Creep and Electrochemical Corrosion Behavior of Heat-treated Mg-9Al-1Zn Alloy

Authors

  • Ravi Naldi Department of Physics, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424,
  • Anawati - Anawati Department of Physics, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424,

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2020.52.5.1

Keywords:

corrosion, creep, heat treatment, magnesium, microstructure

Abstract

The high-strength Mg-9Al-1Zn alloy has been extensively investigated due to its potential application as a structural material in the automotive industry. The main challenges for its use are the low creep and corrosion resistance. In this work, heat treatment at 415C for 2 h was conducted on as-cast Mg-9Al-1Zn to improve its creep resistance. The corrosion behavior of the alloy was studied by the electrochemical method in an NaCl solution. The creep test results under 66.5 MPa load at 200C indicated one order of magnitude higher creep resistance of the heat-treated alloy relative to the as-cast one. The heat-treated specimen was ruptured after 6.5 h while the as-cast one was ruptured within 0.6 h. Creep occurred locally following the β phase in the alloy as evident from the cavities observed after the test. Reduction in the density of the discontinuous β precipitates resulting from heat treatment of the alloy lowered the susceptibility to creep. The smaller volume fraction of β precipitates suppressed the cathodic reaction during the polarization test and raised the electrochemical impedance spectra during the EIS test. The heat treatment improved not only the creep resistance but also the corrosion resistance of the Mg-9Al-1Zn alloy.

Downloads

Download data is not yet available.

References

Pekguleryuz, M., Kainer, K. & Kaya, A., Fundamentals of Magnesium Alloy, Cambridge, United Kingdom, Woodhead Publishing Ltd., 2013.

DeGarmo, E.P., Black, J.T. & Kohser, R.A., Materials and Processes in Engineering, 10th ed., Wiley, 2007.

Hutchinson, C.R., Nie, J.F. & Gorsse, S., Modeling the Precipitation Processes and Strengthening Mechanisms in A Mg-Al-(Zn) AZ91 Alloy, Metall Mater Trans A Phys Metall Mater Sci., 36, pp. 2093-105, 2005, DOI:10.1007/s11661-005-0330-x.

Fatmi, M., Djemli, A., Ouali, A., Chihi, T., Ghebouli, M.A. & Belhouchet, H., Heat Treatment and Kinetics of Precipitation of -Mg17Al12 Phase in AZ91 Alloy, Results Phys, 10, pp. 693-698, 2018. DOI:10.1016/ j. rinp.2018.07.009.

Lunder, O., Nordien, J.H. & Nisancioglu, K., Corrosion Resistance of Cast Mg-Al Alloys, Corros Rev, 15, pp. 439-70, 1997. DOI:10.1515/ CORRREV.1997.15.3-4.439.

Massalski, T., Okamoto, H., Subramanian, P. & Kacprzak, L., Binary Alloy Phase Diagrams, 2nd ed., Materials Park, OH, United States, ASM, 1990.

Braszczynska-Malik, K.N. & Kamicniaka, J., Non-Standard Heat Treatment of Cast AZ91 Magnesium Alloy, Archives of Foundry Engineering 8(Special Issue 1), pp. 31-34, 2008.

Srinivasan, A., Swaminathan, J., Gunjan, M.K., Pillai, U.T.S. & Pai, B.C., Effect of Intermetallic Phases on the Creep Behavior of AZ91 Magnesium Alloy, Mater Sci. Eng. A., 527, pp. 1395-403, 2010. DOI: 10.1016/ j.msea.2009.10.008.

Li, J., Jiang, Q., Sun, H. & Li, Y., Effect of Heat Treatment on Corrosion Behavior of AZ63 Magnesium Alloy in 3.5 Wt.% Sodium Chloride Solution, Corros Sci., 111, pp. 288-301, 2016, DOI: 10.1016/j.corsci. 2016.05.019.

Barylski, A., Kupka, M., AnioA,ek, K. & Rak, J., The Effect of Precipitation Hardening on the Structure and Mechanical and Tribological Properties of Magnesium Alloy WE54, Vacuum, 139, pp. 77-86, 2017. DOI:10.1016/ j.vacuum.2017.02.015.

Liu, Q., Ma, Q.X, Qiang, C.G., Cao, X., Zhang, S. & Luan, P.J., Enhanced Corrosion Resistance of AZ91 Magnesium Alloy Through Refinement and Homogenization of Surface Microstructure by Friction Stir Processing, Corros Sci., 138, pp. 284-96, 2018. DOI:10.1016/ j.corsci.2018.04.028.

Chen, Q., Li, K., Liu, Y., Zhao, Z., Tao, K. & Zhu, Q., Effects of Heat Treatment on the Wear Behavior of Surfacing AZ91 Magnesium Alloy, J. Mater Res., 32, pp. 2161-2168, 2017. DOI:10.1557/jmr.2017.186.

Jun, J.H., Park, B.K., Kim, J.M., Kim, K.T. & Jung, W.J., Effects of Ca Addition on Microstructure and Mechanical Properties of Mg-RE-Zn Casting Alloy, Mater Sci. Forum, 488-489, pp. 107-110, 2005. DOI: 10. 4028/www.scientific.net/MSF.488-489.107.

ASTM Standard G5-94, Annu. B. ASTM Stand., pp. 54-64, 1997, DOI: 10.1520/G0005-94R11E01.

Jones, D., Principles and Prevention of Corrosion, Mater Des., 14(207), pp. 105-155, 1993.

Hosford, W.F., Physical Metallurgy, 2nd ed., Boca Raton, FL: Taylor and Francis Group, 2010.

Parsons, R., Atlas of Electrochemical Equilibria in Aqueous Solutions, J. Electroanal. Chem. Interfacial Electrochem, 13(4), p. 471, 1967. DOI: 10.1016/0022-0728(67)80059-7.

Naldi, R. & Anawati, A., Effect of Solution Treatment on Microstructure and Corrosion Behaviour of Mg-9Al-1Zn Alloys, IOP Conf. Ser. Mater Sci. Eng., 541, International Seminar on Metallurgy and Materials 25-26 September 2018, Tangerang Selatan, Indonesia, 2019. DOI:10.1088/1757-899X/541/1/012008.

Atrens, A., Liu, M. & Zainal Abidin, N.I., Corrosion Mechanism Applicable to Biodegradable Magnesium Implants, Mater Sci Eng B Solid-State Mater Adv. Technol., 176, pp. 1609-1636, 2011 DOI:10.1016/j.mseb.2010.12.017.

Downloads

Published

2020-09-30

Issue

Section

Articles