An Analytical and Experimental Evaluation of a Heat Sink Under Constant Heat Flow and Forced Convection Heat Transfer


  • Ehsan Fadhil Abbas Northern Techincal University



fin simulation, flat fin array, heat loss by fin, heat sink, transient solution


In this study, the exact transient differential equation was used to calculate the convection heat loss in a heat sink with a rectangular cross section fin. The result of the analytic solution was compared to the result from experiments conducted on a standard heat sink. The experiments were performed at a constant heat flow of 9000 W/m2 and a low airflow rate ranging from 12 to 100 cm3/s in seven steps. The comparative results showed that while there was good agreement between the experimental result and the exact solution, the average error ratio increased with an increase of the airflow rate. However, the maximum average error ratio between the experimental result and the exact solution did not exceed 6.4%. The maximum temperature distribution in the heat sink was obtained at a time of 900 s in all experiments.


Download data is not yet available.

Author Biography

Ehsan Fadhil Abbas, Northern Techincal University

Kirkuk Technical College/Northern Technical University, Kirkuk, Iraq


Yeh, R.H. & Chang, M., Optimum Longitudinal Convective Fin Arrays, Int. Commun. Heat Mass Transf., 22(3), pp. 445-460, May 1995.

Sen Kou, H., Lee, J.J. & Lai, C.Y., Thermal Analysis and Optimum Fin Length of a Heat Sink, Heat Transf. Eng., 24(2), pp. 18-29, 2003.

Bar-Cohen, A., Iyengar, M. & Kraus, A.D., Design of Optimum Plate-fin Natural Convective Heat Sinks, J. Electron. Packag. Trans. ASME, 2003.

Shih, C.J. & Liu, G.C., Optimal Design Methodology of Plate-fin Heat Sinks for Electronic Cooling Using Entropy Generation Strategy, IEEE Trans. Components Packag. Technol., 2004.

Chiang, K.T., Optimization of the Design Parameters of Parallel-plain Fin Heat Sink Module Cooling Phenomenon Based on the Taguchi Method, Int. Commun. Heat Mass Transf., 2005.

Chiang, K.T., Modeling and Optimization of Designing Parameters for a Parallel-plain Fin Heat Sink with Confined Impinging Jet Using the Response Surface Methodology, Appl. Therm. Eng., 27(14-15), pp. 2473-2482, Oct. 2007.

Kim, S.M. & Mudawar, I., Analytical Heat Diffusion Models for Different Micro-channel Heat Sink Cross-sectional Geometries, Int. J. Heat Mass Transf., 53(19-20), pp. 4002-4016, Sep. 2010.

Ventola, L., Chiavazzo, E., Calignano, F., Manfredi, D. & Asinari, P., Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness, J. Phys. Conf. Ser., 494(1), pp. 1-9, 2014.

Raut, S.V. & Kothavale, B.S., Study on Thermal Performance of Micro Fin Heat Sink under Natural Convection-A Review, Int. J. Curr. Eng. Technol., 7(7), pp. 257-261, 2017.

Wu, H.H., Hsiao, Y.Y., Huang, H.S., Tang, P.H. & Chen, S.L., A Practical Plate-fin Heat Sink Model, Appl. Therm. Eng., 31(5), pp. 984-992, 2011.

Lelea, D., The Heat Transfer and Fluid Flow of a Partially Heated Microchannel Heat Sink, Int. Commun. Heat Mass Transf., 36(8), pp. 794-798, Oct. 2009.

Yoon, Y., Park, S.J., Kim, D.R. & Lee, K.S., Thermal Performance Improvement Based on the Partial Heating Position of a Heat Sink, Int. J. Heat Mass Transf., 124, pp. 752-760, Sep. 2018.

Lee, J.J., Kim, H.J. & Kim, D.K., Experimental Study on Forced Convection Heat Transfer from Plate-fin Heat Sinks with Partial Heating, Processes, 7(10), pp. 1-18, 2019.

Gupta, A., Kumar, M. & Patil, A.K., Enhanced Heat Transfer in Plate Fin Heat Sink with Dimples And Protrusions, Heat Mass Transf. und Stoffuebertragung, 2019.

Vinoth, R. & Senthil Kumar, D., Experimental Investigation on Heat Transfer Characteristics of an Oblique Finned Microchannel Heat Sink with Different Channel Cross Sections, Heat Mass Transf., 54(12), pp. 3809-3817, 2018.

Rahman, A. & Tafti, D., Characterization of Heat Transfer Enhancement for an Oscillating Flat Plate-fin, Int. J. Heat Mass Transf., 147, 119001, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119001.

Yu, Y., Simon, T. & Cui, T., A Parametric Study of Heat Transfer in an Air-cooled Heat Sink Enhanced by Actuated Plates, Int. J. Heat Mass Transf., 64, pp. 792-801, 2013.

Sharath, D., Sathyanarayana, & Puneeth, H.S., Heat Transfer Numerical Simulation and Optimization of a Heat Sinks, in IOP Conference Series: Materials Science and Engineering, 376(1), pp. 1-8, 2018. DOI: 10.1088/1757-899X/376/1/012005

Duan, Z., Lv, X., Ma, H., Su, L. & Zhang, M., Analysis of Flow Characteristics and Pressure Drop for an Impinging Plate Fin Heat Sink with Elliptic Bottom Profiles, Appl. Sci., 10(1), pp. 1-17, 2020. DOI: 10.3390/app10010225.

Ekpu, M., Bhatti, R., Ekere, N., Mallik, S., Amalu, E. & Otiaba, K., Investigation of Effects of Heat Sinks on Thermal Performance of Microelectronic Package, 3rd IEEE Int. Conf. Adapt. Sci. Technol. ICAST 2011, Proc., May 2014, pp. 127-132, 2011.

Teertstra, P., Yovanovich, M.M. & Culham, J.R., Analytical Forced Convection Modeling of Plate Fin Heat Sinks, J. Electron. Manuf., 10(4), pp. 253-261, 2000.

Ma, J. & Xu, F., Transient Flows around a Fin at Different Positions, in Procedia Engineering, 126, pp. 393-398, 2015.

Arshad, A., Jabbal, M., Sardari, P.T., Bashir, M.A., Faraji, H. & Yan, Y., Transient Simulation of Finned Heat Sinks Embedded with PCM for Electronics Cooling, Therm. Sci. Eng. Prog., 18, 100520, Aug. 2020.

Panahizadeh, F., Hasnat, M. & Ghafouri, A., Numerical Modeling of Transient Heat Transfer in Longitudinal Fin, Analele Universitatii "Eftimie Murgu" Resita. Fascicula de Inginerie, 14(1), pp. 320-328, 2017.

Lakshminarasimha, N., Transient CFD Analysis of Different Cross-section Fins Under Free-convection Conditions, 8(6), pp. 807-813, 2019.

Naphon, P. & Nakharintr, L., Turbulent Two Phase Approach Model for the Nanofluids Heat Transfer Analysis Flowing Through the Minichannel Heat Sinks, Int. J. Heat Mass Transf., 82, pp. 388-395, 2015.

Naphon, P. & Nakharintr, L., Numerical Investigation of Laminar Heat Transfer of Nanofluid-cooled Mini-Rectangular Fin Heat Sinks, J. Eng. Phys. Thermophys., 88(3), pp. 666-675, 2015.

Nakharintr, L. & Naphon, P., Magnetic Field Effect on the Enhancement of Nanofluids Heat Transfer of a Confined Jet Impingement in Mini-Channel Heat Sink, Int. J. Heat Mass Transf., 110, pp. 753-759, 2017.

Nakharintr, L., Naphon, P. & Wiriyasart, S., Effect of Jet-plate Spacing to Jet Diameter Ratios on Nanofluids Heat Transfer in a Mini-Channel Heat Sink, Int. J. Heat Mass Transf., 116, pp. 352-361, 2018.

Nakharintr, L., Naphon, P. & Wiriyasart, S., Eulerian Two-Phase Model Analysis on Jet Impingement Nanofluids Heat Transfer in Heat Sinks, JP J. Heat Mass Transf., 14(4), 2017.

Naphon, P., Nakharintr, L. & Wiriyasart, S., Continuous Nanofluids Jet Impingement Heat Transfer and Flow in A Micro-vhannel Heat Sink, Int. J. Heat Mass Transf., 126, pp. 924-932, 2018.

Kraus, A.D., Aziz, A. & Welty, J., Extended Surface Heat Transfer, New York: John Wiley & Sons, Inc., 2001.

Holman, J.P., Experimental Methods for Engineering, 8th ed., McGraw-Hill series in Mechanical Engineering, 2001.

Holman, J.P., Heat Transfer, 10th ed., McGraw-Hill series in Mechanical Engineering, 2010.




How to Cite

Abbas, E. F. (2021). An Analytical and Experimental Evaluation of a Heat Sink Under Constant Heat Flow and Forced Convection Heat Transfer. Journal of Engineering and Technological Sciences, 53(4), 210405.