Spatial Dynamic Models for Inclusive Cities: a Brief Concept of Cellular Automata (CA) and Agent-Based Model (ABM)

Authors

  • Agung Wahyudi School of Geography, Planning and Environmental Management. The University of Queensland, Brisbane, Australia
  • Yan Liu School of Geography Planning and Environmental Management, University of Queensland

DOI:

https://doi.org/10.5614/jpwk.2015.26.1.6

Abstract

Abstrak.Kawasan perkotaan terutama di negara-negara berkembang menunjukkan laju pertumbuhan fisik yang tinggi. Telah banyak model yang mencoba merekonstruksi pertumbuhan perkotaan ini dengan menggunakan data demografi dan data sosial. Permodelan ini adalah salah satu yang lazim digunakan para praktisi perencana karena ketersediaan data dan waktu proses yang relatif lebih singkat. Sayangnya, model ini bersifat statis yaitu hanya menangkap karakteristik dan bentuk kota pada satu satuan waktu. Model ini tidak akan berubah saat variabel waktu berubah. Kebanyakan model ini bertujuan untuk memperkuat atau memperjelas suatu teori perencanaan perkotaan. Model statis ini juga memanfaatkan batas-batas administrasi dan tidak memungkinkan untuk melakukan permodelan diluar bentuk administrasi sebuah kota. Dengan permasalahan perkotaan yang semakin rumit yang menuntut pengambil keputusan membuat kebijakan tepat, diperlukan suatu metode permodelan pertumbuhan perkotaan yang dinamis yang dapat memberikan informasi yang lebih lengkap kepada pengambil kebijakan terkait struktur dan bentuk perkotaan, serta beroperasi pada skala yang lebih detail. Kemudian model perkotaan ini juga perlu mewakili perilaku para aktor pembangunan perkotaan. Salah satu konsep yang berkembang sejak tiga dasawarsa lalu adalah cellular automata (CA) dan agent-based urban model (ABM). Dalam konteks penelitian perkotaan di Indonesia, sayangnya konsep-konsep ini belum banyak tersedia pada jurnal-jurnal perkotaan dan terlebih lagi belum banyak kontribusi pada konsep-konsep permodelan dan mekanisme pada proses perubahan guna/tutupan lahan. Artikel ini bertujuan untuk memperkenalkan teori dasar CA dan adaptasi dari sistem tersebut untuk keperluan aplikasi di bidang spasial perkotaan. Kami juga akan menjelaskan konsep ABM sebagai komponen dari model yang memiliki kemampuan mewakili perilaku para pelaku pembangunan. Beberapa contoh aplikasi dan kemungkinan perkembangan model dinamis untuk kota inklusif akan diberikan di akhir artikel ini.

Kata kunci. Cellular automata, agent-based, permodelan perkotaan, Sistem Informasi Geografis

Abstract. Urban areas in the developing countries experience a rapid urban growth. Current practices in urban modelling employ demographic and social data as the inputs for urban models. These practices occur as a result of data scarcity in the developing countries. These models are static in which only captures the shapes of a city at the selected time. They have limitation in presenting the sequence of simulations over a series of time. Another limitation of static models is the use of administrative boundary as their unit of analysis, which often less accurate for large regions. When facing with a mounting complexity of a city, the decision makers need to obtain as much as information to guide their decisions. They need to know how big the magnitude of urban problems could have, and where exactly the policy should be implemented. They also need to know how different stakeholders influence the spaces in the cities. Cellular Automata (CA) and Agent-based Model (ABM) are the two prominent dynamic models occupying a large portion of spatial discussions in the last two decades. In the context of research in Indonesia, they are less recognized, and have less contribution to many urban applications. This article aims to briefly introduce the concept of CA and ABM in spatial context, in particular land use land cover changes in urban areas. Examples and potential application for inclusive cities are given in the last part of the discussion.

Keywords. Cellular automata, agent-based model, urban modelling, GIS

Downloads

Download data is not yet available.

References

Abdou, M., L. Hamill, N. Gilbert. (2012) Designing and building an agent-based model, in: Agent-based models of geographical systems, Springer, 141-165.

ADB. (2011) Inclusive cities. Manila: ADB

Alonso, W. (1960) A theory of the urban land market, Papers in Regional Science 6(1), 149-157.

Batty, M. and Y. Xie. (1994) From cells to cities, Environment and Planning B-Planning & Design 21(7), 31-48.

Baynes, T. M. (2009) Complexity in Urban Development and Management. Journal of Industrial Ecology 13(2), 214-227.

Benenson, I. (1999) Modeling population dynamics in the city: from a regional to a multi-agent approach. Discrete Dynamics in Nature and Society 3(2-3), 149-170.

Bonabeau, E. (2002) Agent-based modeling: Methods and techniques for simulating human systems, Proceedings of the National Academy of Sciences of the United States of America 99(3), 7280-7287.

Clarke, K. C. and L. J. Gaydos. (1998) Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science 12(7), 699-714.

Clarke, K. C., S. Hoppen, and L. Gaydos. (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B-Planning & Design 24(2), 247-261

Couclelis, H. (1997) From cellular automata to urban models: New principles for model development and implementation. Environment and Planning B-Planning & Design 24(2), 165-174.

Couclelis, H. (2001) Why I no longer work with Agents, in: Meeting the challenge of complexity (D. C. Parker, T. Berger, S. M. Manson, eds.), Irvine, 14-16.

Crooks, A. (2006) An Introduction to the Repast Software: Recursive Porous Agent Simulation Toolkit.

Crooks, A. T. and A. J. Heppenstall. (2012) Introduction to Agent-based modelling, in: Agent-Based models of Geographical systems (A. J. Heppenstall, L. See, A. T. Crooks, M. Batty, eds.), Springer, 85-108.

Engelen, G., C. Lavalle, J. I. Barredo, M. van der Meulen, and R. White. (2007) The MOLAND modelling framework for urban and regional land-use dynamics, in: Modelling Land-Use Change: Progress and Applications (E. Koomen, J. Stillwell, A. Bakema, H. J. Scholten, eds.). Dordrecht: Springer.

Epstein, J. M. and R. L. Axtell. (1996) Growing Artificial Societies: Social Science from the Bottom Up. Washington, DC: Brookings Institution.

Filatova, T., D. Parker, and A. van der Veen. (2009) Agent-based urban land markets: Agent's pricing behavior, land prices and urban land use change. Journal of Artificial Societies and Social Simulation 12(1).

Fisher-Gewirtzman, D. and E. Blumenfeld-Liberthal. (2012) An agent-based model for simulating urban morphology: Sachnin as a case study. Survey Review 44(325), 162-167.

Fontaine, C. M.and M. D. A. Rounsevell. (2009) An agent-based approach to model future residential pressure on a regional landscape. Landscape Ecology 24(9), 1237-1254.

Grimm, V., U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S. K. Heinz, and G. Huse. (2006) A standard protocol for describing individual-based and agent-based models, Ecological modelling 198(1), 115-126.

Grimm, V., E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H. H. Thulke, J. Weiner, T. T. Wiegand and D. L. DeAngelis. (2005) Pattern-oriented modeling of agent-based complex systems: Lessons from ecology, Science 310(5750), 987-991.

Irwin, E. G. and J. Geoghegan. (2001) Theory, data, methods: developing spatially explicit economic models of land use change. Agriculture Ecosystems & Environment 85(1-3), 7 - 23.

Jantz, C. A., S. J. Goetz and M. K. Shelley. (2004) Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environment and Planning B-Planning & Design 31(2), 251-271.

Lau, K. H. and B. H. Kam. (2005) A cellular automata model for urban land-use simulation. Environment and Planning B-Planning & Design 32(2), 247-263.

Liu, Y. (2008) Modelling urban development with geographical information systems and cellular automata. Boca Raton, FL: CRC Press.

Liu, Y. (2012) Modelling sustainable urban growth in a rapidly urbanising region using a fuzzy-constrained cellular automata approach. International Journal of Geographical Information Science 26(1), 151-167.

Loibl, W. and T. Toetzer. (2003) Modeling growth and densification processes in suburban regions - simulation of landscape transition with spatial agents. Environmental Modelling & Software 18(6), 553-563

Matthews, R. B., N. G. Gilbert, A. Roach, J. G. Polhill, and N. M. Gotts. (2007) Agent-based land-use models: A review of applications, Landscape Ecology 22(10), 1447-1459.

Moreno, N., A. Menard and D. J. Marceau. (2008) VecGCA: a vector-based geographic cellular automata model allowing geometric transformations of objects. Environment and Planning B-Planning & Design 35(4), 647-665.

Moreno, N. L. (2008) A vector-based geographical cellular automata model to mitigate scale sensitivity and to allow objects' geometric transformation, Thse de doctorat, University of Calgary.

Naimah, S., H. Rosmiyati and E. E. Yasin Abdalla. (2011) Modelling land use changes at the peri-urban areas using Geographic Information Systems and Cellular Automata Model. Journal of Sustainable Development 4(6), 72-84.

O'Sullivan, D. and P. M. Torrens. (2001) Cellular models of urban systems, in: Theory and Practical Issues on Cellular Automata, Springer, 108-116.

Park, S., S. Jeon, S. Kim and C. Choi. (2011) Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning 99(2), 104-114.

Parker, D. C. (2005) Integration of geographic information systems and agent-based models of land use : prospects and challenges, in: GIS, spatial analysis, and modeling (D. J. Maguire, M. Batty, M. F. Goodchild, eds.), ESRI, Redlands, California, 403-422.

Parker, D. C. and T. Filatova. (2008) A conceptual design for a bilateral agent-based land market with heterogeneous economic agents, Computers Environment and Urban Systems 32(6), 454-463.

Parker, D. C., S. M. Manson, M. A. Janssen, M. J. Hoffmann, and P. Deadman. (2003) Multi-agent systems for the simulation of land-use and land-cover change: A review, Annals of the Association of American Geographers 93(2), 314-337.

Petrov, L. O., C. Lavalle, and M. Kasanko. (2009) Urban land use scenarios for a tourist region in Europe: Applying the MOLAND model to Algarve, Portugal. Landscape and Urban Planning 92(1), 10-23.

Sante, I., A. M. Garcia, D. Miranda, and R. Crecente. (2010) Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning 96 (2), 108-122.

Seto, K. C., B. Guneralp, and L. R. Hutyra. (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools, Proceedings of the National Academy of Sciences of the United States of America 109(40), 16083-16088.

Silva, E. A., and K. C. Clarke. (2005) Complexity, emergence and cellular urban models: Lessons learned from applying sleuth to two Portuguese metropolitan areas. European Planning Studies 13(1), 93-116.

Stevens, D., S. Dragicevic, and K. Rothley. (2007) iCity: A GIS-CA modelling tool for urban planning and decision making. Environmental Modelling & Software 22(6), 761-773.

Thapa, R. B. and Y. Murayama. (2012) Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landscape and Urban Planning 105(1-2), 140-148.

Tobler, W. (1979) Cellular geography, Philosophy in geography 9, 379-386.

Torrens, P. M. and I. Benenson. (2005) Geographic automata systems. International Journal of Geographical Information Science 19(4), 385-412.

UN-DESA. (2013) Population facts. New York: The United Nations.

UNFPA. (2007) The State of World Population 2007 (A. Marshall, ed.). New York, USA: UNFPA

Vancheri, A., Giordano, P., Andrey, D., Albeverio, S. (2008) Urban growth processes joining cellular automata and multiagent systems. Part 2: computer simulations, Environment and Planning B-Planning & Design 35(5), 863-880.

Verburg, P. H., P. P. Schot, M. J. Dijst and A. Veldkamp. (2004) Land use change modelling: Current practice and research priorities, GeoJournal 61(4), 309-324.

Wahyudi, A. (2013) Cellular automata for urban growth modeling: a chronological review on factors in transition rules, in: 13th International Conference on Computers in Urban Planning and Urban Management (CUPUM 2013) Utrecht, the Netherlands.

White, R. and G. Engelen. (1993) Cellular-automata and fractal urban form - a cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A 25(8), 1175-1199.

Wilson, A. G. (2000) Complex spatial systems: the modelling foundations of urban and regional analysis. Pearson Education.

Wolfram, S. (1983) Statistical mechanics of cellular automata. Reviews of modern physics 55 (3), 601-644

Wu, F. and C. J. Webster.(1998) Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B-Planning & Design 25(1), 103-126.

Xie, Y., M. Batty and K. Zhao. (2007) Simulating Emergent Urban Form Using Agent-Based Modeling: Desakota in the Suzhou-Wuxian Region in China. Annals of the Association of American Geographers 97(3), 477-495.

Zhang, H., Y. Zeng, L. Bian, and X. Yu. (2010) Modelling urban expansion using a multi agent-based model in the city of Changsha. Journal of Geographical Sciences 20(4), 540-556.

Downloads

Published

2015-04-02

How to Cite

Wahyudi, A., & Liu, Y. (2015). Spatial Dynamic Models for Inclusive Cities: a Brief Concept of Cellular Automata (CA) and Agent-Based Model (ABM). Journal of Regional and City Planning, 26(1), 54-70. https://doi.org/10.5614/jpwk.2015.26.1.6

Issue

Section

Research Articles