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Abstract 

From observations using secondary field data and dimension calculations, ocean waves exhibit fractals.      
Fractals are also hypothesized to have a direct relation with the degree of the waves nonlinearity. We took     
secondary data of 40 time series of wave record taken from Grays Harbor Wave Refraction Experiment,     
Washington in 1999. The data are divided into two groups, one group being data taken from the water depth of 
25 meters and second group being data taken from water depth of 12 meters. The selection of data is in such a 
way that the second group is the waves traveling from the first group. We use rescaled range analysis to         
calculate the fractal dimension of the waves and Goda nonlinearity parameter as a measure of the waves  
nonlinearity. From the results, we confirm that fractals are a function of waves nonlinearity.  

Keyword : Fractals, nonlinear, waves, rescaled range analysis, benoit, fractal dimension, nonlinearity          
parameter, skewness. 

Abstrak 

Dari data sekunder dan perhitungan dimensi, gelombang laut mempunyai karakteristik fraktal. Bentuk fraktal 
dari gelombang laut diasumsikan mempunyai hubungan langsung dengan ketidaklinearan dari gelombang laut. 
Untuk pembuktian asumsi ini diambil data pengamatan 40 data seri waktu yang diambil dari eksperimen         
refraksi di Grays Harbor, Washington tahun 1999. Data ini dibagi menjadi 2 grup, grup pertama adalah data 
yang diambil di perairan dengan kedalaman 25 meter dan grup kedua diambil dari data yang diambil di 
perairan dengan kedalaman 12 meter. Pengambilan data di grup kedua adalah sedemikan rupa sehingga data 
ini adalah berasal dari gelombang yang berjalan dari data grup pertama. Setelah dilakukan perhitungan        
dimensi kurva dengan menggunakan Analisa Rescaled Range dan mengambil parameter Goda sebagai ukuran 
ketidaklinearan gelombang laut, didapati bahwa bentuk fraktal gelombang laut berhubungan langsung dengan 
ketidaklinearan gelombang. 
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1. Introduction 

The word ‘fractal’ was coined by Mandelbrot (1983) 
from the Latin fractus, meaning broken. Fractal      
geometry is observed in many natural phenomena. In 
this work, we will concentrate on the fractal character 
of waves. Munzenmayer (1993) found that near  
breaking surface water waves exhibit fractal geometry. 
An important feature of these waves is that their      
surface is not continuous, and thus, non-differentiable. 
From field observation, we hypothesized that fractals 
are also related to the degree of nonlinearity of the  
water waves. Knowledge of whether waves are fractal 
motivates future research on characterizing beaches by 
its waves fractal number.  

To introduce the concept of fractals, we consider a 
curve existing in a space. We measure the length of the 
curve by joining a series of line segments, each of 
length δ, end to end along the curve. The number of 
segments needed to traverse the curve for a given seg-
ment length δ  is called the measure M δ. If we choose 
a smaller δ, then the measure M δ increases. The con-
cept of dimension is defined by the relationship be-
tween M δ and δ as δ approaches zero: 

 

where s is defined to be the dimension of the curve. To 
illustrate this concept, let us consider Figure 1. For the 
straight line segment in Figure1, evidently  
and the dimension of the line in Figure 1 is 

sMδ δ −= (1) 

1Mδ δ −=
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one. 
Next, we consider complex curve shown in Figure 2. 
For such a curve, M δ  = δ− s, where 1< s <2. When a 
curve’s dimension is non-integer, the curve is called 
fractal and the dimension is called the fractal dimen-
sion. This concept can be generalized to higher dimen-
sions. For instance, for a surface, we can construct a 
measure by covering the surface with squares of side 
δ. The number of squares is the measure M δ, and the 
relation M δ  = δ− s still defines the dimension of the  
surface. A fractal surface would have 2 < s.< 3. A 

graphical way to describe 
dimension is to take the 
logarithm of Equation (1). 

to obtain 
 
 
 
We see that –s is the slope of a plot of log M δ  verse 
log δ . 

2. Rescaled Range Analysis 

The most important method used to determine whether 
a set has a fractal structure is measuring its dimension. 
The method of rescaled range analysis is used to deter-
mine fractal dimension of a set with x and y axes not 
having the same physical dimension, such as free sur-
face in y-axis and time in x-axis (Vanouplines, 1995). 
For example, the curve plotted in Figure 3 is a time 
series of free surface taken at Grays Harbor, WA in 
1999. This is an example of a curve where the physical 
dimension in x and y are different. Hurst (1965)      
developed rescaled range analysis as a statistical 
method to analyze time series of natural phenomena. 
There are two parameters used in this analysis. The 
range R is the difference between the minimum and 
maximum of the cumulative sum X(t,τ).X(t,
τ).represents the cumulative sum of measurement of 
some quantity ξ made at discrete time t over a total 
time τ . S denotes the standard deviation of the     

measurement ξ.. We use the Benoit V1.2 
Fractal Analysis software to calcu-

 
 

1/ 4  ;  4Mδδ = =  

 
1   ;    1Mδδ = =  

 
1/ 2   ;   2Mδδ = =  

 
Line curve 

  Figure 1. Line segments traversing a line curve 

log  logM sδ δ= − (2) 

( )1 ; 5.5M Fδδ = = ( )2 ; 2.8M Fδδ = =

( )3 ; 1.5M Fδδ = = ( )0.5 ; 12.5M Fδδ = =

Figure 2. Measurement Mδ of a curve using various line segments δ  
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Where H is the Hurst exponent. The coefficient c is 
taken to be 0.5 by Hurst. R , S, ξ, and X are formally 
defined as 

 
and 

 
 
 
 
 

where 
 
 
 
 

and 
 
 
 
 

This method is appropriate for time series. The graphi-
cal representation uses time on the χ axis, and the free 
surface elevation on the ordinate.  

The Hurst exponent H has a value of about 0.72 for 
many natural phenomena. For ocean wave data, it is 
found to be between 0.12 – 0.5. The relationship     
between the Hurst exponent and the fractal dimension 
is simply (Vanouplines, 1995) 

 

A Hurst exponent of 0.5 < H < 1 corresponds to a time 
series with trending behavior. A Hurst exponent of 0 < 
H < 0.5 indicates non-trending, oscillatory behavior. 
The oscillatory behavior has a rather high fractal     
dimension (1.5 < D < 2), corresponding to a highly 
variable time series with large standard deviation.   
Figure 3 shows ocean wave data measured at Grays 
Harbor, Washington, in 1999. The water depth was 25 
meters. The fractal dimensions calculated using      
rescaled range analysis is 1.756. So it is confirmed that 
ocean waves are fractals. 

3. Goda Nonlinearity Parameter 
Goda (1985) used skewness as a measure of the non-
linearity of waves. The skewness  of a time 
series ηi is defined as 

 
 
 
 

where 

 

 

and 
 

( ) max ( , ) min ( , )R X t X tτ τ τ= − (4) 
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Figure 3. Free surface time series burst # 500, taken at Grays Harbor, WA in 1999. The data sampling is 2 
Hz. (Gelfenbaum, et.al. (1999)) 
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Goda also proposed a parameter describing the extent 
of wave nonlinearity. 

 
 
 
 

Goda found that the skewness of the data increases as 
the degree of nonlinearity increases. The dispersion 
relation is written as 

 
 
 

and 
 
 
 

(13) 
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Figure 4. Ocean wave data, dt = 0.5 sec taken from Sandy Duck, North Carolina, 1997  
(Courtesy of Prof Rob Holman, Oregon State University,USA) 

H, h, ω and kA are the significant wave height, water 
depth, wave frequency, and wave number, respec-
tively. Significant wave height Hs is the average of the 
highest one-third of the wave.  

4. Sensitivity Test 

To determine the sample size needed to obtain robust 
estimate of fractal dimension, a sensitivity test of frac-
tal dimension to sample size was performed. The 
method of rescaled range analysis is used to determine 
the fractal dimension of ocean wave data taken in 
Sandy Duck, North Carolina in 1997. The sampling 
rate was 2 Hz. The raw signal is shown in Figure 4.  
Figure 5 summarizes the sensitivity test. 
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Figure 5. Average fractal dimension for different number of data blocks of ocean wave data 
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From Figure 5, there is little improvement in the esti-
mated dimension for record length above 5000 data-
points. We choose to use record lengths of 4000 data 
in our calculations. 

5. Determination of Relation Between 
Fractals and Nonlinearity of The Waves 

Next, we consider wave data from the Grays Harbor 
Wave Refraction Experiment (Gelfenbaum et.al., 
2000). The data are divided into two groups of 20   
records, one group consists of data taken at 25 meters 
water depth, the other at 12 meters water depth. We 
selected the data with the timing subsequent to each 
other, counting for the estimated traveling time       
between location of 25 meters to 12 meters. The objec-
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Figure 6. Skewness of surface elevation versus wave non-linearity parameter defined in the data is taken 
from Grays Harbor, WA 

tive of the data analysis is to observe the relationship 
of fractal dimension with water depth and the degree 
of nonlinearity. Nonlinearity is estimated using both 
skewness and Goda’s nonlinearity parameter. A plot of 
skewness verse nonlinearity parameter (Figure 6) 
shows the 12 meters data to have higher skewness and 
nonlinearity parameter values than the 25 meters data: 
the shallow waves are clearly more nonlinear. 

Fractal dimension verse skewness is plotted in Figure 
7. The fractal dimension increases as the skewness  
increases. Figure 8 shows that the fractal dimension 
also increases with increasing nonlinearity. These   
results indicate a strong positive correlation between 
fractal dimension and nonlinearity 
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Figure 7. Fractal dimension of surface elevation versus the skewness of the statistical distribution 
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Figure 8. Fractal dimension of surface elevation versus the Goda nonlinearity parameter 

6. Conclusion 

From the above results, we can conclude that fractal 
waves have a direct relationship with the nonlinearity 
of the waves. The higher fractal dimension of the 
waves indicates higher degree of the waves              
nonlinearity. Figures 6 and 8 show that waves at    
shallow water are more non-linear than waves at 
deeper water. The nonlinearity of waves at the shallow 
water is partly due to the effect of the ocean bottom, 
and interactions of infragravity waves such as cross-
waves, edge waves to the gravity waves that we are 
observing now. Turbulence effects, breaking waves 
may also contribute to the waves nonlinearity at the 
shallow water. More thorough observation is needed to 
validate the effects of  turbulence and breaking waves. 
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