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CO, Hydrogenation Mechanism on
Subnanometer Ni; Cluster

Graphene-supported

Adhitya Gandaryus Saputro®®’, Mochammad Rizky Pradana?, Arifin Luthfi Maulana?, Mohammad
Kemal Agusta®® and Hermawan Kresno Dipojono®®

We study the mechanism of carbon dioxide (CO2) hydrogenation to carbon monoxide (CO) and formic acid (HCOOH) on a
graphene-supported subnanometer Niz cluster by means of density functional theory calculations. We find that this
system has similar activation energies for the first CO, hydrogenation step for the formate and the reverse water-gas shift
(RWGS) pathways. However, the second hydrogenation step for these pathways has very distinct profiles. The HCOOH
formation on the formate pathway has very large activation energy, while the CO formation on the RWGS pathway has
negligible activation energy. We conclude that the CO; hydrogenation process on this system is more selective towards

the RWGS pathway to produce CO.
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Introduction

Direct conversion of CO, molecules into valuable chemicals through
the hydrogenation process is a beneficial scheme that can help to
mitigate the excessive CO; emission in our atmosphere (Abanades
et al., 2017; Alvarez et al., 2017; Katelhon et al., 2019; Mustafa et
al., 2020). Unfortunately, the current technology for converting
CO; through a hydrogenation scheme still involves a very energy-
intensive process (Waugh, 1992; Liu et al., 2003). This process
needs high-temperature and high-pressure conditions to facilitate
the chain of complex hydrogenation reactions that require high
activation energies. The development of catalyst material that can
significantly facilitate this hydrogenation process is urgently
needed.

Nickel (Ni) surface has been widely applied as a catalyst for various
chemical processes (Mahyuddin et al., 2016; Agusta et al., 2017,
2019; Mahyuddin and Yoshizawa, 2018; Singha et al., 2019; Zhang
et al., 2019). However, this surface cannot be adequately applied
as an effective CO, hydrogenation catalyst due to its weak
interaction with the inert CO, molecule (Remediakis, Abild-
Pedersen and Ngrskov, 2004; Wang et al., 2005; X. Ding et al., 2007;
Xunlei Ding et al., 2007; Vesselli et al., 2008, 2010; Catapan et al.,
2012; Peng et al., 2012; Nugraha et al., 2016; Maulana et al., 2019).
Strong interaction between catalyst and CO, is a necessary
condition to activate the inert CO, molecule. Therefore, a
geometrical modification of the flat Ni surface might be necessary
if we want to try to apply it as a CO; hydrogenation catalyst
(Saputro et al., 2016, 2019; Saputro and Akbar, 2017; Saputro,
Maulana, Aprilyanti, et al., 2021; Saputro, Maulana, Fathurrahman,
etal., 2021).
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We previously studied the adsorption of a CO, molecule on a
graphene-supported subnanometer Nix cluster (Pradana et al.,
2019). The structural transition from a bulk Ni surface to a very
small subnanometer Niy cluster significantly modifies the Ni-CO;
interaction. The small Nix cluster can strongly adsorb the CO,
molecule with a bidentate adsorption configuration. The formation
of bidentate configuration weakens the internal C-O bonds of the
adsorbed CO, molecule, making it ready to undergo a chemical
reaction. Such a condition suggests that the subnanometer Niy
cluster might be able to facilitate the CO; hydrogenation process.

In this work, we study the atomic-scale mechanism of CO,
hydrogenation reaction to CO and formic acid (HCOOH) on
graphene-supported subnanometer Ni; cluster by means of the
density functional theory calculations. This hydrogenation
mechanism is very important to understand the catalytic properties
of the subnanometer Niy catalyst.

Computational Details

All of spin-polarized density functional theory (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965) calculations are performed
using Quantum Espresso package (Giannozzi et al, 2009).
Exchange and correlation functional are described by generalized
gradient approximation using the Perdew-Burke-Ernzerhof (PBE)
functional (Perdew, Burke and Ernzerhof, 1996). Ultrasoft
pseudopotentials are used to describe the interaction between
valence electrons and the ion core. DFT-D2 was used to describe
the van der Waals interaction (Grimme, 2006). The value of cutoff
for plane-wave and electronic densities are 30 Ry and 360 Ry,
respectively. The Brillouin zone sampling for the calculation of the
isolated Niy cluster, CO,, CO, H,, and HCOOH is simulated using
gamma point, while the calculation for the rest is carried out using
2 x 2 x 1 k-points. The total energy of the Niy cluster and isolated
molecules are computed in a 30 A x 30 A x 30 A unit cell.
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We previously found that a pristine graphene layer can
properly fixate a subnanometer Niy cluster on its surface
(Pradana et al., 2019). However, the presence of
graphene does not affect the cluster interaction with a
CO, molecule. It suggests that pristine graphene is a good
support model for studying the innate catalytic activity of
a supported subnanometer metal cluster. In this study,
we use a 5 x 5 graphene to model a graphene-supported
subnanometer Ni; cluster (Niz/Graphene). The size of the
graphene sheet is adequate to support the Niy cluster and
to minimize the interaction with other Ni; clusters on the
adjacent unit cells. The Niy cluster is chosen to represent
the subnanometer Nix cluster model because it can
provide enough adsorption sites for the simultaneous
adsorption of CO,-related molecules and H atoms. We
also added a vacuum space of 15 A in the z-direction to
minimize the interaction between repeated surface slabs.
The model of Niz/Graphene super cell is presented in Fig.
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Figure 1. Super cell model graphene-supported subnanometer Ni;
cluster

Geometry optimizations are performed without any geometrical
constraint. Energy barriers of an elementary reaction are calculated
using the nudged elastic band method (NEB) (Henkelman,
Uberuaga and Jdnsson, 2000). The activation energy of an
elementary reaction (E,) is calculated using the following relation,

Eq = E™ —ES, (1)

where E'S and ETS represent the total energy of the initial state
(IS) and the transition state (TS), respectively. Reaction energy of
an elementary reaction is calculated as,

AE = EFS —ES (2)

where EFS represents the final state (FS) of the reaction.
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Results and Discussion

The CO, hydrogenation to HCOOH consists of the following
elementary reactions:

CO; + H* - HCOO* (3)
HCOO* + H* > HCOOH* (4)

These reactions are known as the formate pathway. X* represents
an adsorbed X species on the Ni; cluster. The CO, hydrogenation to
CO consists of the following elementary reactions:

CO; + H* > COOH* (5)
COOH* + H* - CO* + H,0" (6)

These reactions are known as the reverse water-gas shift (RWGS)
pathway.

-0.5

RWGS ‘
(COOH)*

— A
=¥ i
batatatad

(Hcooy+ |JEonmate

-1.5

ES00H _ 0,93 eV

Relative energy (eV)

{CO,+H)*

-2.5
Reaction coordinate
Figure 2. Initial state (IS), transition state (TS), and final state (FS)
of the first hydrogenation step.

Both formate and RWGS pathways start from an identical initial
state, as shown in Fig. 2. In the case of HCOO formation, the H atom
attacks the C atom of the adsorbed CO; in the case of HCOO
formation, while it attacks one of the O atoms of the adsorbed CO,
in the case of COOH formation. The activation energies for these
two reactions only differs by 0.02 eV (EHC00 = 0.95 eV and E§00H
= 0.98 eV). The COOH formation has slightly higher activation
energy since the reaction energy of this elementary step is more
endothermic than the HCOO formation, in agreement with the
Brgnsted-Evans-Polanyi (BEP) relation (Bronsted, 1928; Evans and
Polanyi, 1938).
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Figure 3. Initial state (IS), transition state (TS), and final state (FS)
of the second hydrogenation step.

The energy profiles for the second hydrogenation step for the
formate and RWGS are quite different from the initial step, as
presented in Fig. 3. In the case of HCOOH" formation, the adsorbed
H atom attacks one of the O atoms of the HCOO®. This process
requires quite high activation energy, EHCO0H = 3 71 eV, Such high
activation energy suggests that the formation of HCOOH through
the formate pathway might not be energetically feasible on this
catalyst. In the case of CO formation, the COOH" is dissociated into
CO™ and OH", and the adsorbed H atom simultaneously attacks the
OH" to form H,0". Interestingly, the required activation energy for
this process is practically negligible, E§02+H20= 0.02 eV. This value
shows that the Ni; cluster can greatly facilitate the dissociation of
COOH". Once again, the second hydrogenation step also obeys the
BEP relation since the HCOOH formation reaction is more
endothermic than the CO formation reaction.

COpg+H,0p+*
05
COygi+Hzgg) HCOOHg+* ,.
B3 ‘ .
3 | COg#(H,0)
> -05 [
7] |
S TS1
c (HCOOH)* |
[T COOH*+1/2H, |
]
2 CO,)*+H
E is (COy) 2 |
g * TS2 | fcoy*+h,0
(COOH+H)* |
3 (CO+H)*+1/2H,
HCOO*+1/2H,
25 (CO+H,0)*

(HCOO+H)*

Reaction coordinate

Figure 4. Potensial energy profiles of CO2 hydrogenation to CO
and HCOOH on graphene-supported subnanometer Niy cluster.

We compile the potential energy profiles for the CO;
hydrogenations relative to the gas phase of molecules in Fig. 4.
From this figure, it can be seen that the selectivity of CO;
hydrogenation on the Niz/graphene system is solely dictated by the
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second hydrogenation step because the first step has quite similar
activation energies. Since the CO formation has significantly lower
activation energy than the HCOOH formation, the CO,
hydrogenation on the Ni;/graphene system is more selective
toward the RWGS pathway. However, we should also notice that
CO removal from the Ni; cluster requires quite high desorption
energy (>2eV). This situation raises two possible scenarios. The first
one is that the Ni; will be poisoned by CO. The second possibility is
that the CO might not be the final product of the RWGS pathway.
The adsorbed CO might go through another chain of hydrogenation
reactions to form other products such as methanol (CHs;OH) or
methane (CH,4). These possibilities will be further explored in our
future study.

We also compare our results with the case of the Ni(111) surface
(Maulana et al., 2019). In the Ni(111) case, the CO, hydrogenation
reaction is more selective towards the formate pathway.
Interestingly, the usage of Ni in the form of subnanometer Niy
cluster shifts the selectivity of CO, hydrogenation reaction towards
the RWGS pathway. Unfortunately, the activation energies for the
first hydrogenation step on Ni;/graphene system are still higher
than the Ni(111) surface (EH#€00 = 0,55 eV and ES?%H = 0.85 eV).
One of the possible reasons is because the Ni; cluster binds CO;
molecule too strong (Eggs2 =-1.20eV). The formation of HCOO" and
COOH" requires some geometrical reconstructions from the
adsorbed CO; during the hydrogenation process. These reactions
become more sluggish on the Ni;/graphene system because the
very strong CO, bidentate adsorption hinders the reconstruction
process. The second hydrogenation step on the Ni;/graphene
system for the HCOOH formation is also much higher than the
Ni(111) surface (EHCO0H= 0 85 eV). However, the activation energy
for the CO formation step on the Nis/graphene system is much
lower than the Ni(111) surface (E502+H20= 0.25 eV). This again
indicates that the RWGS + CO hydrogenation pathway on the
Niz/graphene might have good potentials to be further explored.

Conclusions

We study the mechanism of CO, hydrogenation to HCOOH and CO
on the graphene-supported subnanometer Ni; cluster using DFT
calculations. We find that this system has quite similar activation
energies for the first hydrogenation step of the formate and RWGS
pathways. However, the second hydrogenation step for these
pathways has very distinct activation energy profiles. The HCOOH
formation (formate pathway) has very large activation energy,
while the CO formation (RWGS pathway) has negligible activation
energy. From this result, we conclude that the CO, hydrogenation
process on this system is more selective towards the RWGS
pathway to produce CO. However, the catalyst might be prone to
CO poisoning due to its immense desorption energy. This suggests
that the final product for the CO, hydrogenation on this system is
not CO molecule, and instead, it might be further hydrogenated
into different products such as methane or methanol.
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