Silicon on Isolator Ribbon Field-Effect Nanotransistors for High-Sensitivity Low-Power Biosensors


  • Nikolay Masalsky Federal State Institution ?Scientific Research Institute for System Analysis of the Russian Academy of Sciences?, (SRISA), Moscow, Russian



biosensor, I-V data, low supply power, ribbon field-effect nanotransistor, silicon on isolator, TCAD


Silicon field-effect transistors (FETs) are an established technology for sensing applications. Recent advancements and the use of high-performance multigate FETs in computing technology raise new opportunities and questions about the most suitable device sensing architecture. In this work, we propose pH sensors exploiting ribbon (tri-date) FETs fabricated on investigated silicon nanowires and silicon-on-insulator substrates by a fully CMOS compatible approach. The FET characteristics were optimized using 3D modeling performed by the TCAD computer-aided design software package, depending on the topological parameters of the transistor and the level of control voltage. N-channel fully depleted ribbon FETs with critical dimensions in the order of 30 nm and SiO2 as a subgate insulator were developed and characterized. It was established that thin structures with a width of slightly than more 100 nm, a thickness of 40 nm, and a reduced doping level have high sensitivity and low energy consumption. They showed excellent electrical properties, subthreshold swing (SS) was about 90 mV/dec, and the on-to-off current ratio, Ion/Ioff, was about 105. The same architecture was tested as a highly sensitive, stable and reproducible pH sensor. The average internal sensitivity, S, was equal 34 mV/pH or 360 nA/pH. Sensitivity to pH, estimated in terms of relative changes in the threshold voltage, was 74%, and the maximum drain current was 40%. The maximum drain current of 85 ?A at V ds = 1.0 V suggests successful low-power operation of the proposed device.


Download data is not yet available.


Mu, L., Chang, Y., Sawtell, S., Wipf, M., Duan, X. & Reed, M., Silicon Nanowire Field-effect Transistors-A Versatile Class of potentiometric Nanobiosensors, IEEE Access, 3(1), pp. 287-302. Apr. 2015.

Sharma, S., Zapatero-Rodruez, J., Estrela, P. & O?Kennedy, R., Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics, Biosensors, 5(3), pp. 577-601, Aug. 2015.

Yagmurcukardes, M., Peeters, F., Senger, T. & Sahin, H., Nanoribbons: from Fundamentals to State-of-the -art Applications. Appl Phys Rev., 3(4), 041302, Dec. 2016.

da Silva, E.T.S.G., Souto, D.E.P., Barragan, J.T.C., Giarola, J.F., de Moraes, A.C. & Kubota, L.T., Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends, ChemElectroChem, 4(4), pp. 778-794, Apr. 2017.

Paulovich F.V., de Oliveira, M.C.F. & Oliveira, O.N., Jr., A Future with Ubiquitous Sensing and Intelligent Systems, ACS Sens., 3(8), pp. 1433-1438, Jul. 2018.

Manjakkal, L., Szwagierczak, D. & Dahiya, R., Metal Oxides based Electrochemical pH Sensors: Current Progress and Future Perspectives, Prog. Mater. Sci., 109(1), pp. 100635-100642, April 2020.

Gao, N., Zhou, W., Jiang, X., Hong, G., Fu, T.-M. & Lieber, C.M., General Strategy for Biodetection in High Ionic Strength Solutions Using Transistor-based Nanoelectronic Sensors, Nano Lett., 15(3), pp. 2143-2148, Feb. 2015.

Bafekry, A., Faraji, M., Fadlallah, M.M., Bagheri Khatibani, A., Abdolahzadeh Ziabari, A., Ghergherehchi, M., Nedaei, S., Shayesteh, S.F. & Gogova, D., Tunable Electronic and Magnetic Properties of MOSI2N4 Monolayer via Vacancy defects, Atomic Adsorption and Atomic doping, Appl. Surf. Sci., 559, 149862, Mar 2021.

Bafekry, A., Feghhi, S.A.H., Yagmurcukardes, M., Stampel, C., Faraji, M., Fadlallah, M.M., Jappor, H.R. & Ghergherehchi, M., A Dirac Semimetal Two-dimensional BEN4: Thickness-dependent Electronic and Optical Properties, Appl. Phys. Lett., 118(20), 203103, Jul 2021.

Bafekry, A., Abdolhosseini Sarsari, I., Karbasizadeh, S., Faraji, M., Fadlallah, M.M., Jappor, H.R., Nguyen, V. & Ghergherehchi, M., Electronic and Magnetic Properties of Two-Dimensional of FEX (X = S, SE, TE) Monolayers Crystallize in the Orthorhombic Structures, Appl. Phys. Lett. 118(14), 143102, Mar 2021.

Synopsys TCAD Tools, URL, (12 Feb. 2020).

Li, B.-R., Chen, C.-C., Kumar, U. & Chen, Y.-T., Advances in Nanowire Transistors for Biological Analysis and Cellular Investigation, Analyst, 139(7), pp. 1589-1608, Feb. 2014.

Buitrago E., Ferndez-Bolas, M., Rigante, S., Zilch, C.F., Schrer, N.S., Nightingale, A.M., Ionescu, A.M. The Top-down Fabrication of a 3D-integrated, Fully CMOS-compatible FET Biosensor based on Vertically Stacked SiNWs and FinFETs, Sens. Actuators B Chem., 193(1), pp. 400-412, Mar. 2014.

Rigante, S., Scarbolo, P., Wipf, M., Stoop, R.L., Bedner, K., Buitrago, E., Bazigos, A., Bouvet, D., Calame, M. & Schenberger, C., Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon. ACS Nano., 9(5), pp. 4872-4881, Mar. 2015.

Chaudhary, R., Mukhiya, R., Patel, G., Mudimela, P. & Sharma, R., Simulation of MOSFET with Different Dielectric Films, in Proceedings of the 2018 International Conference on Intelligent Circuits and Systems (ICICS), Phagwara, India, pp. 173-176, April 2018.

Dinar, A., Zain, A., Salehuddin, F., Attiah, M. & Abdulhameed, M., Modeling and Simulation of Electrolyte pH Change in Conventional ISFET using Commercial Silvaco TCAD, IOP Conf. Mater. Sci. Eng., pp. 518-522, June 2019.

Masalsky, N.V., Nanoscale Silicon Field Effect Transistors for Biosensor, Biomedicine Radioengineering, 23(2), pp. 74-79, June 2020. (Text in Russian and Abstract in English).

Gao, W., Emaminejad, S., Hnin, Y., Nyein, Y., Challa, S., Chen, K., Peck, A., Fahad, H., Ota, H., Shiraki, H., Kiriya, D., Lien, D., Brooks, G., Davis, R. & Javey, A. Fully Integrated Wearable Sensor Arrays for Multiplexed In Situ Perspiration Analysis, Nature, 529(7587), pp. 509?514, Jan. 2016.

Grattieri, M., Hasan, K. & Minteer, S., Bioelectrochemical Systems as a Multipurpose Biosensing Tool: Present Perspective and Future Outlook Pages, ChemElectroChem., 4(4), pp. 834-842, Apr. 2017.

Ferain, I., Colinge, C. & Colinge, Multigate Transistors as the Future of Classical Metal?oxide?semiconductor Field-effect Transistors, Nature, 479(7373), pp. 310-316, Nov. 2011.

Nguyen, N. & Readout, T., Concepts for Label-free Biomolecule Detection with Advanced ISFET and Silicon Nanowire Biosensors, Technische Universit Kaiserslautern: Kaiserslautern, Germany, 2018.

Tran, D., Winter, M., Yang, C.-T., Stockmann, B., Offenhsser, A. &. Thierry, B., Silicon Nanowires Field Effect Transistors: A Comparative Sensing Performance between Electrical Impedance and Potentiometric Measurement Paradigms, Anal. Chem., 91(19), pp. 12568-12573, Sept. 2019.

Colinge, J.P., FinFETs and Other Multi-Gate Transistors, Springer: New York, USA, 2008.

Clent, N., Han, X.L. & Larrieu, G., Electronic Transport Mechanisms in Scaled Gate-all-around Silicon Nanowire Transistor Arrays, Appl. Phys. Lett., 103(26), pp. 263504-263505, Dec. 2013.

Rajan, N.K., Brower, K., Duan, X. & Reed, M.A., Limit of Detection of Field Effect Transistor Biosensors: Effects of Surface Modification and Size Dependence, Appl. Phys. Lett., 104(8), 084106, Jun. 2014.

Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D., Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting, Springer Int. Publishing Switzerland, 2014.

Damhorst, G.L., Murtagh, M., Rodriguez, W.R. & Bashir, R., Microfluidics and Nanotechnology for Detection of Global Infectious Diseases, Proc. IEEE., 103(2), pp. 150-160, Feb. 2015.

Gale, B.K., Jafek, A.R., Lambert, C.J., Goenner, B.L., Moghimifam, H., Nze, U.C. & Kamarapu, S.K., A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects, Inventions, 3(3), pp. 60-68, Aug. 2018.

Kim, S., Rim, T., Kim, K., Lee, U., Baek, E., Lee, H., Baek, C.-K., Meyyappan, M., Deen, M.J. & Lee, J.-S., Silicon Nanowire Ion Sensitive Field Effect Transistor with Integrated Ag/AgCl Electrode: pH Sensing and Noise Characteristics, Analyst., 136(23), pp. 5012?5016, Dec. 2011.

Pud, S., Li, J., Sibiliev, V., Petrychuk, M., Kovalenko, V., Offenhsser, A. & Vitusevich, S., Liquid and Back Gate Coupling Effect: Toward Biosensing with Lowest Detection Limit, Nano Lett., 14(2), pp. 578-584, Jan. 2014.

Lefrou, C., Fabry, P. & Poignet, J., Electrochemistry-The Basics, with Examples, Springer, Berlin/Heidelberg, Germany, 2012.

Masalskii, N.V., Compact Sensor on the Basis of the ?Silicon on Isolator? Waveguide Structure for Express Detecting of Ammonia Solutions, International Journal of Biosensors & Bioelectronics, 4(1), pp. 27-28, Jan. 2018.

Massal?skii, N.V., Characteristics of Double-Gate SOI CMOS Nanotransistors for Promising Technologies with a Low Power Consumption Level, Russian Microelectronics, 42(1), pp. 40-47, Jan. 2013.

de Mello, A.J., Control and Detection of Chemical Reactions in Microfluidic Systems, Nature, 442(7101), pp. 394-402, Aug. 2006.

Agrawal, N., Kimura, Y., Arghavani, R. & Datta, S., Impact of Transistor Architecture (Bulk Planar, Tri gate on Bulk, Ultrathin-Body Planar SOI) and Material (Silicon or III-V Semiconductor) on Variation for Logic and SRAM Applications, IEEE Trans. Electron. Devices, 60(10), pp. 3298?3304, Oct. 2013.

Chen, H., Bomer, J., Carlen, E. & van den Berg, A., Al2O3/silicon Nano ISFET with Near Ideal Nernstian Response, Nano Lett., 11(6), pp. 2334?2341, June 2011.

Knopfmacher, O., Tarasov, A., Fu, W., Wipf, M., Niesen, B., Calame, M. & Schenberger, C., Nernst Limit in Dual-gated Si-nanowire FET Sensors, Nano Lett., 10(6), pp. 2268?2274, June 2014.

Baek, E., Rim, T., Scht, J., Baek, C., Kim, K., Baraban, L. & Cuniberti, G., Negative Photoconductance in Heavily Doped Si Nanowire Field-Effect Transistors, Nano Lett., 17(11), pp. 6727-6734, Nov. 2017.

Shafi, N., Sahu, C. & Periasamy, C., Fabrication and pH Sensitivity Analysis of In-situ Doped Polycrystalline Silicon Thin-film Junctionless BioFET, IEEE Electron Device Lett., 40(6), p. 997-1000, Apr. 2019.

Parmar., J, Shafi, N. & Sahu, C., Electrical Characterization and Study of Current Drift Phenomena and Hysteresis Mechanism in Junctionless Ion-Sensitive Field-effect Transistor, Silicon, Oct 2021.

Rajan, N.K., Routenberg, D.A. & Reed, M.A., Optimal Signal-to-noise Ratio for Silicon Nanowire Bio Chemicall Sensors, Appl. Phys. Lett., 98(26), pp. 2641071-2641073, June 2011.




How to Cite

Masalsky, N. (2022). Silicon on Isolator Ribbon Field-Effect Nanotransistors for High-Sensitivity Low-Power Biosensors . Journal of Engineering and Technological Sciences, 54(2), 220214.