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Abstract
This paper describes a numerical study on the effects of the distribution of rubber particles size on the
Jracture toughness of rubber-modified polymer alloys. FEM analyses were conducted on a deformation
field near a crack tip under mode I for a small scale yielding condition. Area near the crack tip is
modelled as a composite of matrix materials and rubber particles. On the other hand, the outer region
is modelled as a homogeneous material which its constitutive equation has been obtained by analysing
a unit cell model of matrix and rubber particle. Perfect bonding or partial debonding of the interface is
assumed in the computation. Matrix and rubber particles are treated as Mises and Mooney-Riviin

materials, respectively. It is shown that energy flux into fracture process zone, J -integral is smaller
Jor bimodal type than monomodal one. This behavior largely occurred on the partial debonding

case. These results imply that the screening effects occurred in the bimodal type was larger than
monomodal one.

‘Ringkasan
Makalah ini membahas studi numerik tentang pengaruh besarnya distribusi partikel karet dalam
polimer paduan terhadap ketangguhan retak. Analisa metode elemen hingga dilakukan pada
daerah deformasi sekitar ujung retak pada pembebanan mode I untuk kondisi small scale yielding.
Sekitar ujung retak dimodelkan sebagai material campuran antara matriks dengan partikel karet.
Sebaliknya, daerah di luar sekitar ujung retak dimodelkan sebagai material homogen yang
persamaan konstitutifnya telah diperoleh dengan analisa model sel satuan dari matriks dan partikel
karet. Ikatan sempurna dan ikatan sebagian antara matriks dan partikel karet pada bidang pemisah
(interface) diasumsikan di dalam komputasi. Matriks dianggap-sebagai material Mises dan partikel
karet sebagai material Mooney-Riviin. Dari hasil penelitian diperoleh bahwa energi yang masuk ke

dalam daerah proses retakan, J -integral, adalah lebih kecil untuk jenis bimodal dari pada jenis
monomodal. Hal ini sebagian besar terjadi pada kasus ikatan sebagian antara matriks dan partikel
karet. Hasil-hasil penelitian menunjukkan bahwa pengaruh perlindungan (screenmg effects) yang
terjadi pada jenis bimodal lebih besar dari pada monomodal.
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1. INTRODUCTION

Some brittle polymer can be toughened significantly by
addition of a rubbery phase. Rubber modified polymers
such as ABS (acrylonitrile-butadiene-styrene} have been
used in various commercial applications in the last few
decades. Because of their high durability and economical
cost, the demand for these toughened thermoplastics or
thermosets continues to rise in industries such as electric,
computer, automotive and aerospace. As the market for
rubber-modified polymers increase and improved
characteristics are sought, a clear
understanding of the toughened mechanisms becomes
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critical. Such knowledge is especially needed when these
polymer alloys are required to carry significant loads. In
materials where second phase particle and inclusions are
embedded and well bonded to the matrix, void will form
in the material, grow, then coalesce, leading to crack
formation and- potentially, failure. The fracture
properties are controlled by the growth and coalescence
of voids [1]. This type of fracture processes yields the
significant increase in the fracture toughness of the
material. Such fracture process is also occurred in the
polymer alloy like ABS material. Experimental study
shows that there are two important toughening
mechanisms (the micro mechanical mechanism that
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enhances toughness) of rubber madified plastics [2-6].
The first mechanism is crazing. Craze initiation occuss at
regions of high stress concentration due to rubber
particle. The second mechanism is internal cavitations or
interfacial debonding, of the rubber particles, which may
then enable the growth of these voids by plastic
deformation of the matrix material.

Initiation and growth of shear deformation, which is
occur between rubber particles [3,6] are strongly
governed by the concentration of von Mises stress in the
matrix, while cavitations of rubber particles is largely
governed by the hydrostatic stresses that are acting. To
analyze the deformation field near the crack tip,
precisely it is necessary to employ numerical method
such as the finite element method (FEM). A suitable
modeling by FEM of rubber-modified plastics has
attracted the attention of many researchers [7-10].
However, the analyses on the fracture toughness m
connection with the rate of energy flux into a fracture

process zome, J -integral, for polymer alloy are not
investigated. In order to clarify the increase of fracture
toughness and the rate of energy flux during crack
extension of mubber modified plastics a suitable
modeling using finite element analysis (FEM) was
conducted.

In this study, finite element computation is performed on
the deformation fields near the crack tip to investigate

the-role of rubber particles. Two types of rubber particle -

distributions in the matrix, monomodal and bimodal
which have the same volume fraction, are investigated.
The calculations are made for mode I case. Which large
deformation effects in the finite element computation are

considered. Plane strain and small-scale yielding

conditions are assumed. The displacement field
designated by mode I stress intensity factor is applied
on nodes far field from the crack tip. Screening effects
of the rubber particles on energy flux into fracture

process zone J -integral are discussed.

2. NUMERICAL METHOD

Finite element modeling conducted in the present study

is for polymeric materials toughened with both
monomodal and bimodal type of mbber particle
distribution. Both monomodal and bimodal type of
particles are composed of rubber and are in a matrix of
AS resin. For monomodal type the sizes of rubber
particles of diameter are 200 nm. There are two sizes of
diameter for bimodal type, that is, 200 nm and 500 nm
[2]. The percentages of weight of rubber particles in
matrix materjals are the same for both monomodal and
bimodal types of distribution.

2. 1. Unit cell model

The finite element method (FEM) computatlon is carried
out for a.representative unit cell model of matrix
material and rubber particle to determine the hydrostatic
stress or octahedral normal stress to obtain the
constitutive ' equation. Matrix and rubber particles are
assumed as Mises and Mooney-Rivlin material,
respectively [11]. -
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The modeling is carried out with properties of measured
values/of matrix (AS resin) (E = 3710 MPa, L = 0.35).
The rubber particle's properties were assumed by initial
tensile modulus E = 1.2984 MPa [12]. The wunit cell
models (monomodal and bimodal types with 20.5 %
rubber volume fraction) of these elements for bondmg
condition are shown in Fig. 1.

_Rubber Particle

Fig. 1.. Unit cell model. (a) Monomodal type (L =
0.1959 ‘Li‘ m). (b) Bimodal type (L = 0.5958 4 m).

Finite element meshes of the unit cell model for
monomodal and bimodal types are shown in Figs. 2 and
3, respectlvely Radins R of rubber particles is 0.1 #m

for monomodal, and 0.1 #mand 025 ym for bimodal
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type. A unit strain value in x directions &, and in y

direction &, was applied to the element mesh with ratio

8y/£x= 0.0, 0.25; 0.5; 0.75 and 1.0. In this study,

perfect bonding and debonding of the interface between
the particle and the matrix is assumed in the
computation,
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Fig. 2. Finite element meshes of unit cell model for
monomodal type (76 elements and 282 nodes).
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Fig. 3. Finite element meshes of unit cell model for
bimodal type (242 elements and 877 nodes).

2. 2. Energy flux into fracture process zone -
J -integral ,
The .J -integral, which is an extension of the J- integral

[13] will be employed. Furthermore, the J -integfal is
83

fully described elsewhere {14, 15], so that only a brief
description will be given here.

We consider a two-dimensional crack as shown in Fig. 4
and assume that the crack tip moves virtually from the
initial location 0 to the final location (” with the distance
00" being infinitesimally small. 0-X,,. X, is the fixed
frame and 0°-x,, X, the moving frame whose origin (" is
coincident with the tip of the extending crack. The
direction of X, and x, is perpendicular to the crack
surface. It is assumed that fracture occurs in a fracture
process region, or end region denoted by A_y in which

continnum mechanics does not work effectively. As '

shown in Fig. 4, ', , is the counter surrounding A,

Iy any counter surrounding the end region, I's curve

along the crack surface, and A region surrounded by
these curves. The. energy-release rate due to crack

extension is given by the j -integral [14]:

i
1 1

= [{-n e Sl e o

where the terms introduced have the meanings shown
below.

G ;' stress tensor,

£ : strain tensor,

i
: surface traction,
: displacement,

. any curve surrounding the crack tip,

> = F

+ area surrounded by both curve [ and crack

‘surface.

Xz~

Fig. 4, Conﬁgui‘?iﬁon of crack tip with fracture process
region and its boundary.

Note that the J -integral does. not lose the property
of path-independence and its physical significance as
energy release rate even for materials described by

incremental plasticity theory, and that the J vale
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almost coincides with the J - value under monotonic
loading conditions [14].

Figure 5 shows finite element mesh used for analyzing
the near tip fields. Plane strain and small scale yielding
conditions are assumed, and the displacement field
designated by Mode I stress intensity factor is applied.

Fig. 5. Whole configuration of finite element meshes.
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Fig. 6. Mimute subdivision of finite' element mesh
(monomodal type).

* The vicinity of the crack tip is modeled as composite of

matrix materials and rubber particles as shown in Fig. 6.
On the other hand, outer region is modeled as

. homogeneous material whose constitutive equation has

been obtained by analyzing unit cell model of matrix and
rubber particle. Perfect bonding of the interface is
assumned in.the computation. The finite element program
takes into account the finite deformation. Matrix and
rubber particles are treated as Mises and Mooney-Rivlin

materials, respectively.

3. RESULTS

Young’s modulus and Poisson’s ratio obtained by finite
‘element computation are shown in Tables 1 and 2,
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respectively. By comparing to the experimental results
{Table 3), it shows that, the FEM computation results of
Young’s modulus a slightly different. However,
Poisson’s ratio values are almost similar,

Theoretical values of Young’s modulus for composite
model of matrix materials and rubber particle can be
predicted by the following equation,

Paralle] model,

E.=E.V,+E_V,_ (2)
Series model,
. 1 Vf Vm .
=t (3)
E, E, E,
where:

E, = average Young’s modulus in the composite
E,, = Young’s modulus of matrix (AS resin)

E; = Initial tensile modulus of rubber material.
V; = rubber volume fraction

V,, = volume of matrix.

Table 1: Young’s modulus values obtain-ed by FEM
computation.
Young’s modulus [GPa)
£/,
0.0 | 025 ) 0.50 | 0,75 1 1.0 | Mean
Mono

modal { 2.46 | 2.47 | 2.50 | 2.52 | 2.47 | 2.486

Bimo
dal 244 | 252 | 2.55 | 2.58 | 2.52 | 2.822

Table2: Poisson’s ratio obtained by FEM computation.

. Poisson’s ratio, U

&,l¢,
0.0 | 025 [ 050 | 0.75 [ 1.0 | Mean

Mono | 0.37. | 0.37 | 0.37 | 0.37 | 0.38 | 0.376
modal 1

Bimo | 0.38 | 0.37 | 0.37 | 0.37 | 0.37 | 0.377 -

dal

Table 3: Experimental values of Young’s modulus and "
Poisson’s ratio.

- Material

E [MPa] I}
AS resin 3710 0.35
ABS-1 (monomaodal) 2066 0.37
ABS-2 (bimodal) 2310 0.37

Comparison between theoretical values and FEM
computation results of Young’s modulus of AS resin
toughened with rubber particles for monomodal and
bimodal model without debonding is shown in Fig. 7.
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Fig. 7. Young’s modulus - rubber volume fraction
relationships.
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Fig. 8. Octahedral normal stress-strain relation of

monomodal type. -
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Fig. 9. Octahedral shear stress-strain relation of

monomodal type.

"Figures 8 and 9 show the octahedral normal and shear
stress-strain relations for monomodal type, respectively.
These relations are insignificant to the ratio of applied
strain £,/¢&, since the(’bonding between the particle

and matrix is generally considered perfect. Similar
behavior is also found for bimodal type without
debonding.

The shape of plastic region is shown in Fig. 10 where the
yielded Gauss points are represented by dots. The solid
line indicates shape of plastic region estimated by the
elastic singular stress field. The shape of plastic
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region is-agreed well with this estimation in the perfect

bonding case,
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Fig. 10. Plastic zone (bonding case).

4. DISCUSSIONS

The following discussions concerning with the role of
rubber particles in enhancing the fracture toughness in

terms of J-integral criterion. From experimental
observations of ABS materials as described in the
previous paper [2), the fracture toughness of ABS with
bimodal type of rubber particles is larger than that of
ABS with monomodal type of rubber particles content.
From the computational results, it can be extracted
the relationship between the elastic energy release rate

K} / E’, as the input energy far field from the crack tip,

and the energy flux into process region J -integral as

shown in Figs. 11 - 14. Figure 11 shows that the J -
integral value for debonding a slightly reduced lower
than for bonding case.

T ] T T T T

v.0 |- — (bonding )
~===( dehonding )
- —{ partial debondnig } E

K, /E' [kNfm]

Fig. 11. Elastic energy release rate vs.J -integral
(monomodal particles size).

Moreover, the J -integral value of partial debonding
case decreases lower than that of for debonding. These
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behavior is also found in the bimodal model as shown in

Fig. 12, but the value of . -integral for partial
debonding is greatly reduced.
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Fig. 12. Elastic energy release rate vs.J -integral
(bimodal particles size).

It is suggest that the screening effects of the rubber
particles for energy flux into fracture process. region
occurred. The screening effect for bimodal model is
largely occurred when the particles -are partial
debonding. In the bonding case both of monomodal and
bimodal indicates that the flux energy into process:

region occurred at almost similar value of ./ -integral as
shown in Fig. 13. These phenomena imply that the
influence of the screening effects of the rubber particles
is not occwrred.

| i I

8086 = —— (monomodal) N
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J [kN/m]
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Fig. 13. Comparison of J -integral for bonding case
(monomodal and bimodat).

Figure 14 shows that the comparison of the J -integral
values between monomodal and bimodal model for
partial debonding case. It can be observed that the
screening effect of mbber particles occurred largely in
bimodal medel. Therefore, the fracture toughness of
bimodal model is larger than that of for monomodal
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model. In the calculation, size of debonding area is also-
considered. In the case of bimodal type, allfubber
particles around the crack tip are partial debonded. The
results show that, the screening effect of rubber particles
due to the large size of debonding area lead to the energy
flux into process zone becomes smaller than. that of
smaller size of debonding area as shown in Fig. 14. -

¥ M J : ¥
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~ — (bimodai, big debonding area)

0.002

1] 0.002 0.004 0.006
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Fig. 14. Comparison of j -integral for partial debonding
case (monomodal and bimodal). '

5. CONCLUSIONS

The effects of the distribution of rubber particle size on
the fracture toughness for both monomodal and bimodal
models have been performed by using FEM analyses .

To evaluate energy flux into process zone, the J-

integral has been computed. The following conclusions

are extracted from these computations.

1. In the unit cell analyses, the octahedral normal and
shear stress-strain relations are not sensitive to the

ratio of applied strain £, /&,  for the perfect

bonding case. For partial debonding case, it was
found that both monomodal and bimodal models
show that greatly reduced the degree of octahedral -
stress or mean stress. In bimodal mode! for partial
debonding of large particles, octahedral stress greatly -
reduced larger than that of small particles. -

2. The shape of plastic region near the crack tip for
bonding case is agree well with that obtained
estimated by the elastic singular stress field. On the
other hand, for partial debonding, the plastic region
moves ahead of the crack tip.

3. In the bimodal models, the rate of energy flux into

the fracture process region .J -integral is smaller than
that of monomodal model. This behavior largely
occurred on the partial debonding case. These
induced to screening effects of rubber particles. The
screening effects of bimodal type are larger than that’
of monomodal type. Therefore, the fracture
toughness of bimodal model is enhanced larger than
that of monomodal model. However, for the perfect

bonding case the value of J -integral occurred at
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almost similar value. In this case the screening
effects are not operate effectively.

4. The screening effect increases when the size of

debonding area also increases.
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