Synthesis of Polyhedral Magnetite Particles by Hydrothermal Process under High Pressure Condition

Siti Machmudah, Wahyudiono Wahyudiono, Hideki Kanda, Motonobu Goto


Magnetite particles were successfully generated by hydrothermal synthesis using water at subcritical conditions. By changing the temperature and pressure at subcritical water conditions, the thermodynamics and transport properties of the water can be controlled, thus enabling to manage the way of crystal formation, morphology, and particle size. In this work, the experiments were carried out at temperatures of 250 °C and 290 °C and a pressure of 10 MPa with a reactor made of SUS 316 in a batch system. The synthesized particles were dried in vacuum condition and characterized by SEM and XRD. The XRD patterns showed that magnetite particles were dominantly formed in the particle products with a black color. The results showed that the magnetite particles formed had diameters of around 60 nm in all experiments with irregular polyhedral shaped morphologies.

Full Text:



Cornell, R.M. & Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 2-3, 2003.

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V. & Muller, R.N., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chemical Reviews, 108(6), pp. 2064-2110, 2008.

Mahdavi, M., Ahmad, M.B., Haron, Md.J., Namvar, F., Nadi, B., Rahman, M.Z.Ab. & Amin, J., Synthesis, Surface Modification and Characterisation of Biocompatible Magnetic Iron Oxide Nanoparticles for Biomedical Applications, Molecules, 18(7), pp. 7533-7548, 2013.

Kaur, R., Hasan, A., Iqbal, N., Alam, S., Saini, M. Kr. & Raza, S.K., Synthesis and Surface Engineering of Magnetic Nanoparticles for Environmental Cleanup and Pesticide Residue Analysis: A Review, Journal of Separation Science, 37(14), pp. 1805-1825, 2014.

Wu, W., Wu, Z., Yu, T., Jiang, C. & Kim, W.S., Recent Progress on Magnetic Iron Oxide Nanoparticles: Synthesis, Surface Functional Strategies and Biomedical Applications, Science and Technology of Advanced Materials, 16(2), 023501, 2015, doi:10.1088/1468-6996/16/2/023501.

Durdureanu-Angheluta, A., Pinteala, M. & Simionescu, B.C., Tailored and Functionalized Magnetite Particles for Biomedical and Industrial Applications in Materials Science and Technology by Hutagalung, S.D. (Ed.), InTech, Croatia, pp. 150-151, 2012.

Willard, M.A., Kurihara, L.K., Carpenter, E.E., Calvin, S. & Harris, V.G., Chemically Prepared Magnetic Nanoparticles, International Materials Reviews, 49(3-4), pp. 125-170, 2004.

Machmudah, S., Prastuti, O.P., Widiyastuti, Winardi, S., Wahyudiono, Kanda, H. & Goto. M., Macroporous Zirconia Particles Prepared by Subcritical Water in Batch and Flow Processes, Research on Chemical Intermediates, 42(6), pp. 5367-5385, 2016.

Fan, R., Chen, X.H., Gui, Z., Liu, L. & Chen, Z.Y., A New Simple Hydrothermal Preparation of Nanocrystalline Magnetite Fe3O4, Materials Research Bulletin, 36(3-4), pp. 497-502, 2001.

Dong, Q., Kumadai, N., Yonesaki, Y., Takei, T. & Kinomura N., Hydrothermal Synthesis of Fe3O4 Particles with Various Shapes, Journal of the Ceramic Society of Japan, 117(1368), pp. 881-886, 2009.

Wang, J., Sun, J., Sun, Q. & Chen, Q., One-step Hydrothermal Process to Prepare Highly Crystalline Fe3O4 Nanoparticles with Improved Magnetic Properties, Materials Research Bulletin, 38(7), pp. 1113-1118, 2003.

Burda, C., Chen, X., Narayanan, R. & El-Sayed, M.A., Chemistry and Properties of Nanocrystals of Different Shapes, Chemical Reviews, 105(4), pp. 1025-1102, 2005.

Wahyudiono, Machmudah, S. & Goto, M., Utilization of Sub and Supercritical Water Reactions in Resource Recovery of Biomass Wastes, Engineering Journal, 17(1), pp. 1-9, 2013.

Machmudah, S., Zulhijah, R., Wahyudiono, Setyawan, H., Kanda, H. & Goto. M., Magnetite Thin Film on Mild Steel Formed by Hydrothermal Electrolysis for Corrosion Prevention, Chemical Engineering Journal, 268, pp. 76-85, 2015.

Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry, Angewandte Chemie International Edition, 24(12), pp. 1026-1040, 1985.

Hayashi, H. & Hakuta, Y., Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water, Materials, 3(7), pp. 3794-3817, 2010.

Bojin, F.M. & Paunescu, V., Pros and Cons on Magnetic Nanoparticles Use in Biomedicine and Biotechnologies Applications in Nanoparticles' Promises and Risks Characterization, Manipulation, and Potential Hazards to Humanity and the Environment by Lungu, M., Neculae, A., Bunoiu, M., Biris, C. (Eds.), Springer International, Romania, pp. 103-135, 2015.

Wang, X., Zhao, Z., Qu, J., Wang, Z. & Qiu, J., Shape-Control and Characterization of Magnetite Prepared via a One-Step Solvothermal Route, Crystal Growth & Design, 10(7), pp. 2863-2869, 2010.

Wang, F. & Wang, X., Mechanisms in the Solution Growth of Freestanding Two-dimensional Inorganic Nanomaterials, Nanoscale, 6, pp. 6398-6414, 2014.

Hosokawa, M., Nogi, K., Naito, M. & Yokoyama, T., Nanoparticle Technology Handbook, 1st ed., Elsevier, Amsterdam, pp. 270-272, 2007.

Lian, S., Wang, E., Kang, Z., Bai, Y., Gao, L., Jiang, M., Hu, C. & Xu, L., Synthesis of Magnetite Nanorods and Porous Hematite Nanorods, Solid State Communications, 129(8), pp. 485-490, 2004.

Li, J.H., Hong, R.Y., Li, H.Z., Ding, J., Zheng, Y. & Wei, D.G., Simple Synthesis and Magnetic Properties of Fe3O4/BaSO4 Multi-core/shell Particles, Materials Chemistry and Physics, 113(1), pp. 140-144, 2009.

Cai, W. & Wan, J., Facile Synthesis of Superparamagnetic Magnetite Nanoparticles in Liquid Polyols, Journal of Colloid and Interface Science, 305(2), pp. 366-370, 2007.

Kokate, M., Garadkar, K. & Gole. A., One Pot Synthesis of Magnetite-Silica Nanocomposites: Applications as Tags, Entrapment Matrix and in Water Purification, Journal of Materials Chemistry A, 1(6), pp. 2022-2029, 2013.

Sato, J., Kobayashi, M., Kato, H., Miyazaki, T. & Kakihana M., Hydrothermal Synthesis of Magnetite Particles with Uncommon Crystal Facets, Journal of Asian Ceramic Societies, 2(3), pp. 258-262, 2014.

Wu, W., He, Q. & Jiang, C., Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies, Nanoscale Research Letters, 3(11), pp. 397-415, 2008.

Pineiro, Y., Vargas, Z., Rivas, J. & Lopez-Quintela, M.A., Iron Oxide Based Nanoparticles for Magnetic Hyperthermia Strategies in Biological Applications, European Journal of Inorganic Chemistry, 2015 (27), pp. 4495–4509, 2015.

Colombo, U. Fagherazzi, G., Gazzarrini, F., Lanzavecchia, G. & Sironi, G., Mechanism of Low Temperature Oxidation of Magnetites, Nature, 219, pp. 1036−1037, 1968.

Namatame, Y., Making High Speed, High Resolution Measurements using MiniFlex II+D/teX Ultra, The Rigaku Journal, 27(1), pp. 6-8, 2011.

Ingham, B. X-ray Scattering Characterisation of Nanoparticles, Crystallography Reviews, 21(4), pp. 229-303, 2015.

Ozel, F., Kockar, H. & Karaagac, O., Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size, Journal of Superconductivity and Novel Magnetism, 28(3), pp. 823-829, 2015.



  • There are currently no refbacks.