Adsorption of Gold from Aqueous Systems Using Microbial Thermophilic Proteins


  • Laksmi Dewi Kasmiarno Department of Chemical Engineering, Universitas Pertamina, 12220 Jakarta,
  • Jo Shu Chang Department of Chemical Engineering, National Cheng Kung University, Tainan,



adsorption, gold, protein, microbial thermophilic, geothermal sites


A precious metal such as gold can be obtained from mining. Metals in low concentrations at geothermal sites or in industrial waste are difficult to gain using the conventional mining process. Alternative approaches for recovering metals from dilute solutions have been developed, such as biosorption, i.e. adsorption using microorganisms or their derivatives. In this study, gold in an aqueous system was recovered via biosorption using proteins produced from an isolated thermophilic bacterial strain. Modified Thermus enhanced medium was used as the medium to improve protein production from the thermophilic bacterial strain. The microbial proteins showed effective conditions for Au3+ ion adsorption. The optimum adsorption conditions for Au ions occurred at pH 1 with an adsorption capacity of 482.0 mg/g protein. The metal ion adsorption capacity increased with increasing temperature. The adsorption isotherm was conducted at room temperature, because the Au ions could be well fitted by the Freundlich isotherm equation with qmax at 527.229 mg/g protein.


Download data is not yet available.


Zereini, F. & Frriedrich, A., Palladium Emissions in the Environment, Netherland, Springer, 2006.

Wu, W., Shen, J., Banerjee, P. & Zhou, S., Core-Shell Hybrid Nanogels for Integration of Optical Temperature-Sensing, Targeted Tumor Cell Imaging, and Combined Chemo-Photothermal Treatment, Biomaterials, 31(29), pp. 7555-66, 2010.

Brown, K.L., Gold Deposition from Geothermal Discharges in New Zealand: Economic Geology, 81, pp. 979-983, 1986.

Chen, S.L. & Wilson, D.B., Construction and Characterization of Escherichia Coli Genetically Engineered for Bioremediation of Hg2+ Contaminated Environments, Appl. Environ. Microbiol, 63, pp. 2442-2445, 1998.

Valls, M., de Lorenzo, V., Roser, G.D., Atrian, S., Engineering Outer-Membrane Proteins in Pseudomonas putida for Enhanced Heavy-Metal Biosorption, J. Inorg. Biochem, 79, pp. 219-223, 2002.

Veglio, F. & Beolchini, F., Removal of Metals by Biosorption: A Review, Hydrometallurgy, 44, pp. 301-316, 1997.

Ibrahim, H. & Kandeel, S.F.H. Moawad Biosorption of heavy metals from wastewater using Pseudomonas sp, Electronic Journal of Biotechnology, 7(1), pp. 40-47, 2004.

Kumar, J.I.N., Oommen, C. & Kumar, R.N., Biosorption of Heavy Metals from Aqueous Solution by Green Marine Microalgae from Okha Port, Gulf of Kutch, India. American-Eurasian J Agric & Environ Sci., 6(3), pp. 317-323, 2009.

Beveridge, T.J. & Koval, S.F., Binding of Metals to Cell Envelopes of Escherichia-Coli-K-12, Appl. Environ. Microbiol., 42, pp. 325-335 BioMetals, 11, 145-151, 1981.

Gutnick, D.L. & Bach, H., Engineering Bacterial Biopolymers for the Biosorption of Heavy Metals; New Products and Novel Formulations, Appl. Microb. Biotechnol. 54, pp. 451-460, 2000.

Aksu, Z., Application of Biosorption for the Removal of Organic Pollutants: A Review, Proc. Biochem., 40, pp. 997-1026, 2005.

Huang, C.C., Su, C.C., Hsieh, J.L., Tseng, C.P., Lin, P.L. & Chang, J.S., Polypeptides for Heavy-Metal Biosorption: Capacity and Specificity of Two Heterogeneous Merp Proteins, Enzyme Microb. Technol., 33, pp. 379-385, 2003.

Isab, A.A. & Sadler, P.J., Reactions of Gold (III) Ions with Ribonuclease A and Methionine Derivatives in Aqueous Solution, Biochim. Biophys. Acta 492, pp. 322-330, 1997.

Milovic, N.M. & Kostic, N.M., Palladium (II) Complexes, As Synthetic Peptidases, Regioselectively Cleave the Second Peptide Bond "Upstream' From Methionine and Histidine Side Chains. J. Am. Chem. Soc., 124, pp. 4759-4769, 2002.

Kaminskaia, N.V. & Kostic, N.M., New Selectivity in Peptide Hydrolysis by Metal Complexes. Platinum(II) Complexes Promote Cleavage of Peptides Next to The Tryptophan Residue, Inorg. Chem., 40, pp. 2368-2377, 2001.

Maruyama, T., Matsushita, H., Shimada, Y., Kamata, I., Hanaki, M., Misa, S., Saori, K. & Masahiro, G., Proteins and Protein-Rich Biomass as Environmentally Friendly Adsorbents Selective for Precious Metal Ions, Environ. Sci. Technol, 41, pp. 1359-1364, 2007.

Minami, T., Ichida, S. & Kubo, K., Study of Metallothionein Using Capillary Zone, J. Chromatogr. B., 781, pp. 303-311, 2002.

Nordberg, M., Metallothioneins: Historical Review and the State of Knowledge, Talanta., 46, pp. 243-254, 1998.

Park, J.D., Liu, Y. & Klaassen, C.D., Protective Effect of Metallothionein Against the Toxicity of Cadmium and Other Metals, Toxicology., 163, pp. 93-100, 2001.

Valls, M., de Lorenzo, V., Roser, G.D. & Atrian, S., Engineering Outer-Membrane Proteins in Pseudomonas Putida for Enhanced Heavy-Metal Biosorption, J. Inorg. Biochem., 79, pp. 219-223, 2002.

Craig, J.P., Garrett, A.G. & Williams, H.B., The Ovalbumin Chloroauric Acid Reaction, J. Am. Chem. Soc., 76, pp. 1570-1575, 1953.

Grill, E., Phytochelatins, The Heavy Metal Binding Peptides of Plants: Characterization and Sequence Determination, Experientia Suppl., 52, pp. 317-322, 1987.

Kagi, J.H., Vasak, M., Lerch, K., Gilg, D.E., Hunziker, P., Bernhard, W. R. & Good, M., Structure of Mammalian Metallothuinein, Environmental Health Perspect, 54, pp. 93-103, 1984.

Volesky, B. & Holan, Z.R., Biosorption of Heavy Metal, Biotechnol Prog., 11, pp. 235-50, 1995.

Ahalya, N., Ramachandra, T.V. & Kanamadi, R.D., Biosorption of Heavy Metals., Res J Chem Environ, 7, pp. 71-78, 2003.

Friis, M. & Keith, M., Biosorption of Uranium and Lead by Streptococcus Longwoodensis, Biotechnol Bioeng, 35, pp. 320-25, 1998.

Tenreiro, S., Nobre, M. F. & da Costa, M. S., Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., Two New Species Related to Thermus ruber but with Lower Growth Temperatures., Int. J. Syst. Bacteriol., 45(4), pp. 633-639, 1995.

Kasmiarno, L.D., Adsorption of Palladium (II) Using Thermophilic Protein, Jurnal Teknik Kimia Program Studi Teknik Kimia UPN Veteran Jawa Timur, 13(1), 2018. (Text in Indonesian)

Ghassary, P., Vincent, T., Marcano, J.S., Macaskie, L.E. & Guibal, E., Palladium and Platinum Recovery from Bicomponent Mixtures Using Chitosan Derivatives, hydrometallurgy, 76, pp. 131-147, 2005.

Zhou, L., Xu, J., Xing, L.H. & Liu, Z., Adsorption of Platinum(IV) and Palladium(II) from Aqueous Solution by Magnetic Cross-Linking Chitosan Nanoparticles Modified with Ethylenediamine, Journal of Hazardous Materials, 182, pp. 518-524, 2010.

Ruiz, M., Sastre, A.M., Zikan, M.C. & Guibal, E., Palladium Sorption on Glutaraldehyde-Crosslinked Chitosan in Fixed-Bed Systems, Journal of Applied Polymer Science, 81(1), pp. 153-165, 2000.

Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., Thamaraiselvi, K., Biosorption of Chromium and Nickel by Heavy Metal Resistant Fungal and Bacterial Isolates, J. Hazard Mater, 11, pp. 450-454, 2000.

Vijayaraghavan, K. & Yun, Y.S., Chemical Modification and Immobilization of Corynebacterium Glutamicum for Biosorption of Reactive Black 5 from Aqueous Solution, Ind Eng Chem Res., 46, pp. 608-17, 2007.

Khan, A.R., Ataullah, R. & Al-Haddad, A., Equilibrium Adsorption Studies of Some Aromatic Pollutants from Dilute Aqueous Solutions on Activated Carbon at Different Temperatures, Journal of Colloid and Interface Science, 194, pp. 154-165, 1997.

Freundlich, H., Adsorption in Solution, Phys. Chemic, 57, pp. 384-410.1906.

Nugroho, F. L., Mulyatna, L. & Situmeang, A.D.W., Removal of Phosphate from Synthetic Aqueous Solution by Adsorption with Dolomite from Padalarang, J. Eng. Technol. Sci., 46(4), pp. 410-419, 2014.

Reed, B.E. & Matsumoto, M.R., Modeling Cadmium Adsorption by Activated Carbon Using the Langmuir and Freundlich Isotherm Expression, Sep Sci Technol, 28(13-14), pp. 2179-2195, 1993.

McKay, G., Otterburn, M.S. & Sweeney, A.G., The Removal of Colour from Effluent Using Various Adsorbents, III, Silica: Rate Processes, Water Res 14(1), pp. 15-20, 1980.




How to Cite

Kasmiarno, L. D., & Chang, J. S. (2020). Adsorption of Gold from Aqueous Systems Using Microbial Thermophilic Proteins. Journal of Engineering and Technological Sciences, 52(1), 121-135.