Kinetics and Characterization of Microalgae Biofuel by Microwave-assisted Pyrolysis Using Activated Carbon


  • Viqhi Aswie Islamic State Senior High School 1, Jalan Pramuka No. 14 Sukabumi City, 43144, Indonesia
  • Lailatul Qadariyah Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya Jalan Teknik Kimia, Keputih, Sukolilo, Surabaya 60111, Indonesia
  • Mahfud Mahfud Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya Jalan Teknik Kimia, Keputih, Sukolilo, Surabaya 60111, Indonesia



activated carbon, biofuel, Chlorella sp., kinetics, microwave, pyrolysis


The reaction kinetics and the effect of power on microwave-assisted pyrolysis (MAP) in converting microalgae to biofuel were investigated to determine the decomposition mechanism and then characterize the best product. The resulting product consisted of three phases, namely liquid phase (bio-oil), solid residue (char), and uncondensable gas products. The results showed that the optimal increase in microwave power obtained was 20.57% with a 600-watt microwave power condition, a reaction time of 20 minutes, a microwave absorber to microalgae ratio of 1:6, and a heating rate of 25.96 K/min (600 watts). The reaction kinetics evaluated in the best condition showed a second-order reaction with activition energy (Ea) and pre-exponential factor (A) at 35.5971 kJ/moles and 2,606.75/minute, respectively. The characteristics of the biofuel product obtained were 1.01 gr/mL density, viscosity 10.97 cP, and pH 9.30. In addition, based on GC-MS analysis, the bio-oil contained aliphatic, aromatic, phenol, FAME, and polycyclic aromatic hydrocarbon (PAH) organic compounds. These results indicate that MAP has the potential to be developed as an alternative production process for biofuels.


Download data is not yet available.


Anand, V., Gautam, R. & Vinu, R., Non-catalytic and Catalytic Fast Pyrolysis of Schizochytrium limacinum Microalga, Fuel, 205, pp. 1-10, 2017. DOI: 10.1016/j.fuel.2017.05.049.

Du, Z., Li Y., Wang, X., Wan, Y., Chen, Q., Wang, C., Lin, X., Liu, Y., Chen, P. & Ruan, R., Microwave-assisted Pyrolysis of Microalgae for Biofuel Production, Bioresour. Technol., 102(7), pp. 4890-4896, 2011. DOI: 10.1016/j.biortech.2011.01.055.

Zainan, N.H., Srivatsa, S.C., Li, F. & Bhattacharya, S., Quality of Bio-oil from Catalytic Pyrolysis of Microalgae Chlorella vulgaris, Fuel, 223(March), pp. 12-19, 2018. DOI: 10.1016/j.fuel.2018.02.166.

Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. & Hankamer, B., Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production, BioEnergy Res., 1(1), pp. 20-43, 2008. DOI: 10.1007/s12155-008-9008-8.

Li, F., Srivatsa, S.C. & Bhattacharya, S., A Review on Catalytic Pyrolysis of Microalgae to High-quality Bio-oil with Low Oxygeneous and Nitrogenous Compounds, Renew. Sustain. Energy Rev., 108(July), pp. 481-497, 2019. DOI: 10.1016/j.rser.2019.03.026.

Miao, X. & Wu, Q., High Yield Bio-oil Production from Fast Pyrolysis by Metabolic Controlling of Chlorella protothecoides, J. Biotechnol., 110(1), pp. 85-93, 2004. DOI: 10.1016/j.jbiotec.2004.01.013.

Garc-Velquez, C.A. & Cardona, C.A., Comparison of the Biochemical and Thermochemical Routes for Bioenergy Production: A Techno-economic (TEA), Energetic and Environmental Assessment, Energy, 172(April), pp. 232-242, 2019. DOI: 10.1016/

Gong, Z., Fang, P., Wang, Z., Li, Q., Li, X., Meng, F., Zhang, H. & Liu, L., Catalytic Pyrolysis of Chemical Extraction Residue from Microalgae Biomass, Renew. Energy, 2019. DOI: 10.1016/j.renene.2019.10.158.

Demirba?, A., Oily Products from Mosses and Algae via Pyrolysis, Energy Sources, Part A Recover. Util. Environ. Eff., 28(10), pp. 933-940, 2006. DOI: 10.1080/009083190910389.

Motasemi, F. & Afzal, M.T., A Review on the Microwave-assisted Pyrolysis Technique, Renew. Sustain. Energy Rev., 28, pp. 317-330, 2013. DOI: 10.1016/j.rser.2013.08.008.

Mendez, J.A., Domguez, A., Ferndez, Y. & Pis, J.J., Evidence of Self-gasification during the Microwave-induced Pyrolysis of Coffee Hulls, Energy and Fuels, 21(1), pp. 373-378, 2007. DOI: 10.1021/ef060331i.

Hu, Z., Ma, X. & Chen, C., A Study on Experimental Characteristic of Microwave-assisted Pyrolysis of Microalgae, Bioresour. Technol., 107, pp. 487-493, 2012. DOI: 10.1016/j.biortech.2011.12.095.

Antunes E., Jacob M.V., Brodie G. & Schneider P.A., Microwave Pyrolysis of Sewage Biosolids: Dielectric Properties, Microwave Susceptor Role and Its Impact on Biochar Properties, J. Anal. Appl. Pyrolysis, 129(November), pp. 93-100, 2018. DOI: 10.1016/j.jaap.2017.11.023.

Mendez, J.A., Inguanzo, M. & Pis, J.J., Microwave-induced Pyrolysis of Sewage Sludge, Water Res., 36(13), pp. 3261-3264, 2002. DOI: 10.1016/S0043-1354(02)00017-9.

Wang, K. & Brown, R., Catalytic Pyrolysis of Microalgae for Production of Aromatics and Ammonia, Green Chem., 12(3), pp. 810-812, 2007.

Chong, Y.Y., Ng H.K., Lee, L.Y. & Gan, S., Thangalazhy-Gopakumar S., Kinetics and Mechanisms for Catalytic Pyrolysis of Empty Fruit Bunch Fibre and Cellulose with Oxides, SN Appl. Sci., 2(8), pp. 1-14, 2020. DOI: 10.1007/s42452-020-03249-1.

Coats, A. & Redfern, J., Kinetic Parameters from Thermogravimetric Data, Nature, 201(January), pp. 68-69, 1964.

Li, L., Ma, X., Xu, Q. & Hu, Z., Influence of Microwave Power, Metal Oxides and Metal Salts on the Pyrolysis of Algae, Bioresour. Technol., 142, pp. 469-474, 2013. DOI: 10.1016/j.biortech.2013.05.080.

Zuo, W., Tian, Y. & Ren, N., The Important Role of Microwave Receptors in Bio-fuel Production by Microwave-induced Pyrolysis of Sewage Sludge, Waste Manag., 31(6), pp. 1321-1326, 2011. DOI: 10.1016/j.wasman.2011.02.001.

Morgan, H.M., Bu Q., Liang, J., Liu, Y., Mao, H., Shi, A., Lei, H. & Ruan, R., A Review of Catalytic Microwave Pyrolysis of Lignocellulosic Biomass for Value-added Fuel and Chemicals, Bioresour. Technol., 230, pp. 112-121, 2017. DOI: 10.1016/j.biortech.2017.01.059.

Huang, Y.F., Chiueh P.T. & Lo S.L., A Review on Microwave Pyrolysis of Lignocellulosic Biomass, Sustain. Environ. Res., 26(3), pp. 103-109, 2016. DOI: 10.1016/j.serj.2016.04.012.

Liu, C., Duan, X., Chen, Q., Chao, C., Lu, Z., Lai, Q. & Megharaj, M., Investigations on Pyrolysis of Microalgae Diplosphaera sp. MM1 by TG-FTIR and Py-GC/MS: Products and Kinetics, Bioresour. Technol., 294(July), pp. 122-126, 2019. DOI: 10.1016/j.biortech.2019.122126.

Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., Ding, Y. & Wang, C., Pyrolysis of Microalgae: A Critical Review, Fuel Process. Technol., 186(September), pp. 53-72, 2019. DOI: 10.1016/j.fuproc.2018.12.012.

Lee, J., Kwon, E.E. & Park, Y.K., Recent Advances in the Catalytic Pyrolysis of Microalgae, Catal. Today, 355, pp. 263-271, 2019. DOI: 10.1016/j.cattod.2019.03.010.

Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Third Edition, Chichester: John Wiley & Sons, Ltd, 2001.




How to Cite

Aswie, V., Qadariyah, L., & Mahfud, M. (2022). Kinetics and Characterization of Microalgae Biofuel by Microwave-assisted Pyrolysis Using Activated Carbon. Journal of Engineering and Technological Sciences, 54(2), 220207.