Anaerobic Treatment for Palm Oil Mill Effluent Using Covered In-the Ground Anaerobic Reactor (CIGAR)


  • Agus Haryanto University of Lampung
  • Shintawati State Polytechnic of Lampung
  • Udin Hasanudin University of Lampung



Wastewater from crude palm oil mills contains high organic matter, which potentially produces biogas through anaerobic digestion processes. The design and operation of an anaerobic bioreactor require a good understanding of the reaction kinetic in the bioreactor. This study aimed to evaluate the biogas production from POME and to determine the kinetic parameters of microbial growth and the substrate utilization rates in a CIGAR. An experiment was conducted using a 5-m3 bioreactor with a working volume of 4.4 m3. Wastewater from the Bekri palm oil mill was stored in a 5-m3 tank. After stabilization, the wastewater was loaded into the reactor at a rate of 100 to 250 L/d, corresponding to a COD loading rate of 1.373-3.097 kgm-3.d-1, and an HRT of 18-44 days. Monod, Contois, Moser, and Shuler kinetic models were evaluated. The results showed that the Shuler model performed best for microbial activities, while the first order reaction model performed best for the substrate utilization kinetic. The maximum specific growth rate (?max) for the Shuler model was 0.052 d-1 and the saturation constant (Kso) was 0.119. The maximum substrate utilization rate constant (ks) was 2.183 d-1 and biomass yield (Yx/s) 0.024 kg/kg. The maximum average efficiency of anaerobic degradation (34.4%) occurred at a feeding rate of 100 L/d with methane yield of 0.120 Nm3/kg of removed COD. This value is relatively low compared to the maximum potential of 0.350 Nm3/kg CODr.

Author Biography

Agus Haryanto, University of Lampung

Agricultural Engineering Department


Hasanudin, U. & Setiadi, T., Sustainable Wastewater Management in Palm Oil Mills, in Ngo, H.H., Guo, W., Surampalli, R.Y. & Zhang, T.C. (eds.) Green Technologies for Sustainable Water Management, American Society of Civil Engineers, Reston, VA, 2016.

Thani, M.I., Hussin, R., Wan Ramlah, Bt.W.I. & Sulaiman, M.S., Industrial Processes & The Environment (Handbook No.3): Crude Palm Oil Industry, Department of Environment, Ministry of Science, Technology and the Environment, Malaysia, 1999.

Sarono, S., Suparno, O., Suprihatin, S. & Hasanudin, U., The Performance of Biogas Production from Pome at Different Temperatures, Int. J. Technol., 7(8), pp. 1413-1421, 2016. DOI: 10.14716/ijtech.v7i8.6896.

King, L.S. & Yu, L.C., A Retrofitted Palm Oil Mill Effluent Treatment System for Tapping Biogas, Eur. Int. J. Sci. Technol., 2, pp. 106-114, 2013.

Zhang, Y., Yan, L., Chi, L., Long, X., Mei, Z. & Zhang, Z., Startup and Operation of Anaerobic EGSB Reactor Treating Palm Oil Mill Effluent, J. Environ. Sci., 20, pp. 658-663, 2008. DOI: 10.1016/S1001-0742(08)62109-9.

Atmodjo, M.C.T., The Biogas Plant from Liquid Waste of Tapioca., Presented at the The 4th International Conference on Engineering and Technology Development (ICETD 2017), Lampung October 25, 2017.

Hasanudin, U., Utomo, T.P., Suroso, E., Shivakoti, B.R. & Fujie, K., Sustainable Wastewater Treatment in Small Scale Tapioca Factory, Presented at the 9th IWA International Symposium on Waste Management Problems in Agro-Industries, Kochi, Japan November 24, 2014.

Thiele, J.H., Large Scale Biogas Production in Liquid Biofuel Industries, Inaugural Webinar of the Bioenergy Association for New Zealand, New Zealand, 2011.

Thiele, J.H. & Hofmann, M.P., Testing Wastewater for Its Revenue Potential, in Proceedings of the Water New Zealand Annual Conference, 2012, Rotorua Energy Events Centre, Rotorua Energy Events Centre, New Zealand, 2012.

Trisakti, B., Manalu, V., Taslim, I. & Turmuzi, M., Acidogenesis of Palm Oil Mill Effluent to Produce Biogas: Effect of Hydraulic Retention Time and pH, Procedia ? Soc. Behav. Sci., 195, pp. 2466-2474, 2015. DOI: 10.1016/j.sbspro.2015.06.293

Vijaya, Capturing Biogas: A Means to Reduce Green House Gas Emissions for the Production of Crude Palm Oil, Am. J. Geosci., 1, pp. 1-6, 2010. DOI: 10.3844/ajgsp.2010.1.6.

Hasanudin, U., Sugiharto, R., Haryanto, A., Setiadi, T. & Fujie, K., Palm Oil Mill Effluent Treatment and Utilization to Ensure the Sustainability of Palm Oil Industries, Water Sci. Technol., 72, pp. 1089-1095, 2015. DOI: 10.2166/wst.2015.311.

Amelia, J.R., Suprihatin, S., Indrasti, N.S., Hasanudin, U., Murakami, R. & Fujie, K., Effects of Treated Palm Oil Mill Effluent Application on the Soil Microbial Community Structure and Oil Palm Plantation Productivity, J. Water Environ. Technol., 15, pp. 77-85, 2017. DOI: 10.2965/jwet.16-039.

Haryanto, A., Cahyani, D., Triyono, S., Murdapa, F. & Haryono, D., Economic Benefit and Greenhouse Gas Emission Reduction Potential of a Family-scale Cowdung Anaerobic Biogas Digester, Int. J. Renew. Energy Dev., 6(1), 29-36, 2017. DOI: 10.14710/ijred.6.1.29-36.

Abdurahman, N.H. & Azhari, N.H., Effect of Organic Loading Rate On the Performance of UAMAS in Treating POME, J. Am. Sci., 9, pp. 23-31, 2013.

Talaiekhozani, A., Jafarzadeh, N., Fulazzaky, M.A., Talaie, M.R. & Beheshti, M., Kinetics of Substrate Utilization and Bacterial Growth of Crude Oil Degraded by Pseudomonas Aeruginosa, J. Environ., Health Sci. Eng., 13(64), 1-8, 2015. DOI: 10.1186/s40201-015-0221-z.

Khan, M.T., Brul M., Maurer, C., Argyropoulos, D., Mler, J. & Oechsner, H., Batch Anaerobic Digestion of Banana Waste - Energy Potential and Modelling of Methane Production Kinetics, Agric. Eng. Int. CIGR J., 18, pp. 110-128, 2016.

Elaiuy, M.L.C., Borrion, A.L., Poggio, D., Stegemann, J.A. & Nour, E.A.A., ADM1 Modelling of Large-Scale Covered In-Ground Anaerobic Reactor Treating Sugarcane Vinasse, Water Sci. Technol., 77, pp. 1397-1409, 2018. DOI: 10.2166/wst.2018.013.

Teng, T.T., Wong, Y.S., Ong, S.A., Norhashimah, M. & Rafatullah, M., Start-up Operation of Anaerobic Degradation Process for Palm Oil Mill Effluent in Anaerobic Bench Scale Reactor (ABSR), Procedia Environ. Sci., 18, pp. 442-450, 2013. DOI: 10.1016/j.proenv.2013.04.059.

Shintawati, S., Hasanudin, U. & Haryanto, A., Characteristic of Palm Oil Mill Waste Water Treatment Using Semi Continuous Anaerobic CIGAR Bioreactor, J. Tek. Pertan. Lampung, 6, pp. 81-88, 2017. (Text in Indonesian)

Peces, M., Astals, S. & Mata-Alvarez, J., Assessing Total and Volatile Solids in Municipal Solid Waste Samples, Environ. Technol., 35, pp. 3041-3046, 2014. DOI: 10.1080/09593330.2014.929182.

Monod, J., The Growth of Bacterial Cultures, Annu. Rev. Microbiol., 3, pp. 371-394, 1949. DOI: 10.1146/annurev.mi.03.100149.002103.

Contois, D.E., Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures, J. Gen. Microbiol., 21, pp. 40-50, 1959. DOI: 10.1099/00221287-21-1-40.

Moser, A., Bioprocess Technology: Kinetics and Reactors, Springer-Verlag, New York, 1988.

Shuler, M.L. & Kargi, F., Bioprocess Engineering: Basic Concept, Printice-Hall International, Upper Saddle River, NJ, USA, 2002.

Tchobanoglous, G., Burton, F.L. & Stensel, H.D., Waste Water Engineering Treatment and Reuse, Tata McGraw Hill, New Delhi, India, 2003.

Kapdan, I.K., Kinetic Analysis of Dyestuff and COD Removal from Synthetic Wastewater in an Anaerobic Packed Column Reactor, Process Biochem., 40, pp. 2545-2550, 2005. DOI: 10.1016/j.procbio.2004.11.002.

Grau, P., Dohyos, M. & Chudoba, J., Kinetics of Multicomponent Substrate Removal by Activated Sludge, Water Res., 9, pp. 637-642, 1975. DOI: 10.1016/0043-1354(75)90169-4.

Intergovernmental Panel on Climate Change (IPCC), 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 5 Waste, Institute for Global Environmental Strategies (IGES), Japan, 2006.

Nwaigwe, K.N., Ononogbo, C., Anyanwu, E.E. & Enweremadu, C.C., Chemical Oxygen Demand Removal Rate Comparative Analysis Using Three Different Biogas Digesters, Agric. Eng. Int. CIGR J., 19, pp. 84-92, 2017.

Mahanta, D.J., Borah, M. & Saikia, P., A Study on Kinetic Models for Analysing the Bacterial Growth Rate, Am. Int. J. Res. Sci. Technol. Eng. Math., 14(724), pp. 68-72, 2014.

Riffat, R., Fundamentals of Wastewater Treatment and Engineering, IWA Publishing, London, 2013.

Kleerebezem, R., Joosse, B., Rozendal, R. & Van Loosdrecht, M.C.M., Anaerobic Digestion without Biogas? Rev. Environ. Sci. Biotechnol., 14, pp. 787-801, 2015. DOI: 10.1007/s11157-015-9374-6.

Setiadi, T., Husaini & Djajadiningrat, A., Palm Oil Mill Effluent Treatment by Anaerobic Baffled Reactors: Recycle Effects and Biokinetic Parameters, Water Sci. Technol., 34, pp. 59-66, 1996. DOI: 10.2166/wst. 1996.0263.

Chan, Y.J., Chong, M.F. & Law, C.L., Performance and Kinetic Evaluation of an Integrated Anaerobic-Aerobic Bioreactor in the Treatment of Palm Oil Mill Effluent, Environ. Technol., 38, pp. 1005-1021, 2017. DOI: 10.1080/09593330.2016.1217053.

Nwabanne, J.T., Okoye, A.C. & Ezedinma, H.C., Kinetics of Anaerobic Digestion of Palm Oil Mill Effluent, Can. J. Pure Appl. Sci., 6, pp. 1877-1881, 2012.

Amelia, J.R., Suprihatin, S., Indrasti, N.S., Hasanudin, U., Murakami, R. & Fujie, K., Effects of Treated Palm Oil Mill Effluent Application on the Soil Microbial Community Structure and Oil Palm Plantation Productivity, J. Water Environ. Technol., 15, pp. 77-85, 2017. DOI: 10.2965/jwet.16-039.

Faisal, M. & Unno, H., Kinetic Analysis of Palm Oil Mill Wastewater Treatment by a Modified Anaerobic Baffled Reactor, Biochem. Eng. J., 9, pp. 25-31, 2001. DOI: 10.1016/S1369-703X(01)00122-X.