Continuous GPS Time Series Data Analysis in Sumatera; Case of Study: Continuous Data SuGAR (Sumatran GPS Array) 2004-2007

Sarah Leila Hanief, Irwan Meilano, Dudy Darmawan Wijaya


Abstract. In each GPS time series data, there are signals which exist and affect the result that has been received, which is called noise. Those noise components will form certain pattern in time series. Basically, time series has periodic component which commonly not being able to be detected directly. To detect which periodic component that dominantly affect the time series, there is a way which is called spectral analysis. With acknowledge periodic component in a time series, we can know the characteristic of the time series and then we can determine how many parameters will be needed to do curve fitting. There are two approximations in fitting, it is either linear fitting only or linear fitting with including periodic component. As a comparison between these two methods, we need to be estimate displacements velocity rate in a year. From the analysis that has been done, the result is that the biggest difference of displacements velocity rate between these two methods is 3.7 milimeters per year.

Keywords: displacements velocity rate, fitting, periodic component, spectral analysis, time series.

Teks Lengkap:

PDF (English)


Abidin, H. Z., GPS Positioning, Modul Perkuliahan Survey Satelit, Bandung, 2007.

Abidin, H. Z., Introduction to GPS, Modul Perkuliahan Geodesi Satelit, Bandung, 2007.

Abidin, H. Z., Jones, A. & Kahar, Joenil, Survey Dengan GPS, PT Pradnya Paramita, 2007.

Hall, Robert, Cenozoic Geological and Plate Tectonic Evolution of SE Asia and The SW Pasific: Computer-Based Reconstructions, Model, and Animations, Journal of Asian Earth Sciences 20 (2002) 353-432, 2002.

Kenyeres, A. & Bruyninx, C., Seasonal Terms in GPS Coordinate Time Series: Artifact or Real Signal?, American Geophysical Union, 2006.

Kuntjoro, W. & Prijatna, K., Sistem Koordinat dan Datum Geodetik, Modul Perkuliahan Ilmu Hitung Geodesi II, Bandung, 2005.

Lomb, N. R., Least Squares Frequency Analysis of Unequally Spaced Data, Astrophysiscs and Space Science 39 (1976) 447-462, 1976.

NASA, Earth Fact Sheet, site:, (7 Juni 2012).

Nasa, Structure of Earth, site:, (7 Juni 2012).

Nikolaidis, Rosanne, Observation of Geodetic and Seismic Deformation with The Global Positioning System, PhD dissertation, Earth Sciences, University of California, San Diego, 2002.

Noyes, T. James, Plate Tectonic, Lecture Module, El Camino College, 2011.

Phytaraulli, S., Kontogianni, V., Psimoulis, P., & Stiros, S., Spectral Analysis Techniques in Deformarion Analysis Studies, INGEO 2004 and FIG Regional Central and Eastern European Conference on Engineering Surveying November 11-13, Britislava, Slovakia, 2004.

Press, William H. & Rybicki, Geoge B., Fast Algorithm for Spectral Analysis of Unevenly Sampled Data, The Astrophysical Journal, 338:227-280, 1989.

Rahman, Adhita T., Aplikasi Teknik Spatial Filtering Untuk Menghitung Pergeseran Coseismic Gempa Simeuleu Februari 2008 Berdasarkan Data GPS SuGAR (Sumatran GPS Array), Tugas Akhir Pogram Studi Teknik Geodesi dan Geomatika FITB ITB, 2011.

Rino, Regangan Tektonik di Sumatera Berdasarkan Pengamatan Kontinu Sumatran GPS Array (SuGAR) Tahun 2007-2008, Tugas Akhir Program Studi Teknik Geodesi dan Geomatika FITB ITB, 2011.

Dach, R., Hugentobler, U., Fridez, P. & Meindl, M., Bernese GPS Software Version 5.0, Astronomical Institute University of Berne, 2007.

Wijaksana, Bagja Aryasa, Analisis Deret Waktu Data Pengamatan GPS Kontinu di Jawa Barat, Tugas Akhir Program Studi Teknik Geodesi dan Geomatika FITB ITB, 2009.

USGS, Developing the Theory; Historical Perspective; Understanding Plate Motions, site: http://pubs.usgs.goc/gip/dynamic/.html, (7 Juni 2012)

Xu, Y., Liu, H., Lu, Q. S., Research on The Stability of GPS Reference Stations in Tianjin CORS, China Satellite Navigation Conference Preceeding, Lecture Notes in Electrical Engineering Volume 159, pp 195-203, 2012.