Theoretical Study of Direct Carbon Dioxide Conversion to Formic Acid on Transition Metal-doped Subnanometer Palladium Clusters


  • Adhitya Gandaryus Saputro Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132,
  • Arifin Luthfi Maulana Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132,
  • Fine Dwinita Aprilyanti Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132,
  • Hermawan Kresno Dipojono Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132,



CO2 hydrogenation, density functional theory, formic acid, microkinetic, subnanometer Pd cluster, transition metal doping


We studied the direct conversion of CO2 to HCOOH through hydrogenation reaction without the presence of base additives on the transition metal-doped subnanometer palladium (Pd7) cluster (PdxM: M = Cu, Ni, Rh) by using a combination of density functional theory and microkinetic calculations. It was shown that the CO2 hydrogenation on Pd7 and Pd6M clusters are more selective towards the formate pathway to produce HCOOH than the reverse water gas shift pathway to produce CO. Inclusion of Ni and Rh doping in the subnanometer Pd7 cluster could successfully enhance the turnover frequency (TOF) for CO2 hydrogenation to formic acid at low temperature. The order of TOF for formic acid formation is as follows: Pd6Ni > Pd6Rh > Pd7 > Pd6Cu. This order can be explained by the trend of the activation energy of CO2 hydrogenation to formate (HCOO*). The Pd6Ni cluster has the highest TOF value because it has the lowest activation energy for the formate formation reaction. The Pd6Ni system also has a superior TOF profile for HCOOH formation compared to several metal surfaces in low and high-temperature regions. This finding suggests that the subnanometer PdxNi cluster is a promising catalyst candidate for direct CO2 hydrogenation to formic acid.


Download data is not yet available.


Abanades, J.C. Rubin, E.S. Mazzotti, M. & Herzog, H.J., On the Climate Change Mitigation Potential of CO2 Conversion to Fuels, Energy Environ. Sci., 10, pp. 2491-2499, 2017.

Kelh, A., Meys, R., Deutz, S., Suh, S. & Bardow, A., Climate Change Mitigation Potential of Carbon Capture and Utilization in the Chemical Industry, Proc. Natl. Acad. Sci. U.S.A., 116(23), pp. 11187-11194, 2019.

Mustafa, A., Lougou, B.G., Shuai, Y., Wang, Z. & Tan, H., Current Technology Development for CO2 Utilization Into Solar Fuels and Chemicals: A Review, J. Energy Chem. 49, pp. 96-123, 2020.

varez, A., Bansode, A., Urakawa, A., Bavykina, A.V., Wezendonk, T.A., Makkee, M., Gascon, J. & Kapteijn, F., Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes, Chem. Rev. 117, pp. 9804-9838, 2017.

Behr, A. & Nowakowski, K., Catalytic Hydrogenation of Carbon Dioxide to Formic Acid, 1st ed.; Elsevier Inc., 66, 2014.

Su, J., Yang, L., Lu, M. & Lin, H., Highly Efficient Hydrogen Storage System Based on Ammonium Bicarbonate/Formate Redox Equilibrium Over Palladium Nanocatalysts, ChemSusChem, 8, pp. 813-816, 2015.

Bi, Q.Y., Lin, J.D., Liu, Y.M., Du, X.L., Wang, J.Q., He, H.Y. & Cao, Y., An Aqueous Rechargeable Formate-based Hydrogen Battery Driven by Heterogeneous Pd Catalysis, Angew. Chemie ? Int. Ed. 53, pp. 13583-13587, 2014.

Mori, K., Sano, T., Kobayashi, H. & Yamashita, H., Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO2 to Formic Acid: Elucidating the Active Pd Atoms in Alloy Nanoparticles, J. Am. Chem. Soc., 140, pp. 8902-8909, 2018.

Lee, J.H., Ryu, J., Kim, J.Y., Nam, S.W., Han, J.H., Lim, T.H., Gautam, S., Chae, K.H. & Yoon, C.W., Carbon Dioxide Mediated, Reversible Chemical Hydrogen Storage Using a Pd Nanocatalyst Supported on Mesoporous Graphitic Carbon Nitride, J. Mater. Chem., A2, pp. 9490-9495, 2014.

Wang, F., Xu, J., Shao, X., Su, X., Huang, Y. & Zhang, T., Palladium on Nitrogen-doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-based, Carbon-neutral Hydrogen Storage, ChemSusChem, 9, pp. 246-251, 2016.

Zhang, Z., Zhang, L., Yao, S., Song, X., Huang, W., Hsey, M.J. & Yan, N., Support-dependent Rate-determining Step of CO2 Hydrogenation to Formic Acid on Metal Oxide Supported Pd Catalysts, J. Catal., 376, pp. 57-67, 2019.

Nguyen, L.T.M., Park, H., Banu, M., Kim, J.Y., Youn, D.H., Magesh, G., Kim, W.Y. & Lee, J.S., Catalytic CO2 Hydrogenation to Formic Acid Over Carbon Nanotube-graphene Supported PdNi Alloy Catalysts, RSC Adv., 5, pp. 105560-105566, 2015.

Saputro, A.G., Putra, R.I.D., Maulana, A.L., Karami, M.U., Pradana, M.R., Agusta, M.K., Dipojono, H.K. & Kasai, H., Theoretical Study of CO2 Hydrogenation to Methanol on Isolated Small Pdx Clusters, J. Energy Chem., 35, pp. 79-87, 2019.

Saputro, A.G., Agusta, M.K., Wungu, T.D.K., Suprijadi, Rusydi, F. & Dipojono, H.K., DFT Study of Adsorption of CO2 on Palladium Cluster Doped by Transition Metal, Journal of Physics: Conference Series, 739(1), 012083, 2016.

Li, S.J., Zhou, X. & Tian, W.Q., Theoretical Investigations on Decomposition of HCOOH Catalyzed by Pd 7 Cluster, J. Phys. Chem. A 116, pp. 11745-11752, 2012.

Saputro, A.G., Fajrial, A.K., Maulana, A.L., Fathurrahman, F., Agusta, M.K., Akbar, F.T. & Dipojono, H.K., Dissociative Oxygen Reduction Reaction Mechanism on the Neighboring Active Sites of Boron-doped Pyrolyzed Fe-N-C Catalyst, J. Phys. Chem., C 124(21), pp. 11383-11391, 2020.

Saputro, A.G., Akbar, F.T., Setyagar, N.P.P., Agusta, M.K., Pramudya, A.D. & Dipojono, H.K., Effect of Surface Defects on the Interaction of the Oxygen Molecule with the ZnO(101?0) Surface, New J. Chem., 44, pp. 7376-7385, 2020.

Maulana, A.L., Putra, R.I.D., Saputro, A.G., Agusta, M.K., Nugraha, N. & Dipojono, H.K., DFT and Microkinetic Investigation of Methanol Synthesis via CO2 Hydrogenation on Ni(111)-based Surfaces, Phys. Chem. Chem. Phys., 21, pp. 20276-20286, 2019.

Campbell, C.T., Future Directions and Industrial Perspectives Micro- and Macro-kinetics: Their Relationship in Heterogeneous Catalysis, Top. Catal., 1, pp. 353-366, 1994.

Stegelmann, C., Andreasen, A. & Campbell, C.T., Degree of Rate Control: How Much the Energies of Intermediates and Transition States Control Rates, J. Am. Chem. Soc., 131, pp. 13563, 2009.

Nugraha Saputro, A.G. Agusta, M. K. Rusydi, F. Maezono, R. & Dipojono, H.K., DFT Study of the Formate Formation on Ni(111) Surface Doped by Transition Metals [Ni(111)-M; M=Cu, Pd, Pt, Rh], Journal of Physics: Conference Series, 739, 012082, 2016.

Liu, D., Gao, Z.Y., Wang, X.C., Zeng, J. & Li, Y.M., DFT study of Hydrogen Production from Formic Acid Decomposition on Pd-Au Alloy Nanoclusters, Appl. Surf. Sci., 426, pp. 194-205, 2017.

Zhang, M., Wu, Y., Dou, M. & Yu, Y., A DFT Study of Methanol Synthesis from CO2 Hydrogenation on the Pd(111) Surface, Catal. Letters 148, pp. 2935-2944, 2018.

Grabow, L.C. & Mavrikakis, M., Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation, ACS Catal., 1(4), pp. 365-384, 2011.

Peng, G., Sibener, S. J., Schatz, G.C., Ceyer, S. T. & Mavrikakis, M., CO2 Hydrogenation to Formic Acid on Ni(111), The Journal of Physical Chemistry C, 116(4), pp. 3001-3006, 2012.

Herron, J.A., Scaranto, J., Ferrin, P., Li, S. & Mavrikakis, M., Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory Study, ACS Catal., 4, pp. 4434-4445, 2014.

Hu, C., Ting, S.W., Chan, K.Y. & Huang, W., Reaction Pathways Derived from DFT for Understanding Catalytic Decomposition of Formic Acid Into Hydrogen on Noble Metals, Int. J. Hydrogen Energy 37, pp. 15956-15965, 2012.

Chiang, C.L., Lin, K.S. & Chuang, H.W., Direct Synthesis of Formic Acid via CO2 Hydrogenation Over Cu/ZnO/Al2O3 Catalyst, J. Clean. Prod., 172, pp. 1957-1977, 2018.