatial outliers; discover patterns of spatial association, clusters, or hot spots;
and suggest spatial regimes or other forms of spatial heterogeneity (changing
structure or changing association across space). Central to this
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conceptualization is the notion of spatial autocorrelation or spatial association,
i.e. the phenomenon where local similarity (observation in spatial proximity)
is matched by value similarity. As such, ESDA forms a subset of exploratory
data analysis or EDA (Tukey 1977), but with an explicit focus on the
distinguishing characteristics of geographical data, and specifically ESDA
techniques formally focus on the detection of global and local patterns of
spatial autocorrelation (Anselin, 1995).

In the next section I will introduce the formal definition of Moran’s | that is
commonly used to detect global pattern and LISA that is commonly used to
detect local pattern of spatial autocorrelation. I then extend the concept of
LISA to work with flow data.

2.1. Tests for Global Spatial Autocorrelation — Moran’s I
Moran’s I is the most common measure for assessing spatial autocorrelation.

This is the measure that will be used to illustrate the existence of network
autocorrelation. Calculation of the index, represented by 1, is as follow:

iiwg (x, — ;)(x;,. ~x)
J=_i )
SZZZWEJ

Py

(2)

1 21 —_ . -
where S? = —Z(x, —x)?, x, denotes the observed value at location 7, x is
ne
the average of the{x;} over n locations, w; the spatial weight measure defined
as 1 If location / is contiguous to location J and 0 otherwise. In the network

case: x; is the value of variable x on arc or link i; x is the mean of variable x
across all arcs; n is the number of arcs; and wy; is a weight indicating if arc i is
connected to arc j (for example, 1) or if it is not (for example, 0).

The expected value and variance of the Moran I for sample size n could be
calculated according to the assumed pattern of the spatial data distribution
(Cliff and Ord 1981, Goodchild 1986).

For the assumption of a normally distribution,
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weight matrix respectively.

The test on the nult hypothesis that there is no spatial autocorrelation between
observed values over the # locations can be conducted based on the
standardized statistic as

_ I-E(D

JVAR(D) O

A fundamental concept in the analysis of spatial autocorrelation is the spatial
weights matrix. This is a square matrix of dimension equal to the number of
observations, with each row and column corresponding to an observation.
Typically, an element w; of the weights matrix W is non-zero if locations i
and j are neighbors, and zero otherwise (by convention, the diagonal elements
wy equal zero). A wide range of criteria may be used to define neighbors, such
as binary contiguity (common boundary) or distance bands (locations within a
given distance of each other), or even general “social” distance. The spatial
weights matrix is used to formalize a notion of locational similarity and is
central to every test statistic. In practice, spatial weights are typically derived
ffom the boundary files or coordinate data in a geographic information system
(GIS). Figure | shows a simple illustration how a 9-by-9 weight matrix is
constructed from nine hypothetical zones.

z

Weight matrices made of ones and zeros are common in autocorrelation
analysis. This appears to have had its origin in the use of boundaries and
transport linkages to assess contiguity for the weight matrix elements. Areas



shared a boundary or transport link, or they did not. Similarly, in the network
case, an arc is connected to another or it is not. It should be apparent that
weight matrices may contain higher levels of spatial (or network) ordering
than such dichotomous systems. Extensive discussion of the construction of
weight matrices for flow data will be given in section 2.3

[ A B C D E F G H 1
A B C A ] i ) i 1) i 0 ] 0
r B i ) 1 0 i i ) 0 0
D E F C 0 1 0 0 | 0 1 0 0 0
D 1 9 0 0 1 0 1 0 0
E 0 1 0 I 0 I 0 1 0
G H I F 0 i 1 0 i 0 [i i 1
G 0 0 0 ] 0 0 D 1 f)
— H 0 0 0 0 1 i) 1 0 1
1 ) 0 0 0 0 I 0 1 0

(a) (b)

Figure 1

(a) A hypothetical map of zones, (b) W, the binary contiguity matrix of the
map based on rook contiguity criteria, i.e._shari_ng the common border,

2.2. Tests for Local Spatial Association - LISA

To investigate the spatial variation as well as the spatial associations, some
local measurements of spatial statistics can serve such a purpose. In
identification of local spatial patterns, there are usually two issues in concern:

(1). Is the observed value at location i surrounded by a cluster of high or low
value?

(2). Is the observed value at location i surrounded by similar (dissimilar)
neighbors?

Local indicators of spatial association (LISA) provide a measure of the extent
to which the arrangement of values around a specific location deviates from
spatial randomness. This statistic is designed not only to find clusters of high
or low values, but also to find hot-spots or outliers (low values surrounded by
high values or high values surrounded by low values).

A general framework for LISA is outlined in Anselin (1995), where it is

derived from global statistics, the Moran . Formally, LISA is defined as
foliow:

li=Z,% w7z, (8)

Joi=i
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where the observations Zi and Zj are in standardized form {with mean of zero
and variance of one). The spatial weight wij are in row-standardized form. So,
i is a product of Zi and the average of the observations in the surrounding
locations.

The corresponding global Moran I statistic can be obtained by calculating the
average of local Morans (Anselin 1995).
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2.3. The LISA Statistics for Flow Data, L;

Similar to the J statistic which is defined in the context of lattice data, [ in
equation (8) can also be generalized to flow data. If in equation (8) we let
denote the flow from  to /, j the flow from £ to /, and 1 the number of flows, it
can be directly applied to flow data. Let z; denote flows between each pair of
zones. Then, given a spatial weight matrix ¥ = [wyu], we can define a local
Moran for flow data as follow:

L, =z, Z Wik Z (10)

kieJ,J-

Since equation (10) still is Ji statistic, the intuition of the measure is still valid
when applied to flow data. Computing this statistic for flow which is
associated with an origin-destination pair (i ,j} is quite different from lattice
data. The difference is mainly due to the way the spatial weight matrix of
flow-data defined. In area data the weight matrix may be defined as a
contiguity matrix which is based on common boundary, and in point data the
weight matrix may be defined as a distance matrix. Similarly we can also
apply that concept for flow data where the notion of association between
flows are defined as illustrated in Figure 2 as follow;
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Figure 2.
The illustration of spatial association in flow data

(a) shared only the common point or zone in their origin;

(b} shared only the common point or zone in their destination; -

(¢) not only shared the common point or zone in their origin but also have -
their destinations being neighbor {contiguity or within a specific distance
band);

(d) not only shared the common point or zone in their destination but also
have their origins being neighbor (contiguity or within a specific distance
band).

The notion of a weight matrix shown in (a) and (b) is introduced by Black
(1992) whose defines a binary spatial weight matrix based on the
geographical configuration of the zones, the origins or destinations. Two links
are considered to be neighbors (weight equals one) if they are (directly)
interconnected. We will consider two different spatial weight matrices of this
kind. First, we can let the weight equal one for all flows from a zone i, see
Figure 2 (a). With this definition, we can assess whether all flows from 7 are
small or large, independent of destination ; (and vice versa).

Lx Z_,izif' —hz . -
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where ¢ is the number of flows, and z is the average and s is the standard
deviation of flows between all pairs of origins and destinations, and » equals

the number of zones, and z may be approximately equal to zero, for instance if
z;; are residual flows from a properly specified regression model.

The illustrations in Figure 2(c) and 2(d) are provided to represent and capture
the notion of intervening opportunities and competing destination model. The
notion of spatial association here is an association that falls back on the spatial
weight matrix among zones, in other words the configuration of zones. Two
binary spatial weight matrices can be defined in this respect as illustrated in
Figure 2( c) and 2(b), respectively:

W= [wiz] = 1 if i=k and w; = |, and O otherwise. {13)
We=[wyu} =1 ifj=land wy = 1, and 0 otherwise.  (14)

where w; denotes elements of the traditional binary spatial weight matrix, i.e.
- wy equals one if 7 and j are neighbours, and zero otherwise.

Although a binary spatial weight matrix is often used in applications, it is
often seen only as a first approximation, and more general forms of weight
matrices should be considered. It is often, however, difficult to single out one
particular weight matrix from a number of candidates. I have also employed a
more general form, with parameterized spatial weights,

Y= vl =i+ d) (15)
where & is the parameter, and d; denotes the distance between zone / and j.
2.4. Generalized Forms for LISA statistics

According to Getis and Ord (1992), Ord and Getis (1994) and Anselin (1995),
it is assumed that observed values are randomly distributed over space under
the hypothesis of no spatial association. Each attribute value (xi) is in equal
probability at every spatial unit over the space (p(xi)=1/r). However, in many
studies, the spatial unit is not always defined regularly in a spatial sense. It is
then questionable that the probability of the sampled value is inversely
proportional to the number of spatial units. One example is the Census tract
that is defined to include about 4,000 people. Thus, tract area varies greatly
between urban and rural tracts. In the pattern of population distributed over
space, it is more reasonable to assume that the probability of the population
density observed at location i is proportional to its areal share of the space
(p(xi} = ai/Zjaj). In this case, local Moran defined above will not hold. The
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traditional permutation test will be inappropriate if each observation is
sampled in equal probability.

The generalized form for LISA can be defined as

]', :Z,ZgUZJ (16)
17

where {Zi } is a series of standardized observations, {g;} is a generalized row

standardized spatial weight matrix (g, =w, p, / Z w,D; ).
- N

The expected values and variances of the generalized LISA can be defined as
follow:

E(I[(gn =2, 8,E(ZZ)=2D,U, (16)
‘ Jof . :
Var([;) = Zfz[Diszz '§"' (-D;l; - sz)Uf3}*_E(If‘)2 ‘(17) .

where pj is the conditional probability (P(X=xj[X=xi)),
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The generalized LISA is equal to its standard forms when each conditional
probability (P(X = x|X #xi), j = 1..n) is identical (i.e., p/ = p2 = .. = pn).
Compared with the LISA, the generalized forms can reflect the actual spatial
distribution without distortion by incorporating the conditional probability
into the measurements. The estimated expected values and variances are
consistent and the tests are more reliable in spatial problems with a
heterogeneous sample distribution (Bao and Henry 1996). With the special
case of flow data, zone weights (e.g. population, incomé level, etc) can be
employed since the probability of a random variabie observed at a specific
flow is proportional to its characteristic measurement of its origin or
destination. The conditional probability can then be represented by pi=(PX

= xj|X = xi) = aj/Za,.

i
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2.5. Moran Scatterplot

The degree of spatial autocorrelation in a dataset can be readily visualized by
means of a special scatterplot, termed Moran scatterplot in Anselin (1995,
1996). The Moran scatterplot is centered on the mean and shows the value of
a variable (z) on the horizontal axis against its spatial lag (W, or ; w;z;; i.e., a
weighted average of the neighboring values) on the vertical axis. The four
quadrants in the scatterplot correspond to locations where high values are
surrounded by high values in the upper right (an above mean z with an above
mean Wz), or low values are surrounded by low values in the lower left, both
indicating positive spatial autocorrelation. The two other quadrants
correspond with negative spatial autocorrelation, or high values surrounded by
low values (high z, low #7Z) and low values surrounded by high values (low z,
high Wz). The slope of the linear regression line through the Moran scatterplot
is Moran’s 1 coefficient. Moreover, a map showing the locations that
correspond to the four quadrants provides a summary view of the overall
patterns in the data. Hence, this device provides an intuitive means to
visualize the degree of spatial autocorrelation, not only in a traditional cross-
sectional setting; but also across variables and over time.

4 Quadrant-2 Quadrant-1
(cold spots or low outliers) (high clusters) e
locations where low values are | locations where high valyes are
surrounded by high values surrounded by high-values
(Low-High) (High-High)
0 L -
T Quadrant-3 -7 Quadrant-4
(low clusters)-~~ (hot spots or high outliers)
locations whergdow values are | locations where high values are
surrounded by low values surrounded by low
et " (Low-Low) values
- (High-Low)
A 4
Z value
Figure 3.

The Layout of Moran Scatterplot, the dash line represents the slope of the
linear regression line (Wz on Z), and its slope is the Moran { coefficient.
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HL ILLUSTRATION

In this illustration, GeoDa, a simple and user-friendly ESDA software
package developed by Anselin and Syabri (2003), is used to conduct
exploratory spatial data analysis for areal data and flow data. The purpose of
demonstrating the areal data here is to illustrate the basic concepts ESDA
before departing to the ESDA techniques for flow data.

3.1. Illustration of the use of ESDA for Areal Data

For purposes here I will use data on the spatial distribution of household
consumption in the greater Jakarta metropolitan area of Indonesia’. This
region is referred to as the Jabotabek metropolitan area, and it comprises 129
subdistricts, covering, in addition to Jakarta, the urban areas of Bogor,
Tangerang and Bekasi. This metropolitan region is characterized by internal
restructuring, both physical as well as in terms of socio-economic
characteristics. The primary pattern is one of decentralization of
‘manufacturing (away from the city center) and concentration of finance and
services, changing the nature of urban areas in the core’. We consider the *
spatial distribution of median household consumption in the region, as well as
its relation to disposable (household) income in a simple linear consumption
function. In Figure 4, the central graph shows a quartile map for household
consumption, with the “outliers” highlighted in the center. The districts in
question happen to all be near the core of Jakarta, suggesting the existence of
a “cluster.” While these are the locations that match the outlying data points
on the traditional box plot on the right, the latter does not shed light on any
“spatial” pattern as in the box map. On the left, a scatterplot with a linear
smoother illustrates the slope of the consumption function and how this is
affected when the outlying observations are removed from the analysis (the
slope of 0.74 on the upper right hand side of the graph is the value obtained
without the outliers). Clearly, the selection in one of the graphs is linked to the
matching observations on the other graphs,

We further investigate the spatial pattern of consumption expenditures by
focusing on the districts with a significant Local Moran and the type of spatial
autocorrelation suggested, as illustrated in F igure 5. The graph on the lower
right presents the Moran scatterplot and suggest a (significant) degree of
positive spatial autocorrelation (Moran’s I is 0.54). The local autocorrelation
provides a more fine grained view of the association however. The significant
districts are shown in the lower left map, with the classification by type of
association given in the LISA map at the upper left. Both maps have been
zoomed in to provide a better view of the pattern near the core city. While the
evidence overwhelmingly suggests a significant “cluster” of high household
consumption near the center-city, there is one district that does not fit the
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mold. In the very center, the Tanah Abang district (identified in the Table on
the upper right) shows a significant pattern of negative association, i.e., a low
value surrounded by high values. A look at the matching point in the Moran
scatterplot confirms that this is indeed a location with below average
consumption, surrounded by above average neighbors. This pattern is such
that it is highly unlikely to occur under spatial randomness. The district in
question is indeed a remaining area of urban decay, where the conversion to
business activity, characteristic of the other core districts, has not (yet) taken
place.

Slope = 0.7435

CONSUM @n10-6)

Ry

NCOME(in 10%) |

Figure 4
Distribution of household consumption in the Jabotabek region.

As a final illustration, I consider evidence of spatial heterogeneity, or the
significant difference between moments of a distribution and model
parameters by regional “regimes.” In Figure 6, a brush is centered on the core
urban area, selecting those districts in the map and in the matching box plot.
This also eliminates the selected points from the computation of Moran’s I
and the slope of the consumption function. The latter, shown in the bottom
right graph, is substantially higher than for the data set as a whole (0.90 vs.
0.76), confirming the well-known phenomenon that the propensity to
consume (the slope of the regression ling) is not constant, but inversely related
to income (lower income groups, outside the core districts, have higher
propensity to consume). Moving the brush over the map would allow the
analyst to interactively assess the degree of change in this parameter over
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subregions of the data, suggesting candidate “spatial regimes™ for further
analysis by means of spatial econometric software.

3174020 i Cengkareng
8. 3174050 Taman Sari
3174040 : Tambora
100 3174031 (Palmerah
191 3174630 | Grogol Petamburan
10z: 3174021 :Kali Deres
|- 3173010 [Tans
3173020 {Menteng

3173930 | Senen

More's = 03396 1=03615

Figure 5
Visualizing local and global spatial autocorrelation for areal data.
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Tvtoazn's I= 0 5386 1=04904

/

Slope = 0,7633 0.5013

CONSUN (i 10°6)

Figure 6
Visualizing spatial heterogeneity.

A “static” description such as the one given here rarely gives proper credit to
the type of additional insight generated through a dynamic interaction with the
data, especially when complemented with substantive knowledge of the issue
at hand (Syabri and Anselin, 2003). Such interaction often provides
significant added value over a more traditional data analysis, motivating
further work on extending and refining the current framework™'.

-~

3.2. Tllustration of the Use of ESDA for Flow Data

In this illustration I compute the proposed measures to analyze spatial
association of migration flows. The migration model used to generate
residuals is a log linear gravity model estimating migration flows between
1965 and 1970 of the major census regions of the United States”. The relative
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unemployment in origin zone, the total population in both origin and
destination zones, ratio between housing prices in origin and destination zones
are used as determinants associated with the origin and destination zones. The
distance between zones is used as a determinant describing the friction. There
error terms are as usual are assumed to have expectation zero, same variance,
and to be independent. Hence, under the null hypothesis of no spatial
association we assume that the residuals are not correiated.

There are 9 (nine) zones, and consequently 72 flows and a 72-by-72 arc
weight matrix for the network autocorrelation analysis. Clearly for larger
zones, we going to run the risk of producing rather cluttered maps if we
endeavor to display all flows (for n zones, the number of flows will be #° - 7).
Figure 7 shows a query for simply showing flows that in and out of the
Pacific region with yellow lines represent flows from and to the Pacific
region. The dots are simply the centroids of the regions and the lines are
symbolized the flows where the width of the line is proportional to the volume
of the flow.

GeoDa (Bet ﬁ-'regioli _;pir]t}.

e e,
IURTE D

Figure 7.
The nine major census regions of the United States.
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The map in Figure 8 illustrates the spatial distribution of high values of the
residuals that associated with the quadrant-1 of the Moran scatterplot on the
left. The spatial association in the residuals is visualized by the Moran
scatterplot map, which symbolizes the four quadrants of the Moran scatterplot
and suggests a (significant) degree of positive spatial autocorrelation
(Moran’s 1 is 0.31).

23 evror:flows - (Dut Flows) 2

Moran’s 1= 03163 2139

H

\\'

-
el

19y
e .
/ e

+

W_FLOW_ERRORS

(®)

Figure 8.
Visualizing the clusters of high values of the residuals.

£ Moran (flows_rookEALY: a_nw
Monr's I= 03163 1= 00331

1

v
o
d
¥
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\

wW_FLOW_ERRORS
A
H

2 []
FLOW_ERRORS (2)

Figure 9.
Visualizing the clusters of low values of the residuals.
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Fourteen out of sixteen residual flows coming out from W-N Central and E-N
Central regions to other regions are among the highest values of residuals
(above average residuals) that are surrounded by high-residual flows which
suggest a significant cluster. Excluding these clusters out from the analysis
changes the Moran [ from 0.36 to 0.21 (showed on the top right of the Moran
scatterplot with brown color). On the other hand, in Figure 9, the outlying data
points of quadrant-3 (locations where loew values are surrounded by low
values) surprisingly create clusters in the Mountain, W-S Central, and S
Atlantic, and East South Central and excluding these clusters out from the
analysis changes the Moran [ very significantly from 0.36 to 0.03.

As a final illustration, 1 consider evidence of spatial heterogeneity, or the
significant difference between moments of a distribution and parameter of
spatial association. In Figure 9, a selection brush is set on the south of area,
selecting those regions (Mountain, W-S Central, and S Atlantic, and East
South Central) in the map and in the matching Moran scatterplot. This also
eliminates the selected points from the computation of Moran’s I and changes
the slope of the residuals (FLOW_ERRORS vs W_FLOW_ERRORS). The
latter, shown in the right graph, is substantially lower than for the residuals as
a whole (0.31 vs. 0.03), confirming that the error term (the slope of the
regression line) is not constant.. Moving the brush over the map would allow
the analyst to interactively assess the degree of change in this parameter over
subregions of the data, suggesting candidate “spatial regimes” for further
analysis by means of spatial econometric software.

These impressive findings indicate a significant level of dependence in the
residuals, that is, the error terms cannot be assumed to be spatially
independent, and interpret to signal model misspecification. When this error
dependence is ignored, the resulting estimator remains unbiased, although it is
no longer most efficient. Moreover, the estimates for the coefficient standard
errors will be biased, and, consequently, t-tests and measures of fit will be
misleading.

Although it is not the purpose of this paper to discuss the remedy of the
model, remedial action may involve re-specifying the model. The most
commonly used models are based on spatial processes, such as a spatial
autoregressive (SAR) or spatial moving average (SMA) process, in paralle] to
the time series convention. The particular form for the process yields a non-
diagonal covariance structure for the errors, with the value and sign of the off-
diagonal elements corresponding to the “spatial correlation” (that is, the
correlation between the error terms at two different locations).
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IV. CONCLUSION AND POTENTIAL EXTENSION

The purpose of this paper is to introduce ESDA as a new tool for exploring
flow data by generalizing the global and local statistics of spatial
autocorrelation to allow for applications with flow data, and to demonstrate its
usefulness in two applications. The application of ESDA to flow data
introduces new aspects which merit further consideration on its own. We have
explored non-stationarities and identified underlying geographical patterns.
The localized statistics as implemented in this paper makes it possible to
address how relationships between variables vary over space. We believe that
the used measures have improved our understanding of the strengths and
weaknesses of the estimated models in terms of a spatial analysis. This
understanding can be incorporated into improved and more comprehensive
models.

Most current techniques of exploratory data analysis work fine for small to
medium-sized datasets. However, increasingly large spatial datasets (with
100,000 to millions observations) become the subject of investigation in
spatial data. analysis, primarily in application of spatial interaction models
where the size of flows become quadratic (n° — #). Simple extrapolation of
ESDA methods to large datasets is therefore not feasible.
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