Analysis and Design of a Human Resources Performance Measurement System for the Nutmeg Oil Agro-industry in Aceh

Rahmat Fadhil, Taufik Djatna, M. Syamsul Maarif


Abstract. This article aims to develop a model of human resources (HR) performance measurement for the nutmeg oil (Myristica fragrans) agro-industry in Aceh based on the Human Resource Scorecard (HRSC) method. The study uses the Relief method of system formulation to assess the effect of key performance attributes and to determine the association rules to facilitate the performance measurement system by taking into account the relationships between the attributes based on the support value and confidence value using Association Rules Mining (ARM). The analysis and design of the system are conducted using the System Development Life Cycle (SDLC) method that includes the analysis of system requirements, and Business Process Model and Notation (BPMN) using Sybase-Power Designer version 16.5. The results showed that the analysis system is successfully developed through describing in detail the process flow of the entire circuit system in the study. The Relief method for system design was capable of producing a rank system of key attributes in HR performance measurement, namely high-performance work system (HPWS) and human resource system alignment (HRSA). The advanced data handling process with ARM generated association rules with the three highest rankings of the overall HR performance measurement system.

Keywords. Association rules mining, human resource scorecard, nutmeg oil, performance, relief.

Abstrak. Artikel ini bertujuan untuk mengembangkan model sistem pengukuran kinerja sumber daya manusia (SDM) agroindustri minyak pala (Myristica fragrans) Aceh berdasarkan metode Human Resource Scorecard (HRSC). Formulasi sistem menggunakan metode Relief untuk mengetahui pengaruh kinerja utama dari suatu atribut yang dinilai dan menentukan aturan asosiasi untuk memudahkan pengukuran kinerja dengan memperhatikan hubungan antar atribut berdasarkan nilai penunjang dan nilai kepastian menggunakan metode Association Rules Mining (ARM). Analisis dan desain sistem dilakukan mengikuti metode System Development Life Cycle (SDLC) meliputi analisa kebutuhan sistem, use case diagram, dan Business Process Model and Notation (BPMN) dengan menggunakan software Sybase-PowerDesigner version 16.5. Hasil penelitian menunjukkan bahwa analisis sistem berhasil dikembangkan dengan menggambarkan aliran proses secara detail dari seluruh rangkaian sistem yang dikaji. Desain sistem melalui metode Relief mampu menghasilkan perangkingan atribut utama dalam pengukuran kinerja SDM, yaitu sistem kerja performansi tinggi (high performance work system/HPWS) dan keselarasan sistem SDM (human resource system alignment/HRSA). Proses penanganan data lanjutan dengan ARM diperoleh aturan asosiasi dengan tiga peringkat tertinggi yang dapat mewakili keseluruhan sistem pengukuran kinerja SDM.

Kata kunci. association rules mining, human resource scorecard, kinerja, minyak pala, relief.

Full Text:



[Balittro] Balai Penelitian Tanaman Rempah dan Obat (2012) Perkembangan Minyak Atsiri Indonesia berikut Alat Pengolahannya. Diskusi Minyak Atsiri. Departemen Pertanian Republik Indonesia.

[Ditjenbun Kementan] Direktorat Jenderal Perkebunan Kementerian Pertanian (2014) Rencana Kerja Ditjen Perkebunan Tahun 2015 dan Evaluasi E-Proposal. Pra Musrenbangtan Nasional Tahun 2014, Bogor 7-9 Mei 2014. Kementerian Pertanian Republik Indonesia.

Aguinis, H. (2007) Performance Management. Pearson Prentice Hall, New Jersey.

Bachmid (2008) Seks Rasio Pala di Blok Kebun Percobaan PT. Banda Perma. Balai Pengkajian Teknologi Pertanian Aceh.

Becker, B.E., and D. Ulrich (2011) The Human Resource Scorecard: Linking People, Strategy and Performance. Harvard Busininess School Press. Boston.

Chen, G., H. Liu, L. Yu, Q. Wei, and X. Zhang (2006) A New Approach to Classification Based on Association Rule Mining. Decision Support Systems 42(2), 674–689.

Djatna, T. (2016) Analisis dan Desain Sistem Produksi Agroindustri. Program Pasca Sarjana, Teknologi Industri Pertanian, Institut Pertanian Bogor.

Dessler, G. (2003) Human Resources Management. 9th Edition. Prentice Hall Inc., New Jersey.

Garcıa, M.N.M., I.R. Roman, F.J.G. Penalvo, and M.T. Bonilla (2008) An Association Rule Mining Method for Estimating the Impact of Project Management Policies on Software Quality, Development Time and Effort. Expert Systems with Applications 34, 522–529.

Hannay, M. (2010) Performance Appraisal: Who Know Best? Journal of Human Resources Education 5(4), 15-25.

Huang, Z., X. Lu, and H. Duan (2011) Mining Association Rules to Support Resource Allocation in Business Process Management. Expert Systems with Applications 38(8), 9483–9490.

Ingle, S. (1998) Performance Measurement Questionnaire: An Application to The Irish Automotive Component Industry. Performance Measurement. Theory and Practice. Papers from the First International Conference for Business Performance. University of Cambridge, 507-514.

Jackson, S.E., R.S. Schuler, and S. Werner (2012) Managing Human Resources. 11th Edition. South-Western College Pub.

Kaplan, R.S., and D.P. Norton (1996) Translating Strategy into Action: The Balanced Scorecard. Harvard Business School Press.

Kesuma, Z.M. (2011) Feature Selection Data Indeks Kesehatan Masyarakat Menggunakan Algoritma Relief. Jurnal Statistika 11(1), 61–66.

Köksal, G., Batmaz, I., and M.C. Testik (2011) A Review of Data Mining Applications For Quality Improvement In Manufacturing Industry. Expert Systems with Applications 38(10), 13448–13467.

Li, D., and C. O’Brien (1988). An Empirical Study for Performance Measurement of Supplay Chain Partners Performance Measurement-Theory and Practice. Centre for Business Performance. University of Cambridge 615-622.

Maarif, M.S., and L. Kartika (2012) Manajemen Kinerja Sumber Daya Manusia, Implementasi Menuju Organisasi Berkelanjutan. IPB Press, Bogor.

Miers, D., and S.A. White (2008) BPMN Modeling and Reference Guide. Future Strategies Inc., Lighthouse Pt, FL.

Moore, N. (2015) Systems Development Life Cycle (SDLC). Systems Development Life Cycle Cheat Sheet. ment-life-cycle/.

Noe, R., Hollenbeck, J., B. Gerhart, and P. Wright (2010). Human Resource Management: Gaining a Competitive Advantage. MgGraw-Hill, New York.

Ostroff, C. (1992) The Relationship Between Satisfaction, Attitudes, and Performance: An Organizational Level Analysis. Journal of Applied Psychology 77(6), 963-974.

Petterson, W., Gijsbers, and R. Schrank (1998) Goal Orieted Performance Evaluation (GOPE): A Model-Based Approach. Performance Measurement - Theory and Practice. Centre for Business Performance. University of Cambridge 727-734 G, Wilks M. 2003. An Organizational Perfromance Assessment System for Agriculrutal Research Organizations: Concepts, Methods and Procedures. ISNAR, The Hague, Netherland.

Rothmann, I., and C. Cooper (2008) Organizational Psychology and Work Psychology: Topics in Applied Psychology. London: Hodder Education.

Suwignyo, P., U.S. Baticti, and A.S. Carrie (2000) Quantitative Models for Performance Measurement System. International Journal of Production Economics 64(4), 231-241.

Syahyuti (2003) Bedah Konsep Kelembagaan: Strategi Pengembangan dan Penerapannya dalam Penelitian Pertanian. Pusat Penelitian & Pengembangan Sosial Ekonomi Pertanian, Badan Litbang Pertanian, Bogor.

Sybase (2013) Sybase PowerDesigner (R), Version Documentation Collection. PowerDesigner Standalone Local. Sybase, Inc., One Sybase Drive, Dublin, CA.

Wasson, C.S. (2006) System Analysis, Design, and Development: Concepts, Principles, and Practices. John Wiley & Sons Inc., Hoboken, New Jersey.

Yang, Q., and X. Wu (2006) 10 Challenging Problems in Data Mining Research. International Journal of Information Technology & Decision Making 5(4), 597-604.

Zhou, L., and S. Yau (2007) Efficient Association Rule Mining Among Both Frequent and Infrequent Items. Computers & Mathematics with Applications 54(6), 737–749.

Zubcoff, J., and J. Trujillo (2007) A UML 2.0 Profile to Design Association Rule Mining Models in The Multidimensional Conceptual Modeling of Data Warehouses. Data & Knowledge Engineering 63(1), 44–62.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Copyright © 2019 Journal of Regional and City Planning