LSCF-CuO as Promising Cathode for IT SOFC
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2021.53.4.11Keywords:
LSCF-CuO, physical characterization, modified sol-gel method, IT-SOFCs, activation energyAbstract
Infiltration of copper oxide towards LSCF was done in order to enhance cathode performance due to superior properties, including high electrical conductivity and high catalytic activity for the oxygen reduction reaction. Samples were synthesized at different temperatures using the sol-gel route. The TGA results showed that LSCF achieved complete perovskite formation when calcined above 600 C and DTA showed the formation of lattice oxygen at 550C. XRD analysis showed no shifted peaks and nano size levels were achieved when samples were calcined at 700C and 800C. SEM and BET showed similar analysis patterns, where the particle size increased as the calcining temperature was increased. EIS analysis further verified that the polarization resistance of the sample calcined at 700 C was as small as 0.161 ?, compared to 1.524 ? with a calcination temperature of 800 C. The activation energy of LSCF-CuO was found to be 122.2 kJ/mol, which is much lower than for conventional LSCF.
Downloads
References
Irshad, M., Evaluation Of Bazr0.8X0.2 (X= Y, Gd, Sm) Proton Conducting Electrolytes Sintered at Low Temperature for IT-SOFC Synthesized by Cost Effective Combustion Method, J. Alloys Compd., 815, 2020. DOI: 10.1016/j.jallcom.2019.152389.
Baharuddin, N.A., Muchtar, A. & Somalu, M.R., Short Review on Cobalt-Free Cathodes for Solid Oxide Fuel Cells, Int. J. Hydrogen Energy, 42(14), pp. 9149-9155, 2017. DOI: 10.1016/j.ijhydene.2016.04.097.
Wasajja, H., Lindeboom, R.E.F., van Lier, J.B. & Aravind, P.V., Techno-Economic Review of Biogas Cleaning Technologies for Small Scale Off-Grid Solid Oxide Fuel Cell Applications, Fuel Process. Technol., 197, 106215, 2020. DOI: 10.1016/j.fuproc.2019.106215.
Saadabadi, S.A., Thallam Thattai, A., Fan, L., Lindeboom, R.E.F., Spanjers, H. & Aravind, P.V., Solid Oxide Fuel Cells Fuelled with Biogas: Potential and Constraints, Renew. Energy, 134, pp. 194-214, 2019. DOI: 10.1016/j.renene.2018.11.028.
Fan, L., Zhu, B., Su, P.C. & He, C., Nanomaterials and Technologies for Low Temperature Solid Oxide Fuel Cells: Recent Advances, Challenges and Opportunities, Nano Energy, 45(October 2017), pp. 148-176, 2018. DOI: 10.1016/j.nanoen.2017.12.044.
Abdelkareem, M.A., Tanveer, W.H., Sayed, E.T., Assad, M.E.H., Allagui, A. & Cha, S.W., On The Technical Challenges Affecting the Performance of Direct Internal Reforming Biogas Solid Oxide Fuel Cells, Renew. Sustain. Energy Rev., 101, June 2018, pp. 361-375, 2019. DOI: 10.1016/j.rser.2018.10.025.
Batool, R., Structural and Electrochemical Study of Ba0.15Cu0.15Ni0.10Zn0.60 Oxide Anode for Low Temperature Solid Oxide Fuel Cell, J. Alloys Compd., 780, pp. 653-659, 2019. DOI: 10.1016/j.jallcom.2018.11.392.
Mohd Abd Fatah, A.F. & Hamid, N.A., Physical and Chemical Properties of LSCF-CuO as Potential Cathode for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC), Malaysian J. Fundam. Appl. Sci., 14(3), pp. 391-396, 2018. DOI: 10.11113/mjfas.v14n3.1220.
Acharya, S.A., Gaikwad, V.M., Souza, S.W.D. & Barman, S.R., Gd/Sm Dopant-Modified Oxidation State and Defect Generation in Nano-Ceria, Solid State Ionics, 260, pp. 21-29, 2014. DOI: 10.1016/j.ssi.2014.03.008.
Liao, M.W., Lin, T.N., Kao, W.X., Yeh, C.Y., Chen, Y.M. & Kuo, H.Y., Composite Mixed Ionic-Electronic Conducting Ceramic for Intermediate Temperature Oxygen Transport Membrane, Ceram. Int., 43(May), pp. S628-S632, 2017. DOI: 10.1016/j.ceramint.2017.05.222.
Laurencin, J., Reactive Mechanisms of LSCF Single-Phase and LSCF-CGO Composite Electrodes Operated in Anodic and Cathodic Polarisations, Electrochim. Acta, 174, pp. 1299-1316, 2015. DOI: 10.1016/j.electacta.2015.06.080.
Sailah, A., Fabrication of Lanthanum-based Perovskites Membranes on Porous Alumina Hollow Fi Bre (AHF) Substrates for Oxygen Enrichment, Ceram. Int., 45(10), pp. 13086-13093, 2019. DOI: 10.1016/j.ceramint.2019.03.242.
Baqer, A.A., Synthesis and Characterization of Binary (Cuo)0.6(Ceo2)0.4 Nanoparticles Via A Simple Heat Treatment Method, Results Phys., 9, pp. 471-478, 2018. DOI: 10.1016/j.rinp.2018.02.079.
Xu, C., Hao, X., Gao, M., Su, H. & Zeng, S., Important Properties Associated with Catalytic Performance Over Three-Dimensionally Ordered Macroporous Ceo2-Cuo Catalysts, Catal. Commun., 73, pp. 113-117, 2016. DOI: 10.1016/j.catcom.2015.10.025.
Nicollet, C., Gadolinium Doped Ceria Interlayers for Solid Oxide Fuel Cells Cathodes: Enhanced Reactivity with Sintering Aids (Li, Cu, Zn), and Improved Densification by Infiltration, J. Power Sources, 372, no. November, pp. 157-165, 2017. DOI: 10.1016/j.jpowsour.2017.10.064.
Guo, S., Puleo, F., Wang, L., Wu, W. & Liotta, L.F., La0.6Sr0.4Co0.2Fe0.79M0.01O3?? (M = Ni, Pd) perovskites synthesized by Citrate-EDTA method: Oxygen Vacancies Effect on Electrochemical Properties, Adv. Powder Technol., 29(11), pp. 2804-2812, 2018. DOI: 10.1016/j.apt.2018.07.029.
Ayodele, B.V., Bin Mohd Yassin, M.Y., Naim, R. & Abdullah, S., Hydrogen Production By Thermo-Catalytic Conversion of Methane Over Lanthanum Strontium Cobalt Ferrite (LSCF) and ?al2o3 Supported Ni Catalysts, J. Energy Inst., 92(4), pp. 892-903, 2019. DOI: 10.1016/j.joei.2018.07.014.
Rafique, A., Multioxide Phase-Based Nanocomposite Electrolyte (M@SDC where M= Zn2+/ Ba2+/ La3+/Zr2+ /Al3+) Materials, Ceram. Int., no. October, pp. 1-7, 2019. DOI: 10.1016/j.ceramint.2019.11.183.
Paymooni, K., Doroodchi, E. & Moghtaderi, B., Oxygen Adsorption and Desorption Characteristics of LSCF5582 Membranes for Oxygen Separation Applications, Adv. Powder Technol., 28(6), pp. 1531-1539, 2017. DOI: 10.1016/j.apt.2017.03.024.
Jamale, A.P., Bhosale, C.H. & Jadhav, L.D., Electrochemical Behavior of LSCF/GDC Interface in Symmetric Cell: An Application in Solid Oxide Fuel Cells, J. Alloys Compd., 623, pp. 136-139, 2015. DOI: 10.1016/j.jallcom.2014.10.122.
Nadeem, M., Hu, B. & Xia, C., Effect of NiO Addition on Oxygen Reduction Reaction at Lanthanum Strontium Cobalt Ferrite Cathode for Solid Oxide Fuel Cell, Int. J. Hydrogen Energy, 43(16), pp. 8079-8087, 2018. DOI: 10.1016/j.ijhydene.2018.03.053.
Muhammed Ali, S.A., Anwar, M., Ashikin, N., Muchtar, A. & Somalu, M.R., Influence of Oxygen Ion Enrichment on Optical, Mechanical, and Electrical Properties of LSCF Perovskite Nanocomposite, Ceram. Int., 44(9), pp. 10433-10442, 2018. DOI: 10.1016/j.ceramint.2018.03.060.
Zhang, L., Hong, T., Li, Y. & Xia, C., CaO effect on the Electrochemical Performance of Lanthanum Strontium Cobalt Ferrite Cathode for Intermediate-Temperature Solid Oxide Fuel Cell, Int. J. Hydrogen Energy, 42(27), pp. 17242-17250, 2017. DOI: 10.1016/j.ijhydene.2017.05.207.
Kim, Y.M., Baek, S.W., Bae, J. & Yoo, Y.S., Effect of Calcination Temperature on Electrochemical Properties of Cathodes for Solid Oxide Fuel Cells, Solid State Ionics, 192(1), pp. 595-598, 2011. DOI: 10.1016/j.ssi.2010.09.014.
Xu, H., Zhang, H. & Chu, A., An investigation of Oxygen Reduction Mechanism in Nano-Sized LSCF-SDC Composite Cathodes, Int. J. Hydrogen Energy, 41(47), pp. 22415-22421, 2016. DOI: 10.1016/j.ijhydene.2016.09.153.
?zden likbilek, Siebert, E., Jauffr, D., Martin, C.L. & Djurado, E., Influence of Sintering Temperature on Morphology and Electrochemical Performance of LSCF/GDC Composite Films as Efficient Cathode for SOFC, Electrochim. Acta, 246, pp. 1248-1258, 2017. DOI: 10.1016/j.electacta.2017.06.070.
Raju K. & Yoon, D., Reactive Air Brazing of GDC-LSCF Ceramics Using Ag-10 wt% CuO Paste for Oxygen Transport Membrane Applications GDC-LSCF GDC-LSCF Filler, Ceram. Int., 42(14), pp. 16392-16395, 2016. DOI: 10.1016/j.ceramint.2016.07.042.