The Potential of Corncobs in Producing Reduced Graphene Oxide as a Semiconductor Material

Authors

  • Kusuma Wardhani Mas'udah Faculty of Science and Technology, University of Pesantren Tinggi Darul Ulum, PP. Darul ?Ulum Tromol Pos 10 Peterongan Jombang 61481, Indonesia
  • Ahmad Taufiq Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jalan Semarang 5 Malang 65145, Indonesia
  • Sunaryono Sunaryono Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jalan Semarang 5 Malang 65145, Indonesia

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2022.54.2.1

Keywords:

absorbance, band gap energy, corncob, phase structure, RGO

Abstract

A simple chemical approach was developed to synthesize reduced graphene oxide (RGO) from corncob waste through the acid-base method with the addition of PEG-2000 at specific concentrations. The morphology and structure of RGO were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The process of reduction and quality of RGO were examined carefully with UV-Vis spectroscopy, infrared spectroscopy, and X-ray diffractometry. Based on the treatment and characterization, the diffraction data showed a prominent peak of RGO at a 2-theta position of 24.01. The existence of C=C functional groups was detected in aromatic compound groups and alkene functional groups in aliphatic hydrocarbon compounds by infrared spectroscopy. The use of corncobs as the main raw material synthesized by an environmentally friendly route has tremendous potential in producing RGO that can be used as an efficient semiconductor material.

Downloads

Download data is not yet available.

References

Putra, G.B.A., Pradana, H.Y., Soenaryo, D.E.T., Baqiya, M.A. & Darminto, Synthesis of Green Fe3+/glucose/rGO electrode for Supercapacitor Application Assisted by Chemical Exfoliation Process from Burning Coconut Shell, AIP Conf. Proc., 1945(1), 020040, 2018. DOI: 10.1063/1.5030262.

Khambali, I., Ardiani, I.S., Kurniawan, A.R., Triwikantoro, Zainuri, M. & Darminto, Synthesis of N-Doped Reduced Graphene Oxide from Coconut Shell as Supercapacitors, Mater. Sci. Forum, 966 MSF, pp. 437-443, 2019. DOI: 10.4028/www.scientific.net/MSF.966.437.

Xiaolin, Z., Min, W., Jie, L. & Yongfu, L., Supercapacitors based on High-Surface-Area Graphene, Nanomaterials, 57(2), pp. 278-283, 2014.

Lv, M., Yan, L., Liu, C., Su, C., Zhou, Q., Zhang, X., Lan, Y., Zheng, Y., Lai, L., Liu, X. & Ye, Z., Non-covalent Functionalized Graphene Oxide (GO) Adsorbent with an Organic Gelator for Co-adsorption of Dye, Endocrine-disruptor, Pharmaceutical and Metal Ion, Chem. Eng. J., 349, pp. 791-799, 2018, DOI: 10.1016/j.cej.2018.04.153.

Ma, T., Chang, P.R., Zheng, P., Zhao, F. & Ma, X., Fabrication of Ultra-Light Graphene-based Gels and Their Adsorption of Methylene Blue, Chem Eng J., 240, pp. 595-600, 2014.

Feng, L. & Liu, Z., Graphene in Biomedicine: Opportunities and Challenges, Nanomedicine, 6(2), pp. 317-324, 2011.

Mishra, S. & Acharya, R., Photocatalytic Applications of Graphene Based Semiconductor, Mater. Today Proc., 35(2), pp. 164-169, 2021. DOI: 10.1016/j.matpr.2020.04.066.

Masudah, K.W., Yuwita, P.E., Taufiq, A. & Sunaryono, S., Fabrication of Nanocrystalline Carbon Based on Corncobs Charcoal, AIP Conf. Proc., 2231, 040020(April), 2020. DOI: 10.1063/5.0002468

B. Mortazavi, M. E. Madjet, M. Shahrokhi, S. Ahzi, X. Zhuang, & T. Rabczuk, Nanoporous Graphene: A 2D Semiconductor with Anisotropic Mechanical, Optical and Thermal Conduction Properties, Carbon N. Y., 147, pp. 377-384, 2019. DOI: 10.1016/j.carbon.2019.03.018.

Wu, Z.S., Zhou, G., Yin, L.C., Ren, W., Li, F. & Cheng, H.M., Graphene/Metal Oxide Composite Electrode Materials for Energy Storage, Nano Energy, 1(1), pp. 107-131, 2012. DOI: 10.1016/j.nanoen.2011.11.001.

Hasegawa, G., Aoki, M., Kanamori, K., Nakanishi, K., Hanada, T. & Tadanaga, K., Monolithic Electrode for Electric Double-Layer Capacitors Based on Macro/Meso/Microporous S-containing Activated Carbon with High Surface Area, J. Mater. Chem., 21(7), pp. 2060-2063, 2011. DOI: 10.1039/c0jm03793a.

Jain, R., Wadekar, P.H., Khose, R.V., Pethsangave, D.A. & Some S., MnO2@Polyaniline-CNT-boron-doped Graphene as a Freestanding Binder-free Electrode Material for Supercapacitor, J Mater Sci Mater Electron, 31(11), pp. 8385-8393, 2020.

Liu, C., Yu, Z., Neff, D., Zhamu, A. & Jang, B.Z., Graphene-based Supercapacitor with an Ultrahigh Energy Density, Nano Lett., 10(12), pp. 4863-4868, 2010.

Wadekar, P.H., Ahirrao, D.J., Khose, R.V., Pethsangave, D.A., Jha, N. & Some, S., Synthesis of Aqueous Dispersible Reduced Graphene Oxide by the Reduction of Graphene Oxide in Presence of Carbonic Acid, Chemistry Select, 3(20), pp. 5630-5638, 2018.

Asih, R., Baqiya, M.A., Sari, D.P. & Watanabe, I., Magnetic Order in Defective Reduced Graphene Oxides (rGO) Investigated using SR, 52, 169, 2019.

Kurniasari, Maulana, A. Nugraheni, A.Y. Jayanti, D.N., Mustofa, S., Baqiya, M.A. & Darminto, Defect and Magnetic Properties of Reduced Graphene Oxide Prepared from Old Coconut Shell, IOP Conf Ser Mater Sci Eng Pap., 196, 012021, pp. 5?9, 2017.

Gao, X., Qu, H., Shan, S., Song, C., Baranenko, D., Li, Y. & Lu, W., A Novel Polysaccharide Isolated from Ulva Pertusa: Structure and Physicochemical Property, Carbohydr Polym, 233, 115849, 2020.

Prasad, C., Liu, Q., Tang, H., Yuvaraja, G., Long, J., Rammohan, A. & Zyryanovc, G.V., An Overview of Graphene Oxide Supported Semiconductors Based Photocatalysts: Properties, Synthesis and Photocatalytic Applications, J Mol Liq, 297, 111826, 2020.

Wang, H., Lai, X., Zhao, W., Chen, Y., Yang, X., Meng, X. & Li, Y., Efficient Removal of Crystal Violet Dye Using EDTA/ Graphene Oxide Functionalized Corncob: A Novel Low Cost Adsorbent, 9(38), pp. 21996-22003, 2019.

Zhao, G., Sun, Y., Zhou, W., Wang, X., Chang, K., Liu, G. Liu, H., Kako, T. & Ye, J., Superior Photocatalytic H2 Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor, Adv Mater, 29(40), pp. 1-9, 2017.

Zhao, G., Huang, X., Wang, X. & Wang, X., Progress in Catalyst Exploration for Heterogeneous CO2 Reduction and Utilization: A Critical Review, J Mater Chem A, 5(41), pp. 21625-21649, 2017.

Huang, K., Yu, H., Xie, M., Liu, S. & Wu, F., Effects of Poly (Ethylene Glycol)-Grafted Graphene on The Electrical Properties of Poly (Lactic Acid) Nanocomposites, RSC Adv. 9(19), pp. 10599-10605, 2019.

Li, Y., Li, Y, Huang, X., Zheng, H., Lu, G., Xi, Z. & Wang, G., Graphene-CoO/PEG Composite Phase Change Materials with Enhanced Solar-To-Thermal Energy Conversion and Storage Capacity, Compos Sci Technol, 195(July), 108197, 2020.

Asmarani, O., Pertiwi, A.D. & Tri Puspaningsih, N.N., Application of Enzyme Cocktails from Indonesian Isolates to Corncob (Zea Mays) Waste Saccharification, Biocatal Agric Biotechnol, 24(February), 101537, 2020.

Piskorski, K., Passi, V., Ruhkopf, J., Lemme, M.C. & Przewlocki, H.M., Graphene-Insulator-Semiconductor Capacitors as Superior Test Structures for Photoelectric Determination of Semiconductor Devices Band Diagrams, AIP Adv, 8(5), 055203, 2018.

Colinge J.-P. & Colinge CA., Physics of Semiconductor Devices, 1st ed, New York, Kluwer Academic Publishers, pp. 1-441, 2006.

Taufiq, A., Ikasari, F.N., Yuliantika, D., Sunaryono, S., Mufti, N., Susanto, H., Suarsini, E., Hidayat, N., Fuad, A., Hidayat, A. & Diantoroa, M., Structural, Magnetic, Optical and Antibacterial Properties of Magnetite Ferrofluids with PEG-20000 Template, Mater Today Proc., 17, pp. 1728-1735, 2019.

Zhou, Q., Cai, W., Zhang, Y., Liu, J., Yuan, L., Yu, F., Wang, X. & Liu, M., Electricity Generation from Corn Cob Char though a Direct Carbon Solid Oxide Fuel Cell, Biomass and Bioenergy, 91, pp. 250-258, 2016.

Kazempour, M., Namazi, H., Akbarzadeh, A. & Kabiri, R., Synthesis and Characterization of PEG-Functionalized Graphene Oxide as an Effective Ph-Sensitive Drug Carrier, Artif Cells, Nanomedicine Biotechnol, 47(1), pp. 90-94, 2019.

Upadhyay, S., Bagheri, S. & Abd Hamid, S.B., Enhanced Photoelectro-chemical Response of Reduced-Graphene Oxide/Zn 1-Xagxo Nanocomposite in Visible-Light Region, Int J Hydrogen Energy, 39(21), pp. 11027-11034, 2014.

Hassanien, A.S. & Akl, A.A., Effect of Se Addition on Optical and Electrical Properties of Chalcogenide Cdsse Thin Films, Superlattices Microstruct, 89 (January 2019), pp. 153-169, 2016.

Farma, R., Fadilah, R., Awitdrus, A., Sari, N.K., Taer, E., Saktioto, T. & Deraman, M., Corn Cob Based Activated Carbon Preparation Using Microwave Assisted Potassium Hydroxide Activation for Sea Water Purification, J Phys Conf Ser., November, 1120(1), 012017, 2018.

Mas?udah, K.W., Astuti, F. & Darminto, D., Study on Physical Properties of Reduced Graphene Oxide from Heating Coconut Shell, JPSE (Journal Phys Sci Eng., 1(1), pp. 1-6, 2016.

Nugraheni, A.Y., Nashrullah, M. & Prasetya, F.A., Study on Phase, Molecular Bonding, and Bandgap of Reduced Graphene Oxide Prepared by Heating Coconut Shell, 827(1), pp. 285-289, 2015.

Mas?udah, K.W., Diantoro, M. & Fuad, A., Synthesis and Structural Analysis of Silicon Carbide from Silica Rice Husk and Activated Carbon Using Solid-State Reaction, J Phys Conf Ser., 1093(1), pp. 1-6, 2018.

Hayyan, M., Abo-hamad, A., Alsaadi, M.A. & Hashim, M.A., Functionalization of Graphene Using Deep Eutectic Solvents, Nanoscale Res Lett., 10, 324, 2015.

Johra, F.T., Lee, J., Jung, W., Facile and Safe Graphene Preparation on Solution Based Platform Journal of Industrial and Engineering Chemistry Facile and Safe Graphene Preparation on Solution Based Platform, J Ind Eng Chem., 20(5), pp. 2883-2887, 2014.

Zhuo, Q., Gao, J., Peng, M., Bai, L., Deng, J., Xia, Y., Ma, Y., Zhong, J. & Sun, X., Large-Scale Synthesis of Graphene by the Reduction of Graphene Oxide at Room Temperature Using Metal Nanoparticles as Catalyst, Carbon N Y, 52, pp. 559-564, 2012.

Fessenden, R.J. & Gyorgyib, L., Identifying Functional Groups in IR Spectra Using an Artificial Neural Network, J Chem Soc Perkin Trans, 2(1), pp. 1755-1762, 1991.

Nguyen, P.T.N., Salim, C., Kurniawan, W. & Hinode, H., A Non-Hydrolytic Sol-Gel Synthesis of Reduced Graphene Oxide/TiO2 Microsphere Photocatalysts, Catal Today, 230, pp. 166-173, 2014.

Nugraheni, A.Y., Jayanti, D.N., Kurniasari, Soontaranon, S., Rachman Putra, E.G. & Darminto, Structural Analysis on Reduced Graphene Oxide Prepared from Old Coconut Shell by Synchrotron X-Ray Scattering, IOP Conf Ser Mater Sci Eng., b196(1), 012007, 2017.

Khalili, D., Graphene Oxide: A Promising Carbocatalyst for the Regioselective Thiocyanation of Aromatic Amines, Phenols, Anisols and Enolizable Ketones by Hydrogen Peroxide/KSCN in Water, New J Chem., 40, pp. 2547-2553, 2016.

Mazurkiewicz-Pawlicka, M., Nowak, M., Malolepszy, A., Witowski, A., Wasik, D., Hu, Y. & Stobinski, L., Graphene Oxide with Controlled Content of Oxygen Groups as a Filler for Polymer Composites Used for Infrared Radiation Shielding, Nanomaterials, 10(1), pp. 8-11, 2020.

Downloads

Published

2022-03-25

How to Cite

Mas’udah, K. W., Taufiq, A., & Sunaryono, S. (2022). The Potential of Corncobs in Producing Reduced Graphene Oxide as a Semiconductor Material. Journal of Engineering and Technological Sciences, 54(2), 220201. https://doi.org/10.5614/j.eng.technol.sci.2022.54.2.1

Issue

Section

Articles