Integrated Magnetotelluric (MT), Gravity and Seismic Study of Lower Kutai Basin Configuration

Authors

  • Selvi Misnia Irawati Geophysical Engineering, Institut Teknologi Sumatra (ITERA) Jalan Terusan Ryacudu, Lampung Selatan 35365, Indonesia
  • Hidayat Hidayat Geological Survey Center, Ministry of Energy and Mineral Resources Jalan Diponegoro 57, Bandung 40144, Indonesia
  • Edy Wijanarko Research and Development Centre for Oil and Gas Technology, Indonesia Jalan Ciledug Raya Kav. 109, Jakarta 12230, Indonesia
  • Hendra Grandis Institut Teknologi Bandung

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2022.54.1.3

Keywords:

basin configuration, gravity, magnetotellurics, MT, seismics

Abstract

This work describes a subsurface basin configuration of the Lower Kutai Basin (hereinafter LKB) in East Kalimantan, Indonesia, as inferred from combination of magnetotelluric (MT), seismic, and gravity data. LKB is structurally controlled mainly by the Samarinda Anticlinorium extending in a NNE-SSW direction and is one of the most prolific hydrocarbon basins in Indonesia. The phase tensor analysis of MT data from most stations and frequencies exhibited a 2D character with a relatively low skew (-3 < ? < 3). The geo-electrical strike direction was estimated at N30E, which is in good agreement with the regional geological strike with a NNE-SSW direction. 2D MT inversion modeling was performed to infer the subsurface resistivity distribution associated with LKB?s configuration. From the integration of MT, seismic and gravity models it was shown that LKB?s configuration is composed mainly of sandstone, black shale, claystone, and basement rocks. The conductive zones of the MT models are associated with thermal alteration of black shale, which changes its mineralization, leading to lower resistivity. Hence, the black shale may be interpreted as potential hydrocarbon source rock in LKB.

Downloads

Download data is not yet available.

References

Ali, M.Y., Watts, A.B. & Farid, A, Gravity Anomalies of the United Arab Emirates: Implications for Basement Structures and Infra-Cambrian Salt Distribution, GeoArabia 19(1), pp. 85-112, 2014.

Abdullahi, M., Singh, U.K. & Roshan, R., Mapping Magnetic Lineaments and Subsurface Basement beneath Parts of Lower Benue Trough (LBT), Nigeria: Insights from Integrating Gravity, Magnetic and Geologic Data, J. Earth Syst. Sci. 128(17), pp.1-17, 2019. DOI: 10.1007/s12040-018-1038-9.

El Redini, N.A.H., Bakr, A.M.A. & Dahroug, S.M., Seismic Data Interpretation for Hydrocarbon Potential, for Safwa/Sabbar Field, East Ghazalat Onshore Area, Abu Gharadig basin, Western Desert, Egypt, NRIAG J. Astron. Geoph., 6(2), pp. 287-299, 2017.

Grandis, H., Widarto, D.S. & Hendro, A., Magnetotelluric (MT) Method in Hydrocarbon Exploration: A New Perspective, J. Geofisika, 2, pp. 14-19, 2004.

Permana, A.K., Sendjadja, Y.A., Panggabean, H. & Fauzely, L., Depositional Environment and Source Rock Potential of the Miocene Organic Rich Sediments, Balikpapan Formation, East Kutai Sub Basin, Kalimantan, J. Geol. Min. Res., 19, pp. 167-182, 2018.

Rose, P. & Hartono, P., Geological Evolution of the Tertiary Kutei- Melawi Basin Kalimantan Indonesia, 7th Ann. Conv. Proc. Indonesian Petroleum Association, 1978.

Adao, F., Ritter, O. & Spangenberg, E., The Electrical Conductivity of Posedonia Black Shales ? From Magnetotelluric Exploration to Rock Samples, Geoph. Prosp., 64, pp. 469-488, 2016.

Supriatna, S., Sudrajat, A. & Abidin, H.Z., Geological Map of the Muara Tewe Quadrangle, Kalimantan, Geological Survey of Indonesia, 1995.

Satyana, A.H., Nugroho, D. & Surantoko, I., Tectonic Controls on the Hudrocarbon Habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: Major Dissimilarities in Adjoining Basins, J. Asian Earth Sci., 17, pp. 99-122, 1999.

Zajuli, M.H.H. & Wahyudiono, J., Rock-Eval of the Oligocene Fine-grained Sedimentary Rocks from the Pamaluan Formation, Gunung Bayan Area, West Kutai Basin, East Kalimantan: Implication for Hydrocarbon Source Rock Potential, J. Geol. Min. Res., 22, pp. 73-82, 2018.

Phoenix-Geophysics, SSMT-2000 and MT-Editor Users? Manual, 2005.

Caldwell, T.G., Bibby, H.M., & Brown, C., The Magnetotelluric Phase Tensor, Geoph. J. Inter. 158(2), pp. 457-469, 2004.

Simpson, F. & Bahr, K., Practical Magnetotelluric, Chambridge University Press, 2005.

Irawati, S.M., Hidayat, & Grandis, H., Magnetotelluric (MT) Data Analysis and 2D Modelling of the Kutai Basin, Indonesia: Preliminary Results, EAGE Earthdoc, pp. 1102-1148, 2019.

Geosystem, WinGLink User?s Guide, Release 2.20.02.01, 2008.

Rodi, W. & Mackie, R.L., Non-linear Conjugate Algorithm for 2D Magnetotelluric Inversion, Geophysics, 66, pp. 174-187, 2001.

Hansen, P.C., The L-curve and Its Use in the Numerical Treatment of Inverse Problems, ed. P. Johnson, WIT Press, 2000.

Arisbaya, I., Handayani, L., Mukti, M.M., Sudrajat, Y., Grandis, H. & Sumintadireja, P., Imaging the Geometry of Cimandiri Fault Zone based on 2D Audio-Magnetotelluric (AMT) Model in Nyalindung, Sukabumi-Indonesia, Pure and Applied Geophysics, 176(11), pp. 4833-4845, 2019.

Grandis, H. & Dahrin, D., The Utility of free Software for Gravity and Magnetic Advanced Data Processing, IOP Conf. Series: Earth and Environmental Science, 62(1), 012046, 2017.

Geosoft, Oasis Montaj Users? Manual, 2009.

Grandis, H. & Dahrin, D., Constrained Two-Dimensional Inversion of Gravity Data, J. Math. Fund. Sci. 46(1), pp. 1-13, 2014.

Downloads

Published

2022-01-28

Issue

Section

Articles