Self-Potential Method to Assess Embankment Stability: A Study related to the Sidoarjo Mud Flow


  • Sungkono Sungkono Physics Department, Faculty of Sciences, Institut Teknologi Sepuluh Nopember, Jalan Arif Rahman Hakim, Surabaya 60111,
  • Masithoh N. Wasilah Physics Department, Faculty of Sciences, Institut Teknologi Sepuluh Nopember, Jalan Arif Rahman Hakim, Surabaya 60111,
  • Yekti Widyaningrum Physics Department, Universitas Bangka Belitung, Jalan Kampus Peradaban, Bangka Belitung,
  • Wildan M. Hidayatullah Physics Department, Faculty of Sciences, Institut Teknologi Sepuluh Nopember, Jalan Arif Rahman Hakim, Surabaya 60111,
  • Fandi A. Fathoni Physics Department, Faculty of Sciences, Institut Teknologi Sepuluh Nopember, Jalan Arif Rahman Hakim, Surabaya 60111,
  • Alwi Husein Pusat Pengendalian Lumpur Sidoarjo, Jalan Gayung Kebonsari No. 50, Surabaya, 60235,



fractures, self-potential, signal processing method, seepage, DCR


The stability of an embankment is generally influenced by a number of factors, such as deformation, fractures, overtopping, seepage, etc. Fractures and seepage are commonly found in the LUSI (Sidoarjo mud flow) embankment. In this study, analysis of self-potential (SP) data was applied to identify fractures and seepage in the LUSI embankment. Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD) and Continuous Wavelet Transform (CWT) were applied to determine the location of seepage and fractures in the subsurface based on SP data. The results were correlated with the 2D direct current resistivity (DCR) method, which showed that both methods worked well and were compatible in detecting and localizing fracture and seepage in the LUSI embankment.


Download data is not yet available.


Ikard, S.J., Revil, A., Schmutz, M., Karaoulis, M., Jardani, A. & Mooney Mooney, M., Characterization of Focused Seepage through an Earthfill Dam Using Geoelectrical Methods, Groundwater, 52(6), pp. 952-965, Nov. 2014. DOI: 10.1111/gwat.12151.

Minsley, B., Burton, B., Ikard, S. & Powers, M., Hydrogeophysical Investigations at Hidden Dam, Raymond, California, USGS Staff -Published Research, Jan. 2011. usgsstaffpub/517.

Rozycki, A., Ruiz, Fonticiella, J.M. & Cuadra, A., Detection and Evaluation of Horizontal Fractures in Earth Dams Using the Self-Potential Method, Engineering Geology, 82(3), pp. 145-153, Jan. 2006. DOI: 10.1016/j.enggeo.2005.09.013.

Sungkono & Warnana, D.D., Black Hole Algorithm for Determining Model Parameter in Self-Potential Data, Journal of Applied Geophysics, 148, pp. 189-200, Jan. 2018. DOI: 10.1016/j.jappgeo.2017.11.015.

Biswas, A. & Sharma, S.P., Resolution of Multiple Sheet-Type Structures in Self-Potential Measurement, J. Earth Syst. Sci., 123(4), pp. 809-825, Jun. 2014. DOI: 10.1007/s12040-014-0432-1.

Biswas, A. & Sharma, S.P., Optimization of Self-Potential Interpretation of 2-D Inclined Sheet-Type Structures Based on Very Fast Simulated Annealing and Analysis of Ambiguity, Journal of Applied Geophysics, 105, pp. 235-247, Jun. 2014. DOI:10.1016/j.jappgeo.2014.03.023.

Biswas, A. & Sharma, S.P., Interpretation of Self-Potential Anomaly Over Idealized Bodies and Analysis of Ambiguity Using Very Fast Simulated Annealing Global Optimization Technique, Near Surface Geophysics, 13(2), pp. 179-195, 2015. DOI: 10.3997/1873-0604.2015005.

Biswas, A. & Sharma, S.P., Interpretation of Self-Potential Anomaly Over 2-D Inclined Thick Sheet Structures and Analysis of Uncertainty Using Very Fast Simulated Annealing Global Optimization, Acta Geod Geophys, 52(4), pp. 439-455, Dec. 2017. DOI: 10.1007/s40328-016-0176-2.

Monteiro Santos, F.A., Inversion of Self-potential of Idealized Bodies' Anomalies Using Particle Swarm Optimization, Computers & Geosciences, 36(9), pp. 1185-1190, Sep. 2010. DOI: 10.1016/j.cageo.2010.01.011.

Patella, D., Introduction to Ground Surface Self-Potential Tomography, Geophysical Prospecting, 45(4), pp. 653-681, Jul. 1997. DOI: 10.1046/j.1365-2478.1997.430277.x.

Fernandez-Martnez, J.L., Garca-Gonzalo, E. & Naudet, V., Particle Swarm Optimization Applied to Solving and Appraising the Streaming-Potential Inverse Problem, Geophysics, 75(4), pp. WA3-WA15, Jul. 2010. DOI: 10.1190/1.3460842.

Revil, A. & Jardani, A., The Self-potential Method: Theory and Applications in Environmental Geosciences, Cambridge: Cambridge University Press, 2013.

Sharma, P.V., Environmental and Engineering Geophysics, Cambridge: Cambridge Univ. Press, 1997.

Bolve, A., Vandemeulebrouck, J. & Grangeon, J., Dyke Leakage Localization and Hydraulic Permeability Estimation through Self-Potential and Hydro-Acoustic Measurements: Self-Potential "Abacus' Diagram for Hydraulic Permeability Estimation and Uncertainty Computation, Journal of Applied Geophysics, 86, pp. 17-28, Nov. 2012. DOI: 10.1016/j.jappgeo.2012.07.007.

Grangeon, J.R., Boleve, A., Sanders, J.W. & Glaser, S.D., Self-Potential Investigation of Moraine Dam Seepage, Journal of Applied Geophysics, 74(4), pp. 277-286, Aug. 2011. DOI: 10.1016/j.jappgeo.2011.06.014.

Sungkono, Husein, A., Prasetyo, H., Bahri, A.S., Monteiro Santos, F.A. & Santosa, B.J., The VLF-EM Imaging of Potential Collapse on the LUSI Embankment, Journal of Applied Geophysics, 109, pp. 218-232, 2014. DOI: 10.1016/j.jappgeo.2014.08.004.

Husein, A., Santosa, B.J. & Bahri, A.S., Seepage Monitoring of an Embankment Dam Using Resistivity Method: A Case Study of LUSI Mud Volcano P.79 - P.82 Embankment, Applied Mechanics and Materials, 771, pp. 213-217, Instrumentation and Measurement Systems, pp. 213-217, 2015.

Laby, D.A., Sungkono, Santosa, B.J. & Bahri, A.S., RR-PSO: Fast and Robust Algorithm to Invert Rayleigh Waves Dispersion, Contemporary Engineering Sciences, 9, pp. 735-741, 2016. DOI: 10.12988/ces. 2016.6685.

Sungkono, Feriadi, Y., Husein, A., Prasetyo, H., Charis, M., Irawan, D., Rochman, J.P.G.N., Bahri, A.S. & Santosa, B.J., Assessment of Sidoarjo Mud Flow Embankment Stability Using Very Low Frequency Electromagnetic Method, Environmental Earth Sciences, 77(196), 2018. DOI: 10.1007/s12665-018-7333-6.

Team Work of Operational Planning, TTG and BM Monitoring Activity, Sidoarjo Mud Volcano Agency, Reports of Year-end, 2013. (Text in Indonesian)

Team work of Operational Planning, TTG and BM Monitoring Activity, Center of Mud Volcano Control, Reports of Year-end, 2015. (Text in Indonesian)

Rehman, N.U., Park, C., Huang, N.E. & Mandic, D.P., EMD Via MEMD: Multivariate Noise-Aided Computation of Standard EMD, Advances in Adaptive Data Analysis, 5(2), 1350007, Apr. 2013. DOI: 10.1142/S179 3536913500076.

Rehman, N.U. & Mandic, D.P., Filter Bank Property of Multivariate Empirical Mode Decomposition, IEEE Transactions on Signal Processing, 59(5), pp. 2421-2426, 2011. DOI: 10.1109/TSP.2011.2106779.

Sungkono, Bahri, A.S., Warnana, D.D., Monteiro Santos, F.A. & Santosa, B.J., Fast, Simultaneous and Robust VLF-EM Data Denoising and Reconstruction via Multivariate Empirical Mode Decomposition, Computers & Geosciences, 67, pp. 125-137, 2014. DOI: 10.1016/ j.cageo.2014.03.007.

Rehman, N.U. & Mandic, D.P., Multivariate Empirical Mode Decomposition, Proc. R. Soc. A, 466(2117), pp. 1291-1302, 2010. DOI: 10.1098/rspa.2009.0502.

Mauri, G., Williams-Jones, G. & Saracco, G., Mwtmat-Application of Multiscale Wavelet Tomography on Potential Fields, Computers & Geosciences, 37(11), pp. 1825-1835, Nov. 2011. DOI: 10.1016/ j.cageo.2011.04.005.

Mauri, G., Williams-Jones, G. & Saracco, G., Depth Determinations of Shallow Hydrothermal Systems By Self-potential and Multi-scale Wavelet Tomography, Journal of Volcanology and Geothermal Research, 191(3-4), pp. 233-244, Apr. 2010. DOI: 10.1016/j.jvolgeores.2010.02.004.

Burrus, C.S., Gopinath, R.A. & Guo, H., Introduction to Wavelets and Wavelet Transforms: A Primer, 1st edition. Upper Saddle River, N.J.: Pearson, 1997.

Mallat, S., A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, Amsterdam; Boston: Academic Press, 2008.

Moreau, F., Gibert, D., Holschneider, M. & Saracco, G., Wavelet Analysis of Potential Fields, Inverse Problems, 13(1), p. 165, 1997. DOI: 10.1088/0266-5611/13/1/013.

Saracco, G., Labazuy, P. & Moreau, F., Localization of Self-Potential Sources in Volcano-Electric Effect with Complex Continuous Wavelet Transform and Electrical Tomography Methods for an Active Volcano, Geophys. Res. Lett., 31(12), p. L12610, Jun. 2004. DOI: 10.1029/ 2004GL019554.

Mallat, S. & Hwang, W.L., Singularity Detection and Processing with Wavelets, IEEE Transactions on Information Theory, 38(2), pp. 617-643, Mar. 1992. DOI: 10.1109/18.119727.

Saracco, G., Arneodo, A., Beylkin, G. , Fedi, M., Cella, F., Quarta, T. & Villani, A.V., Special Issue on Continuous Wavelet Transform in Memory of Jean Morlet, Part II2D Continuous Wavelet Transform of Potential Fields Due to Extended Source Distributions, Applied and Computational Harmonic Analysis, 28(3), pp. 320-337, May 2010. DOI: 10.1016/ j.acha.2010.03.002.

Loke, M.H., Acworth, I. & Dahlin, T., A Comparison of Smooth and Blocky Inversion Methods in 2D Electrical Imaging Surveys, Exploration Geophysics, 34, pp. 182-187, Jan. 2003. DOI: 10.1071/EG03182.

Kim, J.H., Supper, R., Tsourlos, P., & Yi, M.J., 4D Inversion of Resistivity Monitoring Data through Lp Norm Minimizations, Geophysical Journal International, 195(3), pp. 1640-1656, Dec. 2013. DOI: 10.1093/gji/ggt324

Borsic, A. & Adler, A., A Primal-Dual Interior-Point Framework for Using the L1 Or L2 Norm on the Data and Regularization Terms of Inverse Problems, Inverse Problems, 28(9), 095011, Sep. 2012. DOI: 10.1088/ 0266-5611/28/9/095011.

Al-Saigh, N.H., Mohammed, Z.S. & Dahham, M.S., Detection of Water Leakage from Dams by Self-Potential Method, Engineering Geology, 37(2), pp. 115-121, Jun. 1994. DOI: 10.1016/0013-7952(94)90046-9.

Bolve, A., Janod, F., Revil, A., Lafon, A. & Fry, J.J., Localization and Quantification of Leakages in Dams Using Time-Lapse Self-Potential Measurements Associated with Salt Tracer Injection, Journal of Hydrology, 403(3-4), pp. 242-252, Jun. 2011. DOI: 10.1016/j.jhydrol. 2011.04.008.

Jardani, A., Revil, A., Bolve, A. & Dupont, J.P., Three-Dimensional Inversion of Self-Potential Data Used to Constrain the Pattern of Groundwater Flow in Geothermal Fields, J. Geophys. Res., 113(B9), pp. B09204, Sep. 2008. DOI: 10.1029/2007JB005302.

Saracco, G., Mathe, P.., Moreau, F. & Hermitte, D., Localization and Characterization of Buried Magnetic Structures Using a Multi-Scale Tomography. Application to Archaeological Structures on Fox-Amphoux Site, ArcheoSciences. Revue d'archeometrie, 33(suppl.), pp. 339-343, Oct. 2009. DOI: 10.4000/archeosciences.1806.

Soueid Ahmed, A., Jardani, A., Revil, A. & Dupont, J.P., SP2DINV: A 2D Forward and Inverse Code for Streaming Potential Problems, Computers & Geosciences, 59, pp. 9-16, Sep. 2013. DOI: 10.1016/ j.cageo.2013.05.008.

Sungkono, Robust Interpretation of Single and Multiple Self-Potential Anomalies via Flower Pollination Algorithm, Arabian Journal of Geosciences, 13(100), 2020. DOI: 10.1007/s12517-020-5079-4.

Abdelazeem, M., Gobashy, M., Khalil, M.H. & Abdrabou, M., A Complete Model Parameter Optimization from Self-Potential Data Using Whale Algorithm, Journal of Applied Geophysics, 170, p. 103825, Nov. 2019. DOI: 10.1016/j.jappgeo.2019.103825.

Husein, A., Sungkono, Wijaya, A. & Hadi, S., Subsurface monitoring of P.79 - P.82 LUSI Embankment using GPR Method to Locate Subsidence and Possible Failure, in 15th International Conference on Ground Penetrating Radar (GPR), Brussels, Belgium, pp. 268-273, Jul. 2014. DOI: 10.1109/ICGPR.2014.6970427.

Husein, A., Mazzini, A., Lupi, M., Mauri, G., Kemna, A., Santosa, B.J. & Hadi, S., Investigating the Watukosek Fault System Using Combined Geophysical Methods Around Lusi Eruption Site, 19, 12266, Apr. 2017.

Pokja Perencanaan Operasi, Kegiatan Monitoring TTG dan BM, PPLS, Laporan akhir tahun, 2018. Team work of Operational Planning, TTG and BM monitoring activity, Center of Mud Volcano control, Year-end Report, 2018.




How to Cite

Sungkono, S., Wasilah, M. N., Widyaningrum, Y., Hidayatullah, W. M., Fathoni, F. A., & Husein, A. (2020). Self-Potential Method to Assess Embankment Stability: A Study related to the Sidoarjo Mud Flow. Journal of Engineering and Technological Sciences, 52(5), 707-731.