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Abstract. Drag minimization of low subsonic airfoil was conducted with 

constrained genetic algorithm (CGA). To cope with the constraints, each of these 

two different types of constraint handling techniques (CHTs), namely Superiority 

of Feasible Individual (SoF) and Generalized Multiple Constraint Ranking (G-

MCR) were employed to the CGA and compared. From three independent runs 

for each CHT, it was obtained that G-MCR performed significantly better than 

SoF, indicating that G-MCR, a novel type of CHT, provides better exploration of 

the design space to obtain better solution. The obtained best airfoil designs were 

compared with a baseline airfoil and analyzed. The best optimum airfoil increases 

the aerodynamic efficiency by 21.4%. It was observed that the reduction of drag 

only occurs locally, so that a robust optimization is required in the future. 
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1 Introduction 

In recent years, the concept of urban air mobility (UAM) has caught immense 

interest. It is one big hope that having severe traffic jams, UAM can provide a 

faster, cleaner, and less noisy transportation service in big cities [1,2]. In the last 

decades, many aerospace companies have been developing such UAM, to name 

a few, Lilium Jet, e-Hang, and Kiti Hawk Cora [3,4]. There are many types of 

configurations currently developed, such as lift and cruise (L+C), lift or cruise 

(L/C), and lift + lift or cruise (L+L/C). These configurations correspond to 

various arrangements of vertical and horizontal electrical or hybrid propulsion 

systems as well as wing, which in general allow the UAM to perform vertical 

take-off and landing (VTOL), similar to helicopter, and cruise with wing, similar 

to conventional aircraft. Such aircraft is not only useful for reducing traffic jams, 

but also reaching remote areas whose access is challenging for land 

transportation. Not only the VTOL performance, the UAM also needs to be 

aerodynamically efficient, so that the energy required during cruise flight is 
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minimum. In order to attempt this, efficient wing aerodynamic performance is 

crucial for an aircraft.  

The key to a more efficient wing aerodynamic is the shape of its airfoil. The 

airfoil should be designed in such a way that it produces as low drag coefficient 

(𝐶𝑑) as possible while maintaining its lift coefficient (𝐶𝑙), assuming the airfoil 

should withstand a specific amount of aircraft weight, so that the aerodynamic 

efficiency (𝐿/𝐷) is minimized. In designing such airfoil, a stochastic-based 

optimization called genetic algorithm (GA) is one of the most popular methods 

to be utilized [5-9]. For example, [5] minimized the aerodynamic efficiency of 

aircraft with genetic algorithm, with death penalty method to handle the 

constraint. A drag minimization of airfoil was conducted in [6,7] with genetic 

algorithm as the optimizer and a class shape transformation as the shape 

parameterization method. The study in [8] and [9] utilized genetic algorithm to 

optimize multi-slat airfoil and co-flow jet airfoil, respectively.  

One point to note is that since UAM utilizes propulsion system which supports 

vertical flights, a wing stall might be a less important aspect for UAM so that the 

optimized can focus on finding optimum airfoil at the design condition. Another 

point to note is that since the current design tends to install the propulsion system 

at the wing structure, the wing should not be too thin to have good structural 

integrity. To find such airfoil, a constrained optimization problem needs to be 

formulated first with the objective to minimize its drag coefficient while 

maintaining a reference lift and moment coefficients, with some geometrical 

constraints imposed.  

The optimization problem is then solved by genetic algorithm with a constraint 

handling technique (CHT) employed. There are two types of CHTs: the 

conventional and the novel one. The conventional CHT, such as death penalty 

[10], superiority of feasible individuals (SoF)[11], favors feasible solutions over 

infeasible ones, which means that the infeasible solutions will always lose the 

selection if feasible solutions exist. Meanwhile, the novel CHT, such as 

generalized multiple constraint ranking [12], balances the search in both feasible 

and infeasible regions adaptively, in such way that some “good” infeasible 

solutions (infeasible solutions with better objective value than the feasible ones) 

are maintained during the search to enhance the process of finding optimum 

solution near the constraint boundaries. The promising performance of G-MCR 

has been shown in some previous works [12-14]. 

This paper aims to find an airfoil which is suitable for UAM’s wing. Of course, 

this research is only valid for aircraft with wing installed. The optimized is 

genetic algorithm (GA) with two different CHTs which will be employed 

separately. Each GA + CHT will be run several times to ensure its consistency. 
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Then, the optimum airfoils obtained from the optimization are compared to a 

selected baseline airfoil. Deeper aerodynamic performance analysis is conducted 

on some best airfoils to observe their performance on the off-design conditions. 

The first part of this paper presents the introduction of the problem. The second 

part explains the theory involved, such as general form of optimization, genetic 

algorithm, airfoil shape parameterization, and constraint handling techniques. 

Next, the third part elaborates the optimization problem definition and the 

optimization setting. The result and discussion are presented in the fourth part. 

Lastly, the fifth part concludes the current work and recommends some future 

works. 

2 Theory  

2.1 General Form of Optimization 

Suppose a minimization case, an optimization can generally be formulated as 

follows, 

 Minimize       𝑓(𝐱) (1) 

 subject to       𝑔𝑖(𝐱) ≤ 0, 𝑖 = 1, … , 𝑚 

                                    ℎ𝑗(𝐱) = 0, 𝑗 = 1, … , 𝑛 

                        𝐱𝑳 ≤ 𝐱 ≤ 𝐱𝑼 

In Equation (1), 𝐱 denotes the d-dimensional design variable vector (d is the 

number of design variables). The symbols 𝑓, 𝑔, and ℎ are the objective, inequality 

constraint, and equality constraint functions, respectively. The variables d, m, and 

n are integers. The symbols 𝐱𝑳 and 𝐱𝑼 denote the lower and upper bounds of the 

optimization search space, respectively. 

2.2 Airfoil Shape Parameterization with Cubic B-Spline Curve 

In the current work, the airfoil is parameterized with cubic B-spline curve [15]. 

Suppose there is a set of ℎ + 1 control points 𝑷𝑖, 𝑖 = 0, … , ℎ, a cubic B-spline 

curve is expressed as follows, 

 𝑪 = 𝑪(𝑢) = ∑ 𝑁𝑖,𝑝(𝑢)𝑷𝑖
ℎ
𝑖=0  (2) 

where 𝑝 in Equation (2) is the degree of the B-spline curve, 𝑝 = 0,1,2,3. The 

symbol 𝑁𝑖,𝑝(𝑢) is the basis function, expressed as follows, 

 𝑁𝑖,0(𝑢) = {
1, 𝑖𝑓 𝑡𝑖 ≤ 𝑢 < 𝑡𝑖+1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.        
 (3) 
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 𝑁𝑖,𝑝(𝑢) =
𝑢−𝑡𝑖

𝑡𝑖+𝑝−𝑡𝑖
𝑁𝑖,𝑝−1(𝑢) +

𝑡𝑖+𝑝+1−𝑢

𝑡𝑖+𝑝+1−𝑡𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) (4) 

where 𝑢 in Equations (3) and (4) is a value between 0 and 1, and 𝑡 is a set of 𝑚 =
ℎ + 𝑝 + 1 knots, whose expression is presented in Equations (5) to (7), as 

follows, 

 𝑡0 = 𝑡1 = ⋯ = 𝑡𝑝 = 0 (5) 

 𝑡𝑖 =
𝑗

ℎ−𝑝+1
, 𝑗 = 1, … , ℎ − 𝑝 (6) 

 𝑡𝑚−𝑝 = 𝑡𝑚−𝑝+1 = ⋯ = 𝑡𝑚 = 1 (7) 

The shape generation of an airfoil with cubic B-spline curve is illustrated in Figure 

1 (red curve). The number of control points is ℎ + 1 = 9. The first control point 

𝑷0 is set at the trailing edge. The next control points are placed in clockwise 

direction sequentially from the lower surface (𝑷1, 𝑷2, 𝑷3), leading edge (𝑷4), 

upper surface (𝑷5, 𝑷6, 𝑷7), and then go back to the trailing edge (𝑷8). The control 

points at trailing edge (𝑷0, 𝑷8) are fixed at 𝐱 = [1,0]𝑇, while at leading edge (𝑷4) 

is fixed at 𝐱 = [0,0]𝑇. The other control points are set active so that moving those 

control points will obtain different shapes of airfoil. To ensure that the leading 

edge of airfoil is at [0,0]𝑇, a rotation and dilatation of the red airfoil is required. 

The rotation to ensure that the chord of red airfoil is horizontal is conducted as 

follows, 

 𝑥𝑟(𝑢) = 1 + (𝑥(𝑢) − 1) cos(𝜋 − 𝛼) − 𝑦(𝑢) sin(𝜋 − 𝛼) (8) 

 𝑦𝑟(𝑢) = (𝑥(𝑢) − 1) sin(𝜋 − 𝛼) + 𝑦(𝑢) cos(𝜋 − 𝛼) (9) 

The 𝑥(𝑢) and 𝑦(𝑢) in Equations (8) and (9) are the coordinates of the red curve, 

respectively. The 𝑥𝑟(𝑢) and 𝑦𝑟(𝑢) are the rotated coordinates, and 𝛼 is the angle 

between the chord line of the red airfoil and line 𝑃0𝑃4. Next, 𝑥𝑟(𝑢) and 𝑦𝑟(𝑢) are 

dilated to 𝑥𝑑(𝑢) and 𝑦𝑑(𝑢) (see Equations (10) and (11), respectively) to ensure 

that the leading edge of airfoil is at [0,0]𝑇 with the following process, 

 𝑥𝑑(𝑢) =
𝑥𝑟(𝑢)−𝑥𝑟(𝑢)|@𝐿𝐸

𝐿
 (10) 

 𝑦𝑑(𝑢) =
𝑦𝑟(𝑢)−𝑦𝑟(𝑢)|@𝐿𝐸

𝐿
 (11) 

where 𝑥𝑟(𝑢)|@𝐿𝐸 and 𝑦𝑟(𝑢)|@𝐿𝐸 are the coordinates of the red airfoil’s leading 

edge and 𝐿 is its chord length. 
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Figure 1 Illustration of airfoil shape generation with cubic B-spline curve. 

2.3 Genetic Algorithm (GA) 

Genetic algorithm [11] works based on the following iterative steps: 

1. Initialize a parent population of 𝑁𝑝𝑜𝑝 individuals, 

2. Evaluate the fitness value of each individual in the parent population, 

3. Compute a stopping criterion. If it is met, then stop, else, go to Step 4, 

4. Conduct parental selection, crossover, and mutation on parent population and 

generate offspring population consisting of 𝑁𝑝𝑜𝑝 individuals, 

5. Evaluate the fitness value of each individual in the offspring population, 

6. Conduct environmental selection to obtain new parent population of 𝑁𝑝𝑜𝑝 

individuals for the next generation, then go to Step 3. 

2.4 Constraint Handling Technique (CHT) 

Genetic algorithm was originally developed to solve unconstrained optimization 

problems. Therefore, a constraint handling technique (CHT) needs to be applied 

in case of constrained problem. In this paper, two penalty-based techniques are 

considered and compared, namely superiority of feasible individuals (SoF) [11] 

and generalized multiple constraint ranking (G-MCR) [12]. 

2.4.1 Superiority of Feasible Individuals (SoF) 

SoF [11] is one of the most popular CHTs which has been used in many 

engineering applications. It is expressed in Equation (12) as follows, 
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 𝐹(𝐱) = {
𝑓(𝐱),         𝑖𝑓 𝐶𝑉(𝐱) = 0,

𝑓𝑤𝑜𝑟𝑠𝑡 + 𝐶𝑉(𝐱),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.        
 (12) 

where 𝑓𝑤𝑜𝑟𝑠𝑡 is the worst objective value of feasible individual in the current 

population and is set to zero in case there is no feasible individual. This CHT 

highly favors feasible individuals during the search, in such way that the 

infeasible individuals will always lose to feasible individuals during the selection 

process. 

2.4.2 Generalized Multiple Constraint Ranking (G-MCR) 

The G-MCR is expressed in Equation (13) as follows, 

 𝐹(𝐱) = 𝛽𝑅𝑓 + (1 − 𝛽)𝛾 ∑ 𝛼𝑖𝑅𝜈𝑖

𝑚
𝑖=1  (13) 

where 𝑅𝑓 and 𝑅𝜈𝑖
 are the ranks built by the queue of the individuals’ objective 

values and the 𝑖-th constraint violation values, respectively, in the current 

population. The coefficient 𝛽 the search of unconstrained optimum and feasible 

solutions. The coefficient 𝛼𝑖 represents the proportion of the 𝑖-th constraint to be 

explored during the search. Lastly, the coefficient 𝛾 controls the proportion 

between objective terms with the constraint terms. In this paper, the G-MCR 

formulation is based on the optimum settings found in [12], which is the G-MCR-

C_9, whose coefficients are presented in Table 1. 

Table 1     Coefficients of G-MCR. 

Coefficient 𝜷 𝜶𝒊 𝜸 

Value √1 − (𝜁 − 1)2 
𝑁𝑣𝑖𝑜𝑙𝑖

𝑁𝑝𝑜𝑝
 

1

∑ 𝛼𝑖
𝑚
𝑖=1

 

 
The symbol 𝑁𝑣𝑖𝑜𝑙𝑖

 denotes the number of solutions violating the 𝑖-th constraint in 

the current population. The coefficient 𝜁 =
𝑁𝑓𝑒𝑎𝑠

𝑁𝑝𝑜𝑝
, where 𝑁𝑓𝑒𝑎𝑠 is the number of 

feasible individuals in the current population. In principle, the G-MCR works 

quite differently compared to SoF. Instead of favoring feasible individuals, G-

MCR tries to balance the search between feasible and infeasible regions, in the 

hope that the optimum solution can be found faster. 
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3 Experimental Setup 

3.1.1 Problem Definition 

The optimization problem is to minimize the drag coefficient (𝐶𝑑) of a two-

dimensional airfoil by changing 𝐱, where 𝐱 is the design variable comprising 

airfoil shape and angle of attack (AoA), defined as follows, 

 Minimize       𝐶𝑑(𝐱) (14) 

 subject to       𝑔1(𝐱) = |𝐶𝑙𝑟𝑒𝑓
− 𝐶𝑙(𝐱)| − 𝜀 ≤ 0 

                                    𝑔2(𝐱) = |𝐶𝑚(𝐱) − 𝐶𝑚𝑟𝑒𝑓
| − 𝜀 ≤ 0 

                                    𝑔3(𝐱) = 𝐸𝑥 ≤ 0 

                                    𝑔4(𝐱) = 𝐸𝑦 ≤ 0 

                        𝐱𝑳 ≤ 𝐱 ≤ 𝐱𝑼 

In Equation (14), the airfoil shape 𝐱 is parameterized with the cubic B-spline 

curve, using a total of nine control points as explained in Subsection 2.2. The 

control points at the leading and trailing edges are set to fixed, while the others 

are set to active. The lower and upper bounds of flexibility of the control points 

are presented in the first 18 rows of Table 2. 

The constraints 𝑔1 and 𝑔2 are aerodynamic constraints, which is required so that 

while minimizing the drag coefficient, the lift and moment coefficients of the 

candidate optimum airfoil are around the same (within 𝑠𝑛 = 0.001 difference) 

with the baseline airfoil’s lift and moment coefficients. The constraints 𝑔3 and 𝑔4 

are structural constraints to ensure that the airfoil shape is sensical geometrically. 

The 𝑔3 ensures the x-coordinates of the airfoils are within 0 and 1, expressed in 

Equation (15) as follows, 

 𝐸𝑥 = ∑ 𝑒𝑥𝑖

𝑁+1
𝑖=1  (15) 

where 𝑒𝑥𝑖
= |−𝑥𝑖| if 𝑥𝑖 < 0 and 𝑒𝑥𝑖

= 𝑥𝑖 − 1 if 𝑥𝑖 > 1, and 𝑁 is the number of 

panels forming the airfoil. The 𝑔4 ensures that the y-coordinates of upper surfaces 

are not lower than the y-coordinates of the lower surfaces, expressed in Equation 

(15) as follows, 

 𝐸𝑦 = ∑ 𝑒𝑥𝑖
𝑦𝑖 − 𝑦𝑖

𝑁

2
−1

𝑖=2
 (15) 

where 𝑒𝑦𝑖
= 𝑦𝑁+1−𝑖 − 𝑦𝑖 if 𝑦𝑁+1−𝑖 − 𝑦𝑖 < 0 and 𝑒𝑦𝑖

= 0 otherwise. 
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The selected baseline airfoil in this paper is NACA 2412. While there is no 

reference to what airfoil is usually used for the UAM’s wing, NACA 2412 is 

selected since visually, it looks to have sufficient thickness to withstand the 

weight of the propulsion system. Of course, further assessment with regards to its 

structural performance is required. 

The aerodynamic coefficients are calculated with XFOIL [16], a panel method-

based airfoil aerodynamic solver which is suitable for low Reynolds Number (𝑅𝑒) 

(the order of 𝑅𝑒 is around 105 to 106) and low subsonic flight speed. This solver 

is deemed suitable for the case considered in this paper because recent designs of 

UAMs are often in a comparable size with regular helicopters. Therefore, they 

most likely have low Reynolds number (reference length from the mean 

aerodynamic chord) and flight speed around Mach number 0.1 to 0.3. 

Table 2     Lower and upper bounds of the design variables. 

Design Variables Lower Bound 𝒙𝑳 Upper Bound 𝒙𝑼 

𝑷0,x 1 1 

𝑷1,x 0.8 0.9999 

𝑷2,x 0.4 0.7999 

𝑷3,x 0.0001 0.3999 

𝑷4,x 0 0 

𝑷5,x 0.0001 0.3999 

𝑷6,x 0.4 0.7999 

𝑷7,x 0.8 0.9999 

𝑷8,x 1 1 

𝑷0,y −0.0013 −0.0013 

𝑷1,y −0.1 −0.1 

𝑷2,y −0.1 −0.1 

𝑷3,y −0.1 −0.1 

𝑷4,y 0 0 

𝑷5,y 0.1 0.1 

𝑷6,y 0.1 0.1 

𝑷7,y 0.1 0.1 

𝑷8,y −0.0013 −0.0013 

AoA (degree) 0 6 

 

 

3.1.2 Optimization Setting 

In minimizing the drag coefficient of airfoil, a real-coded genetic algorithm with 

an elitist scheme [11] is utilized. The number of solution evaluations with XFOIL 

is set to 10,000, which is equivalent to a population size of 100 and number of 

generations to 100 in the GA setting. The parent selection is conducted with 

binary tournament selection [17]. Regarding the crossover, the simulated binary 
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crossover (SBX) method [18] with distribution index of 20 and a crossover 

probability of one are utilized. For the mutation, polynomial mutation method 

[19] with distribution index of 20 and a mutation probability of 1

𝑑
 are utilized. 

4 Result and Discussion 

The optimum solutions from all three independent runs for all CHTs are presented 

in Table 3. The table shows that in general, all optimum solutions successfully 

satisfy all constraints. Regarding the objective values, the optimum solutions of 

all three runs of SoF (SoF_OPT_1, SoF_OPT_2, and SoF_OPT_3) cannot 

produce better aerodynamic characteristics from the baseline airfoil. On the other 

hand, the optimal solutions of all three runs of G-MCR (G-MCR_OPT_1, G-

MCR_OPT_2, and G-MCR_OPT_3) can produce decrease of drag coefficient 

from 15.7% to 17.5%, or increase of aerodynamic efficiency (𝐿 𝐷⁄ ) from 18.4% 

to 21.4%. This indicates that the airfoil can provide 18.4% to 21.4% more 

efficient flight on cruise flight phase with lift coefficient around 0.4.  

The poor performance of SoF is most probably due to the very strict constraints 

imposed by the optimization problem. The constraints 𝑔1 and 𝑔2 are very close 

to equality constraints, which significantly increases the difficulty in obtaining 

feasible individuals. From random search of 10,000 random solutions within the 

lower and upper bounds, there is no feasible solution found, which is equivalent 

with 0% of the total evaluations. This situation could be one reason why the SoF, 

which favors feasible individuals over infeasible individuals, faces difficulties in 

generating better solutions. Meanwhile, G-CMR can consistently find better 

solutions than the baseline, indicating that balancing the search from both feasible 

and infeasible regions is more effective in finding better individuals in this airfoil 

optimization problem. 

Table 3     Aerodynamic characteristics of baseline and obtained optimal airfoils 

(Re=1x106, M=0.1). 

Airfoil AoA (deg.) 𝑪𝒅 𝑪𝒍 𝑪𝒎 𝑳 𝑫⁄  %∆𝑪𝒅 %∆(𝑳 𝑫⁄ ) 

Baseline  1.499 0.00561 0.4 -0.0486 71.3 - - 

SoF_OPT_1 2.344 0.00783 0.4006 -0.0479 51.16 +39.6 -28.2 

SoF _OPT_2 3.282 0.01356 0.4009 -0.0477 29.56 +141.7 -58.5 

SoF _OPT_3 1.856 0.00788 0.3999 -0.0491 50.75 +40.5 -28.8 

G-MCR_OPT_1 2.246 0.00463 0.4007 -0.0484 86.54 -17.5 +21.4 

G-MCR_OPT_2 2.231 0.00473 0.3993 -0.0494 84.42 -15.7 +18.4 

G-MCR_OPT_3 2.339 0.00468 0.3998 -0.0495 85.43 -16.6 +19.8 

 
The geometries of optimum airfoils obtained by GA with G-MCR as well as the 

baseline airfoil are presented in Figure 2. It is observed that the upper surface of 

the optimum airfoils tends to have smaller thickness and further back location of 
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the maximum thickness compared to the baseline. This shape tends to reduce the 

pressure near the leading edge, thus reducing the drag coefficient. However, the 

higher curvature towards the trailing edge tends to produce earlier stall condition, 

thus reducing the maximum angle of attack. As for the lower surface, the 

optimum airfoils tend to have higher thickness with further back location of 

maximum thickness to produce the high-pressure component to the y-direction 

required to maintain its lift and moment coefficient. 

 
Figure 2     Geometry of baseline airfoil and obtained optimum airfoils of G-MCR. 



142 Pramutadi, et. al. 

 
Figure 3     Lift coefficient against angle of attack of baseline airfoil and obtained 

optimum airfoils of G-MCR. 

A deeper analysis is conducted on the optimum airfoils based on the performance 

along a series of angles of attack. Observing Figure 3, all optimum airfoils are 

found to have smaller lift coefficients for the same values of angles of attack 

compared to the baseline airfoil. Moreover, they also stall earlier with lower 

maximum lift coefficient compared to the baseline airfoil. Airfoil G-

CMR_OPT_1 produces a very high drag coefficient starting from angle of attack 

of 7 deg., indicating that the range of operation of this airfoil is very narrow. In 

fact, the aerodynamic assessment of airfoil G-MCR_OPT_1 could not converge 

at some points, probably due to stall, so the scatter plot is incomplete. 

Observing Figure 4, all optimum airfoils have a localized area near the optimized 

drag coefficient values. Even though the drag coefficients are the smallest at their 

corresponding optimal angle of attack (see Table 3), the drag coefficient 

immediately increases after the angle of attack either decreases or increases. This 

is an indication that the performance of these optimum airfoils is not robust. 

When there is an angle of attack disturbance (either increase or decrease), the 

aerodynamic efficiency of the optimum airfoils will decrease immediately.  
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Figure 4     Drag coefficient against angle of attack of baseline airfoil and obtained 

optimum airfoils of G-MCR. 

 

5 Conclusion and Future Works 

Drag minimization of low subsonic airfoil has been conducted by utilizing 

genetic algorithm (GA) applied with two different kinds of constraint 

handling techniques (CHTs), namely SoF and G-MCR. From three 

independent runs of each CHT in GA, it was observed that G-MCR, a CHT 

with balanced search between feasible and infeasible regions tends to 

obtain better optimum airfoils than SoF, a conventional one highly 

favoring only feasible region. The obtained optimum airfoils can increase 

the aerodynamic efficiency from 18.4% to 21.4%. However, these 

optimum airfoils are not robust to angle of attack disturbance because a 

small increase or decrease of angle of attack will decrease the aerodynamic 

efficiency immediately. Therefore, robust optimization needs to be 

conducted in the future to obtain an airfoil which is not sensitive 

disturbances of important parameters, including but not limited to angle of 

attack disturbance. 
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